(3s.) **v. 2025 (43)** : 1–11. ISSN-0037-8712 doi:10.5269/bspm.69521

Inner higher derivations on Hilbert C*-modules

Sayed Khalil Ekrami

ABSTRACT: Let \mathcal{M} be a Hilbert C*-module. We define a product $\pi_{\mathbf{e}}$ on \mathcal{M} , making \mathcal{M} into a Banach algebra. Then we study inner derivations and inner higher derivations of Banach algebra $(\mathcal{M}, \pi_{\mathbf{e}})$. We find the general form of the family of inner derivations corresponding to an inner higher derivation on unital Banach algebra $(\mathcal{M}, \pi_{\mathbf{e}})$, with the identity element $1_{\mathcal{M}}$. We show that if $\{v_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ are sequences in \mathcal{M} such that $v_0 = w_0 = 1_{\mathcal{M}}$ and $(\mathbf{v} * \mathbf{w})_n = (\mathbf{w} * \mathbf{v})_n = 0$ for all $n \in \mathbb{N}$ and $\{\varphi_n\}_{n=0}^{\infty}$ is the inner higher derivation on $(\mathcal{M}, \pi_{\mathbf{e}})$ defined by

$$\varphi_n(x) = \sum_{i=0}^n \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-i},$$

for all $x \in \mathcal{M}$ and each non-negative integer n, then the corresponding sequence of inner derivations $\{\psi_n\}_{n=1}^{\infty}$, defined on $(\mathcal{M}, \pi_{\mathbf{e}})$ by

$$\psi_n(x) = \left\langle \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n}} (-1)^{i-1} \ r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_{i-1}}, \mathbf{e} \rangle v_{r_i} \right), \mathbf{e} \right\rangle x$$

$$+ \langle x, \mathbf{e} \rangle \sum_{i=1}^n \left(\sum_{\substack{\sum_{i=1}^i r_j = n}} (-1)^{i-1} \ r_i \langle w_{r_1}, \mathbf{e} \rangle \langle w_{r_2}, \mathbf{e} \rangle \dots \langle w_{r_{i-1}}, \mathbf{e} \rangle w_{r_i} \right),$$

for all $x \in \mathcal{M}$ and all $n \in \mathbb{N}$.

Key Words: Derivation, inner derivation, higher derivation, Hilbert C*-module.

Contents

1 Introduction 1

2 The Results 2

1. Introduction

A derivation of an algebra A is a linear mapping δ from A into itself such that $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$. For a fixed $a \in A$, the mapping $\delta_a(x) = ax - xa$ is clearly a derivation, which is called an inner derivation implemented by a. A sequence of linear mappings $\{d_n : A \to A\}_{n=0}^{\infty}$ with $d_0 = I$ (the identity mapping on A), is called a higher derivation on A, if it satisfies the equation $d_n(ab) = \sum_{i=0}^n d_i(a)d_{n-i}(b)$ for all $a, b \in A$ and each non-negative integer n. Mirzavaziri defined the concept of inner higher derivations on algebras in [9] as a sequence of linear mappings $\{d_n : A \to A\}_{n=0}^{\infty}$ satisfying $(n+1)d_n(x) = \sum_{i=0}^n a_{i+1}d_{n-i}(x) - d_{n-i}(x)a_{i+1}$ for each $n=0,1,2,\ldots$ and $x \in A$ in which $\{a_n\}_{n=1}^{\infty}$ is a sequence in A and then gave a characterization for inner higher derivations on a torsion free algebra A. He showed that each higher derivation on A is inner provided that each derivation on A is inner. For more information about derivations and higher derivations on algebras, the reader refer to [1,2,4,5,6,7,10,11,12,13].

In this paper, we discuss about inner higher derivations on Hilbert C*-modules. The notion of a Hilbert C*-module is a generalization of a Hilbert space in which the inner product takes its values in a C*-algebra (see [8]). Let \mathcal{A} be a C*-algebra and \mathcal{M} be a complex linear space which is a left \mathcal{A} -module with a compatible scalar multiplication. The space \mathcal{M} is called a left inner product \mathcal{A} -module, if there is an \mathcal{A} -valued inner product $(x,y) \mapsto \langle x,y \rangle : \mathcal{M} \times \mathcal{M} \to \mathcal{A}$ such that for each $x,y,z \in \mathcal{M}$, $\alpha,\beta \in \mathbb{C}$ and $a \in \mathcal{A}$,

(i) $\langle x, x \rangle \geq 0$ and the equality holds if and only if x = 0,

Submitted September 06, 2023. Published March 18, 2025 2010 Mathematics Subject Classification: 16W25, 46L57, 47B47, 46H40.

S. Kh. Ekrami

- (ii) $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$,
- (iii) $\langle ax, y \rangle = a \langle x, y \rangle$,
- (iv) $\langle x, y \rangle^* = \langle y, x \rangle$.

It follows from the conditions (i)-(iv) that, $\langle x, x \rangle$ is a positive element in C*-algebra \mathcal{A} , the inner product is conjugate-linear in its second variable and $\langle x, ay \rangle = \langle x, y \rangle a^*$ for all $x, y \in \mathcal{M}$, $a \in \mathcal{A}$. An inner product \mathcal{A} -module \mathcal{M} which is complete with respect to the norm $||x||_{\mathcal{M}} = ||\langle x, x \rangle||_{\mathcal{A}}^{\frac{1}{2}}$ is called a Hilbert \mathcal{A} -module or a Hilbert C*-module over the C*-algebra \mathcal{A} . For example, every C*-algebra \mathcal{A} is a Hilbert \mathcal{A} -module under the \mathcal{A} -valued inner product $\langle a, b \rangle = ab^*$ $(a, b \in \mathcal{A})$. Every complex Hilbert space is a left Hilbert C-module. The notion of a right Hilbert \mathcal{A} -module can be defined similarly.

