(3s.) v. 2025 (43) : 1-8. ISSN-0037-8712 doi:10.5269/bspm.69691

### Generalized closed sets in hereditary m-spaces with $\gamma$ -operations



ABSTRACT: Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma : m \to P(X)$  be an operation on m. In this paper, a subset A of X is said to be  $\mathcal{H}_{\gamma}g$ -closed if  $\gamma\mathrm{Cl}(A) \setminus U \in \mathcal{H}$  whenever  $A \subseteq U$  and U is m-open. We obtain some characterizations and properties of  $\mathcal{H}_{\gamma}g$ -closed and  $\mathcal{H}_{\gamma}g$ -open sets.

Key Words: hereditary m-space, g-closed,  $\gamma g$ -closed,  $\mathcal{H}_{\gamma} g$ -closed,  $\mathcal{H}_{\gamma} g$ -open.

#### Contents

| 1 | Introduction                              | 1 |
|---|-------------------------------------------|---|
| 2 | Preliminaries                             | 1 |
| 3 | $\mathcal{H}_{\gamma}g	ext{-closed sets}$ | 3 |
| 4 | $\mathcal{H}_{\gamma}g	ext{-open sets}$   | 5 |

#### 1. Introduction

Generalized closed (briefly g-closed) sets in a topological space are introduced by Levine [14]. Since then, many generalizations of g-closed sets are introduced and investigated, for example, refer to Definition 2.4 of [20] and Definition 3.9 of [17]. The second author [20] introduced mg-closed sets in an m-space and unified several types of generalizations of g-closed sets. Ideals and hereditary classes are introduced in [10]. Ogata [22] introduced the notions of  $\gamma$ -operations and  $\gamma$ -open sets in a topological space. The notions  $m\gamma$ -operations and  $m\gamma$ -closed sets in an m-space are introduced and investigated in [21].

In this paper, we introduce a generalization of mg-closed sets, called  $\mathcal{H}_{\gamma}g$ -closed, in a hereditary m-space with a  $\gamma$ -operation. In Section 3, we obtain characterizations and properties of  $\mathcal{H}_{\gamma}g$ -closed sets. In Section 4, we obtain characterizations and properties of  $\mathcal{H}_{\gamma}g$ -open sets and a preservation theorem of  $\mathcal{H}_{\gamma}g$ -closed sets.

# 2. Preliminaries

**Definition 2.1** A subfamily m of the power set  $\mathcal{P}(X)$  of a nonempty set X is called a *minimal structure* (briefly m-structure) on X if m satisfies the following conditions:

- (1)  $\emptyset \in m$  and  $X \in m$ ,
- (2) The union of any family of subsets belonging to m belongs to m.

A set X with an m-structure m on X is denoted by (X, m) and is called an m-space. Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed. The property (2) in Definition 2.1 is called property  $\mathcal{B}$  in [15]. In this paper, the m-structure [23] having property  $\mathcal{B}$  [23] is briefly called m-structure.

**Definition 2.2** [15] Let (X, m) be an m-space and A a subset of X. The m-closure  $\operatorname{mCl}(A)$  and the m-interior  $\operatorname{mInt}(A)$  of A are defined as follows:

- $(1) \ \mathrm{mCl}(A) = \bigcap \{ F \subset X : A \subset F, X \setminus F \in m \},\$
- $(2) \operatorname{mInt}(A) = \bigcup \{ U \subset X : U \subset A, U \in m \}.$

Submitted September 20, 2023. Published February 21, 2025 2010 Mathematics Subject Classification: 54A05, 54C08.

<sup>\*</sup> Corresponding author

**Lemma 2.1** [23]. Let (X, m) be an m-space and A a subset of X.

- (1)  $x \in \mathrm{mCl}(A)$  if and only if  $U \cap A \neq \emptyset$  for every  $U \in m(x)$ , where  $m(x) = \bigcup \{U : x \in U \in m\}$ .
- (2) A is m-closed if and only if mCl(A) = A.
- **Definition 2.3** A nonempty subfamily  $\mathcal{H}$  of  $\mathcal{P}(X)$  is called a hereditary class on X [10] if it satisfies the following properties:  $A \in \mathcal{H}$  and  $B \subset A$  implies  $B \in \mathcal{H}$ . A hereditary class  $\mathcal{H}$  is called an *ideal* [13], [24] if it satisfies the additional condition:  $A \in \mathcal{H}$  and  $B \in \mathcal{H}$  implies  $A \cup B \in \mathcal{H}$ .