Let \mathcal{M} be a (left) Hilbert C*-module over a C*-algebra \mathcal{A} and I be the identity mapping on \mathcal{M} . Ekrami [3] showed that for any Hilbert C*-module higher derivation $\{\varphi_n\}_{n=0}^{\infty}$ on a Hilbert C*-module \mathcal{M} , with $\varphi_0 = I$, there exists a unique sequence of Hilbert C*-module derivations $\{\psi_n\}_{n=1}^{\infty}$ on \mathcal{M} such that

$$\psi_n = \sum_{k=1}^n \left(\sum_{r_1 + r_2 + \dots + r_k = n} (-1)^{k-1} \ r_1 \varphi_{r_1} \varphi_{r_2} \dots \varphi_{r_k} \right),$$

for each positive integers n, where the inner summation is taken over all positive integers r_j with $\sum_{i=1}^k r_i = n$.

Every Hilbert C*-module \mathcal{M} is a Banach space but there is no algebraic product on it. In this paper, using the \mathcal{A} -valued inner product defined on $\mathcal{M} \times \mathcal{M}$, we define a product $\pi_{\mathbf{e}}$ on \mathcal{M} , making \mathcal{M} into a Banach algebra. Then we study inner derivations and inner higher derivations of Banach algebra $(\mathcal{M}, \pi_{\mathbf{e}})$. We find the general form of the family of inner derivations corresponding to an inner higher derivation. We show that if $(\mathcal{M}, \pi_{\mathbf{e}})$ is unital, with the identity element $1_{\mathcal{M}}$ and $\{v_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ are sequences in \mathcal{M} such that $v_0 = w_0 = 1_{\mathcal{M}}$ and $(\mathbf{v} * \mathbf{w})_n = (\mathbf{w} * \mathbf{v})_n = 0$ for all $n \in \mathbb{N}$ and $\{\varphi_n\}_{n=0}^{\infty}$ is the inner higher derivation on $(\mathcal{M}, \pi_{\mathbf{e}})$ defined by

$$\varphi_n(x) = \sum_{i=0}^n \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-i},$$

for all $x \in \mathcal{M}$ and each non-negative integer n, then the corresponding sequence of inner derivations $\{\psi_n\}_{n=1}^{\infty}$, defined on $(\mathcal{M}, \pi_{\mathbf{e}})$ by

$$\psi_n(x) = \left\langle \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n}} (-1)^{i-1} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_{i-1}}, \mathbf{e} \rangle v_{r_i} \right), \mathbf{e} \right\rangle x$$

$$+ \left\langle x, \mathbf{e} \right\rangle \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n}} (-1)^{i-1} r_i \langle w_{r_1}, \mathbf{e} \rangle \langle w_{r_2}, \mathbf{e} \rangle \dots \langle w_{r_{i-1}}, \mathbf{e} \rangle w_{r_i} \right),$$

for all $x \in \mathcal{M}$ and all $n \in \mathbb{N}$.

For more information about derivations and higher derivations on Hilbert C^* -modules, the reader refer to [3,12].

2. The Results

Let \mathcal{M} be a (left) Hilbert \mathcal{A} -module and let \mathbf{e} be an arbitrary element in \mathcal{M} with $\|\mathbf{e}\| = 1$. The mapping $\pi_{\mathbf{e}} : \mathcal{M} \times \mathcal{M} \to \mathcal{M}$ defind by $\pi_{\mathbf{e}}(x,y) = \langle x,\mathbf{e} \rangle y$ for all $x,y \in \mathcal{M}$, is a product on \mathcal{M} . Validity of equation

$$\pi_{\mathbf{e}}(\pi_{\mathbf{e}}(x,y)z) = \langle x, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle z = \pi_{\mathbf{e}}(x, \pi_{\mathbf{e}}(y,z)),$$

shows that $(\mathcal{M}, \pi_{\mathbf{e}})$ is an associative algebra. With a simple calculation we can show that $(\mathcal{M}, \pi_{\mathbf{e}})$ is a Banach algebra. $(\mathcal{M}, \pi_{\mathbf{e}})$ is called unital, if there exists an element $1_{\mathcal{M}}$ in \mathcal{M} such that $\langle x, \mathbf{e} \rangle 1_{\mathcal{M}} = \langle 1_{\mathcal{M}}, \mathbf{e} \rangle x = x$ for all $x \in \mathcal{M}$.

A linear mapping $\psi : (\mathcal{M}, \pi_{\mathbf{e}}) \to (\mathcal{M}, \pi_{\mathbf{e}})$ is called a derivation on $(\mathcal{M}, \pi_{\mathbf{e}})$, if it satisfies the equation $\psi(\langle x, \mathbf{e} \rangle y) = \langle \psi(x), \mathbf{e} \rangle y + \langle x, \mathbf{e} \rangle \psi(y),$

for all $x, y \in \mathcal{M}$.

Example 2.1 Let $M_2(\mathbb{C})$ be the C^* -algebra of 2×2 complex matrices and $E = \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 0 & 0 \end{bmatrix}$. The mapping $\psi : (M_2(\mathbb{C}), \pi_E) \to (M_2(\mathbb{C}), \pi_E)$ defined by

$$\psi(X) = \begin{bmatrix} 0 & 0 \\ x_{11} + x_{21} & x_{12} + x_{22} \end{bmatrix},$$

for all $X \in M_2(\mathbb{C})$, is a derivation on $(M_2(\mathbb{C}), \pi_E)$.

For a fixed element $w \in \mathcal{M}$, the linear mapping $\psi_w : (\mathcal{M}, \pi_e) \to (\mathcal{M}, \pi_e)$ defined by

$$\psi_w(x) = \langle w, \mathbf{e} \rangle x - \langle x, \mathbf{e} \rangle w,$$

for all $x \in \mathcal{M}$, is a derivation, which is called an *inner derivation* on $(\mathcal{M}, \pi_{\mathbf{e}})$.

A sequence of linear mappings $\{\varphi_n : (\mathcal{M}, \pi_{\mathbf{e}}) \to (\mathcal{M}, \pi_{\mathbf{e}})\}_{n=0}^{\infty}$ with $\varphi_0 = I$, is called a *higher derivation* on $(\mathcal{M}, \pi_{\mathbf{e}})$, if it satisfies the equation

$$\varphi_n(\langle x, \mathbf{e} \rangle y) = \sum_{i=0}^n \langle \varphi_i(x), \mathbf{e} \rangle \varphi_{n-i}(y), \tag{2.1}$$

for all $x, y \in \mathcal{M}$ and each non-negative integer n.

Proposition 2.1 Let $\{\varphi_n\}_{n=0}^{\infty}$ be a sequence of linear mappings on (\mathcal{M}, π_e) with $\varphi_0 = I$, for which there exists a sequence $\{v_n\}_{n=1}^{\infty}$ in \mathcal{M} such that

$$\varphi_{n+1}(x) = \frac{1}{n+1} \sum_{k=0}^{n} \left(\langle v_{k+1}, \mathbf{e} \rangle \varphi_{n-k}(x) - \langle \varphi_{n-k}(x), \mathbf{e} \rangle v_{k+1} \right), \tag{2.2}$$

for all $x \in \mathcal{M}$ and each non-negative integer n. Then $\{\varphi_n\}_{n=0}^{\infty}$ is a higher derivation on (\mathcal{M}, π_e) .

Proof: Assume that for sequence of linear mappings $\{\varphi_n\}_{n=0}^{\infty}$ on $(\mathcal{M}, \pi_{\mathbf{e}})$ with $\varphi_0 = I$ and sequence $\{v_n\}_{n=1}^{\infty}$ of elements of \mathcal{M} , the equation (2.2) holds. Using induction on n, we show that $\{\varphi_n\}_{n=0}^{\infty}$ satisfies the equation (2.1).

Putting n = 0 in (2.2), we have $\varphi_1(x) = \langle v_1, \mathbf{e} \rangle x - \langle x, \mathbf{e} \rangle v_1 = \varphi_{v_1}(x)$ for all $x \in \mathcal{M}$. Thus φ_1 is an inner derivation on $(\mathcal{M}, \pi_{\mathbf{e}})$. Suppose that the equation (2.1) is true for all $k \leq n$. For n + 1 we have

$$(n+1)\varphi_{n+1}(\langle x, \mathbf{e} \rangle y)$$

$$= \sum_{k=0}^{n} \left(\langle v_{k+1}, \mathbf{e} \rangle \varphi_{n-k}(\langle x, \mathbf{e} \rangle y) - \langle \varphi_{n-k}(\langle x, \mathbf{e} \rangle y), \mathbf{e} \rangle v_{k+1} \right)$$

$$= \sum_{k=0}^{n} \psi_{v_{k+1}} \left(\varphi_{n-k}(\langle x, \mathbf{e} \rangle y) \right)$$

$$= \sum_{k=0}^{n} \psi_{v_{k+1}} \left(\sum_{i=0}^{n-k} \langle \varphi_{i}(x), \mathbf{e} \rangle \varphi_{n-k-i}(y) \right)$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} \langle \psi_{v_{k+1}}(\varphi_{i}(x)), \mathbf{e} \rangle \varphi_{n-k-i}(y) + \sum_{k=0}^{n} \sum_{i=0}^{n-k} \langle \varphi_{i}(x), \mathbf{e} \rangle \psi_{v_{k+1}}(\varphi_{n-k-i}(y))$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} \langle \psi_{v_{k+1}}(\varphi_{i}(x)), \mathbf{e} \rangle \varphi_{n-k-i}(y) + \sum_{i=0}^{n} \sum_{k=0}^{n-i} \langle \varphi_{i}(x), \mathbf{e} \rangle \psi_{v_{k+1}}(\varphi_{n-k-i}(y)),$$

for all $x, y \in \mathcal{M}$. Now, putting k + i = r in the first summation, changing the indices in the second summation and using assumption, we have

$$\begin{split} &(n+1)\varphi_{n+1}(\langle x,\mathbf{e}\rangle y) \\ &= \sum_{r=0}^n \Big\langle \sum_{k=0}^r \psi_{v_{k+1}}(\varphi_{r-k}(x)), \mathbf{e} \Big\rangle \varphi_{n-r}(y) + \sum_{r=0}^n \langle \varphi_r(x),\mathbf{e} \rangle \Big(\sum_{k=0}^{n-r} \psi_{v_{k+1}}(\varphi_{n-k-r}(y)) \Big) \\ &= \sum_{r=0}^n \langle (r+1)\varphi_{r+1}(x), \mathbf{e} \rangle \varphi_{n-r}(y) + \sum_{r=0}^n \langle \varphi_r(x), \mathbf{e} \rangle \Big((n-r+1)\varphi_{n-r+1}(y) \Big) \\ &= \sum_{r=1}^{n+1} r \langle \varphi_r(x), \mathbf{e} \rangle \varphi_{n-r+1}(y) + \sum_{r=0}^n (n-r+1) \langle \varphi_r(x), \mathbf{e} \rangle \varphi_{n-r+1}(y) \\ &= (n+1) \langle \varphi_{n+1}(x), \mathbf{e} \rangle \varphi_0(y) + \sum_{r=1}^n r \langle \varphi_r(x), \mathbf{e} \rangle \varphi_{n-r+1}(y) \\ &+ \sum_{r=1}^n (n-r+1) \langle \varphi_r(x), \mathbf{e} \rangle \varphi_{n-r+1}(y) + (n+1) \langle \varphi_0(x), \mathbf{e} \rangle \varphi_{n+1}(y) \\ &= (n+1) \langle \varphi_{n+1}(x), \mathbf{e} \rangle \varphi_0(y) + (n+1) \sum_{r=1}^n \langle \varphi_r(x), \mathbf{e} \rangle \varphi_{n-r+1}(y) + (n+1) \langle \varphi_0(x), \mathbf{e} \rangle \varphi_{n+1}(y) \\ &= (n+1) \sum_{r=0}^{n+1} \langle \varphi_r(x), \mathbf{e} \rangle \varphi_{n+1-r}(y), \end{split}$$

for all $x, y \in \mathcal{M}$. This shows that $\{\varphi_n\}_{n=0}^{\infty}$ is a higher derivation on $(\mathcal{M}, \pi_{\mathbf{e}})$ and completes the proof. \square

Definition 2.1 A higher derivation satisfying in Proposition 2.1, is called an inner higher derivation on (\mathcal{M}, π_e) .

The next corollary follows from Proposition 2.1.

Corollary 2.1 A sequence of linear mappings $\{\varphi_n\}_{n=0}^{\infty}$ on (\mathcal{M}, π_e) with $\varphi_0 = I$, is an inner higher derivation on (\mathcal{M}, π_e) , if and only if there is a sequence of inner derivations $\{\psi_{v_n}\}_{n=1}^{\infty}$ on (\mathcal{M}, π_e) defined by $\psi_{v_n}(x) = \langle v_n, e \rangle x - \langle x, e \rangle v_n$, such that

$$(n+1)\varphi_{n+1} = \sum_{k=0}^{n} \psi_{v_{k+1}}\varphi_{n-k},$$
(2.3)

for each non-negative integer n.

Lemma 2.1 Let $\{v_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ be two sequences in \mathcal{M} , and $\{\varphi_n\}_{n=0}^{\infty}$ be a sequence of mappings defined on (\mathcal{M}, π_e) by

$$\varphi_n(x) = \sum_{i=0}^n \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-i},$$

for all $x \in \mathcal{M}$ and each non-negative integer n. Then we have

$$\sum_{i=0}^{n} \langle \varphi_i(x), \mathbf{e} \rangle \varphi_{n-i}(y) = \sum_{i=0}^{n} \varphi_i \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big),$$

for all $x, y \in \mathcal{M}$ and each non-negative integer n, in which $(\boldsymbol{w} * \boldsymbol{v})_k = \sum_{i=0}^k \langle w_i, \boldsymbol{e} \rangle v_{k-i}, \ k = 0, 1, 2, \cdots$

Proof: Trivially each φ_n is linear. For all $x, y \in \mathcal{M}$ and each non-negative integer n, we have

$$\sum_{i=0}^{n} \varphi_{i} \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big) = \sum_{i=0}^{n} \varphi_{i} \Big(\langle x, \mathbf{e} \rangle \Big\langle \sum_{j=0}^{n-i} \langle w_{j}, \mathbf{e} \rangle v_{n-i-j}, \mathbf{e} \Big\rangle y \Big)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n-i} \varphi_{i} \Big(\langle x, \mathbf{e} \rangle \langle w_{j}, \mathbf{e} \rangle \langle v_{n-i-j}, \mathbf{e} \rangle y \Big)$$

$$= \sum_{i=0}^{n} \sum_{j=0}^{n-i} \sum_{k=0}^{i} \langle v_{k}, \mathbf{e} \rangle \Big\langle \langle x, \mathbf{e} \rangle \langle w_{j}, \mathbf{e} \rangle \langle v_{n-i-j}, \mathbf{e} \rangle y, \mathbf{e} \Big\rangle w_{i-k}$$

$$= \sum_{i=0}^{n} \sum_{k=0}^{i} \sum_{j=0}^{n-i} \langle v_{k}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_{j}, \mathbf{e} \rangle \langle v_{n-i-j}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_{i-k}.$$

We can write $\sum_{i=0}^{n} \sum_{k=0}^{i} x_{i,k} = \sum_{i=0}^{n} \sum_{k=i}^{n} x_{k,i}$, in which

$$x_{i,k} = \sum_{j=0}^{n-i} \langle v_k, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_j, \mathbf{e} \rangle \langle v_{n-i-j}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_{i-k}.$$

Thus we conclude that

$$\sum_{i=0}^{n} \varphi_{i} \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big) = \sum_{i=0}^{n} \sum_{k=i}^{n} \sum_{j=0}^{n-k} \langle v_{i}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_{j}, \mathbf{e} \rangle \langle v_{n-k-j}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_{k-i}$$

$$= \sum_{i=0}^{n} \sum_{k=0}^{n-i} \sum_{j=0}^{n-i-k} \langle v_{i}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_{j}, \mathbf{e} \rangle \langle v_{n-k-i-j}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_{k}.$$

We can write $\sum_{k=0}^{n-i} \sum_{j=0}^{n-i-k} x_{k,j} = \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} x_{k,j}$, in which

$$x_{k,i} = \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_i, \mathbf{e} \rangle \langle v_{n-k-i-i}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_k$$

Thus

$$\sum_{i=0}^n \varphi_i \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big) = \sum_{i=0}^n \sum_{j=0}^{n-i} \sum_{k=0}^{n-i-j} \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_j, \mathbf{e} \rangle \langle v_{n-k-i-j}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_k.$$

In the summation $\sum_{i=0}^{n} \sum_{j=0}^{n-i}$, we have $0 \le i+j \le n$. Thus if we put i+j=r, then we can write it as the form $\sum_{r=0}^{n} \sum_{i+j=r}$. Putting j=r-i, we indeed have

$$\sum_{i=0}^{n} \varphi_{i} \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big) = \sum_{r=0}^{n} \sum_{i=0}^{r} \sum_{k=0}^{n-r} \langle v_{i}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_{r-i}, \mathbf{e} \rangle \langle v_{n-k-r}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_{k}$$

$$= \sum_{r=0}^{n} \Big\langle \sum_{i=0}^{r} \langle v_{i}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{r-i}, \mathbf{e} \Big\rangle \sum_{k=0}^{n-r} \langle v_{n-r-k}, \mathbf{e} \rangle \langle y, \mathbf{e} \rangle w_{k}$$

$$= \sum_{r=0}^{n} \langle \varphi_{r}(x), \mathbf{e} \rangle \varphi_{n-r}(y).$$

This completes the proof.

Corollary 2.2 Let (\mathcal{M}, π_e) be unital, with the identity element $1_{\mathcal{M}}$ and $\{v_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ be sequences in \mathcal{M} such that $v_0 = w_0 = 1_{\mathcal{M}}$ and $(\mathbf{v} * \mathbf{w})_n = (\mathbf{w} * \mathbf{v})_n = 0$ for all $n \in \mathbb{N}$. Then the sequence of mappings $\{\varphi_n\}_{n=0}^{\infty}$ on (\mathcal{M}, π_e) defined by

$$\varphi_n(x) = \sum_{i=0}^n \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-i},$$

for all $x \in \mathcal{M}$ and each non-negative integer n, is a higher derivation on (\mathcal{M}, π_e) .

Proof: For n = 0, we have $\varphi_0(x) = \langle v_0, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_0 = x = I(x)$ for all $x \in \mathcal{M}$. Thus $\varphi_0 = I$. Let $n \in \mathbb{N}$. By Lemma 2.1, we have

$$\sum_{i=0}^{n} \langle \varphi_i(x), \mathbf{e} \rangle \varphi_{n-i}(y) = \sum_{i=0}^{n} \varphi_i \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big)
= \varphi_n \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_0, \mathbf{e} \rangle y \Big) + \sum_{i=0}^{n-1} \varphi_i \Big(\langle x, \mathbf{e} \rangle \langle (\mathbf{w} * \mathbf{v})_{n-i}, \mathbf{e} \rangle y \Big)
= \varphi_n \Big(\langle x, \mathbf{e} \rangle y \Big),$$

for all $x, y \in \mathcal{M}$.

In the next proposition, we find the general form of the family of inner derivations corresponding to an inner higher derivation.

Proposition 2.2 Let (\mathcal{M}, π_e) be unital, with the identity element $1_{\mathcal{M}}$ and $\{v_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ be sequences in \mathcal{M} such that $v_0 = w_0 = 1_{\mathcal{M}}$ and $(\mathbf{v} * \mathbf{w})_n = (\mathbf{w} * \mathbf{v})_n = 0$ for all $n \in \mathbb{N}$. Let $\{\varphi_n\}_{n=0}^{\infty}$ be the (inner) higher derivation on (\mathcal{M}, π_e) defined by

$$\varphi_n(x) = \sum_{i=0}^n \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-i},$$

for all $x \in \mathcal{M}$ and each non-negative integer n. Then the corresponding sequence of inner derivations $\{\psi_n\}_{n=1}^{\infty}$, defined on (\mathcal{M}, π_e) by

$$\psi_{n}(x) = \left\langle \sum_{i=1}^{n} \left(\sum_{\sum_{j=1}^{i} r_{j}=n} (-1)^{i-1} r_{1} \langle v_{r_{1}}, \boldsymbol{e} \rangle \langle v_{r_{2}}, \boldsymbol{e} \rangle \dots \langle v_{r_{i-1}}, \boldsymbol{e} \rangle v_{r_{i}} \right), \boldsymbol{e} \right\rangle x$$

$$+ \langle x, \boldsymbol{e} \rangle \sum_{i=1}^{n} \left(\sum_{\sum_{j=1}^{i} r_{j}=n} (-1)^{i-1} r_{i} \langle w_{r_{1}}, \boldsymbol{e} \rangle \langle w_{r_{2}}, \boldsymbol{e} \rangle \dots \langle w_{r_{i-1}}, \boldsymbol{e} \rangle w_{r_{i}} \right),$$

$$(2.4)$$

for all $x \in \mathcal{M}$ and all $n \in \mathbb{N}$.

Proof: Put

$$A_n = \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n}} (-1)^{i-1} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_{i-1}}, \mathbf{e} \rangle v_{r_i} \right),$$

$$B_n = \sum_{i=1}^n \left(\sum_{\substack{\sum_{j=1}^i r_j = n}} (-1)^{i-1} r_i \langle w_{r_1}, \mathbf{e} \rangle \langle w_{r_2}, \mathbf{e} \rangle \dots \langle w_{r_{i-1}}, \mathbf{e} \rangle w_{r_i} \right).$$

Then $\psi_n(x) = \langle A_n, \mathbf{e} \rangle x + \langle x, \mathbf{e} \rangle B_n$. First we prove the following equations, using induction on n.

(i)
$$(n+1)v_{n+1} = \sum_{k=0}^{n} \langle A_{k+1}, \mathbf{e} \rangle v_{n-k},$$

(ii)
$$(n+1)w_{n+1} = \sum_{k=0}^{n} \langle w_{n-k}, \mathbf{e} \rangle B_{k+1}.$$

Proof of (i): For n = 1 we have $A_1 = v_1$. Suppose that A_k is defined for all k = 1, 2, ..., n as equation (i). Then for n + 1 we have

$$\begin{split} &A_{n+1} \\ &= \sum_{k=1}^{n+1} \left(\sum_{\sum_{j=1}^k r_j = n+1}^{(-1)^{k-1}} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_{k-1}}, \mathbf{e} \rangle v_{r_k} \right) \\ &= (n+1)v_{n+1} + \sum_{k=2}^{n+1} \left(\sum_{\sum_{j=1}^k r_j = n+1}^{(-1)^{k-1}} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_{k-1}}, \mathbf{e} \rangle v_{r_k} \right) \\ &= (n+1)v_{n+1} + \sum_{k=1}^n \left(\sum_{\sum_{j=1}^{k+1} r_j = n+1}^{(-1)^k} (-1)^k r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_k}, \mathbf{e} \rangle v_{r_{k+1}} \right) \\ &= (n+1)v_{n+1} - \sum_{k=1}^n \sum_{r_{k+1} = 1}^{n-(k-1)} \left(\sum_{\substack{r_1 + r_2 + \dots + r_k \\ = n+1 - i}}^{(-1)^{k-1}} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_k}, \mathbf{e} \rangle \right) v_{r_{k+1}} \\ &= (n+1)v_{n+1} - \sum_{k=1}^n \sum_{i=1}^{n-(k-1)} \left(\sum_{\substack{r_1 + r_2 + \dots + r_k \\ = n-(i-1)}}^{(-1)^{k-1}} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_k}, \mathbf{e} \rangle \right) v_i \\ &= (n+1)v_{n+1} - \sum_{i=1}^n \sum_{k=1}^{n-(i-1)} \left(\sum_{\substack{r_1 + r_2 + \dots + r_k \\ = n-(i-1)}}^{(-1)^{k-1}} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_k}, \mathbf{e} \rangle \right) v_i \\ &= (n+1)v_{n+1} - \sum_{i=1}^n \left(\sum_{k=1}^{n-(i-1)} \left(\sum_{\substack{r_1 + r_2 + \dots + r_k \\ = n-(i-1)}}^{(-1)^{k-1}} r_1 \langle v_{r_1}, \mathbf{e} \rangle \langle v_{r_2}, \mathbf{e} \rangle \dots \langle v_{r_k}, \mathbf{e} \rangle \right) v_i \\ &= (n+1)v_{n+1} - \sum_{i=1}^n \left(A_{n-(i-1)}, \mathbf{e} \rangle v_i = (n+1)v_{n+1} - \sum_{i=0}^{n-1} \langle A_{n-i}, \mathbf{e} \rangle v_{i+1} \right) \\ &= (n+1)v_{n+1} - \sum_{k=0}^n \langle A_{k+1}, \mathbf{e} \rangle v_{n-k}. \end{split}$$

This proves the validity of equation (i).

Proof of (ii): For n = 1 we have $B_1 = w_1$. Suppose that B_k is defined for all k = 1, 2, ..., n as

S. Kh. Ekrami

equation (ii). Then for n+1 we have

This proves the validity of equation (ii). Now we have

$$\sum_{k=0}^{n} \psi_{k+1} \varphi_{n-k}(x) = \sum_{k=0}^{n} \psi_{k+1} \left(\sum_{i=0}^{n-k} \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-k-i} \right) = \sum_{k=0}^{n} \sum_{i=0}^{n-k} \psi_{k+1} (\langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-k-i})$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} \left(\langle A_{k+1}, \mathbf{e} \rangle \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-k-i} + \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_{n-k-i}, \mathbf{e} \rangle B_{k+1} \right)$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{n-k} \left(\langle A_{k+1}, \mathbf{e} \rangle \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-k-i} + \langle v_{n-k-i}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_i, \mathbf{e} \rangle B_{k+1} \right).$$

In the summation $\sum_{k=0}^{n}\sum_{i=0}^{n-k}$, we have $0 \le k+i \le n$. Thus if we put k+i=r, then we can write it as

the form $\sum_{r=0}^{n} \sum_{k+i=r}$. Putting i=r-k, we indeed have

$$\begin{split} &\sum_{k=0}^{n} \psi_{k+1} \varphi_{n-k}(x) \\ &= \sum_{r=0}^{n} \sum_{k=0}^{r} \left(\langle A_{k+1}, \mathbf{e} \rangle \langle v_{r-k}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} + \langle v_{n-r}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \langle w_{r-k}, \mathbf{e} \rangle B_{k+1} \right) \\ &= \sum_{r=0}^{n} \left(\langle \left(\sum_{k=0}^{r} \langle A_{k+1}, \mathbf{e} \rangle v_{r-k}, \mathbf{e} \right) \langle x, \mathbf{e} \rangle w_{n-r} + \langle v_{n-r}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle \sum_{k=0}^{r} \langle w_{r-k}, \mathbf{e} \rangle B_{k+1} \right) \\ &= \sum_{r=0}^{n} \left(\langle (r+1)v_{r+1}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} + (r+1) \langle v_{n-r}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{r+1} \right) \\ &= \sum_{r=0}^{n} (r+1) \langle v_{r+1}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} + \sum_{r=0}^{n} (r+1) \langle v_{n-r}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{r+1} \\ &= (n+1) \langle v_{n+1}, \mathbf{e} \rangle x + \sum_{r=0}^{n-1} (r+1) \langle v_{r+1}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} \\ &+ (n+1) \langle x, \mathbf{e} \rangle w_{n+1} + \sum_{r=0}^{n-1} (r+1) \langle v_{r+1}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} \\ &= (n+1) \langle v_{n+1}, \mathbf{e} \rangle x + \sum_{r=0}^{n-1} (r+1) \langle v_{r+1}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} \\ &= (n+1) \langle v_{n+1}, \mathbf{e} \rangle x + (n+1) \sum_{r=0}^{n-1} \langle v_{r+1}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-r} + (n+1) \langle x, \mathbf{e} \rangle w_{n+1} \\ &= (n+1) \langle v_{n+1}, \mathbf{e} \rangle x + (n+1) \sum_{r=1}^{n} \langle v_{r}, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n+1-r} + (n+1) \langle x, \mathbf{e} \rangle w_{n+1} \\ &= (n+1) \sum_{r=0}^{n+1} \langle v_r, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n+1-r} \\ &= (n+1) \varphi_{n+1}(x). \end{split}$$

Thus $\{\psi_n\}_{n=1}^{\infty}$ is the corresponding sequence of derivations to the higher derivation $\{\varphi_n\}_{n=0}^{\infty}$. Since $\psi_n(1_{\mathcal{M}}) = 0$ for all $n \in \mathbb{N}$, it follows that $A_n + B_n = 0$ or $B_n = -A_n$ for all $n \in \mathbb{N}$. Thus $\psi_n(x) = \langle A_n, \mathbf{e} \rangle x - \langle x, \mathbf{e} \rangle A_n$ is an inner derivation for each $n \in \mathbb{N}$. This completes the proof.

on (\mathcal{M}, π_e) as follows:

$$\begin{split} \psi_1(x) &= \langle v_1, \boldsymbol{e} \rangle x + \langle x, \boldsymbol{e} \rangle w_1, \\ \psi_2(x) &= \left\langle 2v_2 - \langle v_1, \boldsymbol{e} \rangle v_1, \boldsymbol{e} \right\rangle x + \langle x, \boldsymbol{e} \rangle \Big(2w_2 - \langle w_1, \boldsymbol{e} \rangle w_1 \Big), \\ \psi_3(x) &= \left\langle 3v_3 - 2\langle v_2, \boldsymbol{e} \rangle v_1 - \langle v_1, \boldsymbol{e} \rangle v_2 + \langle v_1, \boldsymbol{e} \rangle \langle v_1, \boldsymbol{e} \rangle v_1, \boldsymbol{e} \right\rangle x \\ &+ \langle x, \boldsymbol{e} \rangle \Big(3w_3 - \langle w_2, \boldsymbol{e} \rangle w_1 - 2\langle w_1, \boldsymbol{e} \rangle w_2 + \langle w_1, \boldsymbol{e} \rangle \langle w_1, \boldsymbol{e} \rangle w_1 \Big), \\ \psi_4(x) &= \left\langle 4v_4 - 3\langle v_3, \boldsymbol{e} \rangle v_1 - 2\langle v_2, \boldsymbol{e} \rangle v_2 - \langle v_1, \boldsymbol{e} \rangle v_3 + 2\langle v_2, \boldsymbol{e} \rangle \langle v_1, \boldsymbol{e} \rangle v_1 \\ &+ \langle v_1, \boldsymbol{e} \rangle \langle v_2, \boldsymbol{e} \rangle v_1 + \langle v_1, \boldsymbol{e} \rangle \langle v_1, \boldsymbol{e} \rangle v_2 - \langle v_1, \boldsymbol{e} \rangle \langle v_1, \boldsymbol{e} \rangle \langle v_1, \boldsymbol{e} \rangle v_1, \boldsymbol{e} \right\rangle x \\ &+ \langle x, \boldsymbol{e} \rangle \Big(4w_4 - \langle w_3, \boldsymbol{e} \rangle w_1 - 2\langle w_2, \boldsymbol{e} \rangle w_2 - 3\langle w_1, \boldsymbol{e} \rangle w_3 + \langle w_2, \boldsymbol{e} \rangle \langle w_1, \boldsymbol{e} \rangle w_1 \\ &+ \langle w_1, \boldsymbol{e} \rangle \langle w_2, \boldsymbol{e} \rangle w_1 + 2\langle w_1, \boldsymbol{e} \rangle \langle w_1, \boldsymbol{e} \rangle w_2 - \langle w_1, \boldsymbol{e} \rangle \langle w_1, \boldsymbol{e} \rangle \langle w_1, \boldsymbol{e} \rangle w_1 \Big). \end{split}$$

The next corollary follows from Proposition 2.2.

Corollary 2.3 Let (\mathcal{M}, π_e) be unital, with the identity element $1_{\mathcal{M}}$ and $\{\varphi_n\}_{n=0}^{\infty}$ be an inner higher derivation on (\mathcal{M}, π_e) defined by

$$\varphi_n(x) = \sum_{i=0}^n \langle v_i, \mathbf{e} \rangle \langle x, \mathbf{e} \rangle w_{n-i},$$

in which $\{v_n\}_{n=0}^{\infty}$ and $\{w_n\}_{n=0}^{\infty}$ are sequences in \mathcal{M} such that $v_0=w_0=1_{\mathcal{M}}$ and

$$\sum_{i=0}^{n} \langle v_i, \mathbf{e} \rangle w_{n-i} = \sum_{i=0}^{n} \langle w_i, \mathbf{e} \rangle v_{n-i} = 0,$$

for all $n \in \mathbb{N}$. Then

$$\sum_{i=1}^{n} \left(\sum_{\substack{\sum_{i=1}^{i} r_{i}=n}} (-1)^{i-1} \left(r_{1} \langle v_{r_{1}}, \boldsymbol{e} \rangle \langle v_{r_{2}}, \boldsymbol{e} \rangle \dots \langle v_{r_{i-1}}, \boldsymbol{e} \rangle v_{r_{i}} + r_{i} \langle w_{r_{1}}, \boldsymbol{e} \rangle \langle w_{r_{2}}, \boldsymbol{e} \rangle \dots \langle w_{r_{i-1}}, \boldsymbol{e} \rangle w_{r_{i}} \right) \right) = 0,$$

for all $n \in \mathbb{N}$.

Proof: Putting $x = 1_{\mathcal{M}}$ in (2.4), we get the result.

Example 2.3 Let $M_n(\mathbb{C})$ be the C^* -algebra of all $n \times n$ complex matrices, $E \in M_n(\mathbb{C})$ with ||E|| = 1 and $A \in M_n(\mathbb{C})$ be an arbitrary matrix. Define the sequences $\mathbf{V} = \{V_n\}_{n=0}^{\infty}$ and $\mathbf{W} = \{W_n\}_{n=0}^{\infty}$ in $M_n(\mathbb{C})$ by $V_0 = W_0 = I_n$ (the $n \times n$ identity matrix) and

$$V_n = \frac{(-1)^n}{n!} \underbrace{\langle A, E \rangle \dots \langle A, E \rangle}_{n-1 \text{ times}} A,$$

and

$$W_n = \frac{1}{n!} \underbrace{\langle A, E \rangle \dots \langle A, E \rangle}_{n-1 \text{ times}} A,$$

for each positive integer n. Then

$$(\mathbf{V} * \mathbf{W})_n = \sum_{i=0}^n \langle V_i, E \rangle W_{n-i} = \sum_{i=0}^n \frac{(-1)^i}{i!(n-i)!} \underbrace{\langle A, E \rangle \dots \langle A, E \rangle}_{n-1 \text{ times}} A$$

$$= \underbrace{\langle A, E \rangle \dots \langle A, E \rangle}_{n-1 \text{ times}} A \sum_{i=0}^n \frac{(-1)^i}{n!} \binom{n}{i} = \frac{1}{n!} \underbrace{\langle A, E \rangle \dots \langle A, E \rangle}_{n-1 \text{ times}} A \sum_{i=0}^n (-1)^i \binom{n}{i} = 0.$$

Similarly, $(\mathbf{W} * \mathbf{V})_n = \sum_{i=0}^n \langle W_i, E \rangle V_{n-i} = 0$. Then by Corollary 2.2, the sequence of mappings $\{\varphi_n\}_{n=0}^{\infty}$ defined on $(M_n(\mathbb{C}), \pi_E)$ by $\varphi_n(X) = \sum_{i=0}^n \langle V_i, E \rangle \langle X, E \rangle W_{n-i}$ for all $X \in M_n(\mathbb{C})$, is an inner higher derivation on $(M_n(\mathbb{C}), \pi_E)$. Also by Proposition 2.2, the corresponding sequence of inner derivations $\{\psi_n\}_{n=1}^{\infty}$, defined on $(M_n(\mathbb{C}), \pi_E)$ by $\psi_1(X) = \langle X, E \rangle A - \langle A, E \rangle X$ and $\psi_k = 0$ for all $k \geq 2$.

References

- 1. M. J. Atteya, Notes on the higher derivations of prime rings, Boletim da Sociedade Paranaense de Matemática, 37(4), 61–68, (2019).
- S. Kh. Ekrami, Approximate orthogonally higher ring derivations, Control Optimization App. Math., 7(1), 93–106, (2022). doi: 10.30473/coam.2021.59727.1166
- 3. S. Kh. Ekrami, Characterization of Hilbert C*-module higher derivations, Georgian Mathematical Journal, 31(3), 397–403, (2024).
- 4. S. Kh. Ekrami, Jordan higher derivations, a new approach, J. Algebraic Systems, 10(1), 167-177, (2022).
- 5. P. E. Bland, Higher derivations on rings and modules, Int. J. Math. Math. Sci., 15, 2373-2387, (2005).
- 6. W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turk. J. Math., 29, 1-10 (2005).
- 7. N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math., 68, 91–98, (1977).
- 8. I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75, 839–858, (1953).
- 9. M. Mirzavaziri, Inner higher derivations on algebras, Kragujevac J. Mathematics, 43(2), 267–273, (2019).
- 10. A. Nowicki, Inner derivations of higher orders, Tsukuba J. Math., 8, 219–225, (1984).
- 11. A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J., 32, 21-30, (1968).
- H. Saidi, A. R. Janfada, and M. Mirzavaziri, Kinds of derivations on Hilbert C*-modules and their operator algebras, Miskolc Mathematical Notes, 16(1), 453–461, (2015).
- 13. S. Xu and Z. Xiao, Jordan higher derivation revisited, Gulf J. Math., 2(1), 11–21, (2014).

Sayed Khalil Ekrami,

 $Department\ of\ Mathematics,$

Payame Noor University, P.O. Box 19395-3697,

Tehran, Iran.

 $E ext{-}mail\ address: ekrami@pnu.ac.ir, khalil.ekrami@gmail.com}$