A minimal space (X, m) with a hereditary class  $\mathcal{H}$  on X is called a hereditary minimal space (briefly hereditary m-space) and is denoted by  $(X, m, \mathcal{H})$ .

In [16], Modak defined m-nowhere dense set in a minimal space as a subset A of an m-space (X, m) is called m-nowhere dense if  $mInt(mCl(A)) = \emptyset$ . The collection of m-nowhere dense sets forms a Hereditary class but not forms an ideal.

- **Definition 2.4** Let (X,m) be an m-space. Let  $m\gamma: m \to P(X)$  be a function from m into P(X)such that  $U \subset m\gamma(U)$  for each  $U \in m$ . The function  $m\gamma$  is called an  $m\gamma$ -operation on m [21] and the image  $m\gamma(U)$  is simply denoted by  $\gamma(U)$ . In this paper, an  $m\gamma$ -operation is simply called a  $\gamma$ -operation.
- **Definition 2.5** Let (X, m) be an m-space and  $\gamma : m \to P(X)$  be a  $\gamma$ -operation. A subset A of X is said to be  $\gamma$ -open [21] if for each  $x \in A$  there exists  $U \in m$  such that  $x \in U \subseteq \gamma(U) \subseteq A$ . The complement of a  $\gamma$ -open set is said to be  $\gamma$ -closed. The family of all  $\gamma$ -open sets of (X, m) is denoted by  $\gamma(X)$ . The  $\gamma$ -closure of A,  $\gamma Cl(A)$ , is defined as follows:  $\gamma Cl(A) = \bigcap \{ F \subset X : A \subset F, X \setminus F \in \gamma(X) \}$ .

**Theorem 2.1** [21] Let (X,m) be an m-space and  $\gamma$  be a  $\gamma$ -operation on m, the following properties hold:

- 1.  $\emptyset, X \in \gamma(X)$ ,
- 2. If  $A_{\alpha} \in \gamma(X)$  for each  $\alpha \in \Lambda$ , then  $\bigcup_{\alpha \in \Lambda} A_{\alpha} \in \gamma(X)$ .
- $3. \ \gamma(X) \subseteq m.$

The following Examples shows that not every m-open sets is  $\gamma$ -open sets.

 $\begin{array}{l} \textbf{Example 2.1 } \ Let \ X = \{a,b,c\}, \ m = \{\emptyset,X,\{a\},\{b\},\{a,b\},\{a,c\}\}. \ \textit{For } b \in X, \ \textit{define an operation} \\ \gamma: m \rightarrow P(X) \ \textit{by} \ \gamma(U) = \left\{ \begin{array}{ll} U, & \textit{if } b \in U; \\ mCl(U), & \textit{if } b \notin U. \end{array} \right. \\ \textit{The collection of all } \gamma\text{-open sets are } \emptyset, \ X, \ \{b\}, \ \{a,b\} \ \textit{and} \ \{a,c\}. \ \textit{Here} \ \{a\} \ \textit{is an $m$-open set which is} \end{array}$ 

not  $\gamma$ -open.

- **Example 2.2** Let  $X = \{a, b, c\}$  with  $m = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$  and  $\gamma(A) = mCl(A)$  for any subset A of X. Then,  $A = \{a, b\}$  is an m-open set but not  $\gamma$ -open. Because if  $a \in A \in m$ , then the collection of all m-open sets containing a is  $\mathcal{U} = \{\{a\}, \{a,b\}, X\}$ . If  $U = \{a\}$ , then  $a \in \mathcal{U} \subset \gamma(\mathcal{U}) = mCl(\mathcal{U}) = \{a,c\}$ and  $\gamma(U)$  does not contain in  $A = \{a, b\}$ . If  $U = \{a, b\}$ , then  $a \in U \subset \gamma(U) = mCl(U) = X$  and hence  $\gamma(U)$  does not contain in  $A = \{a, b\}$ . If U = X, then  $a \in U \subset \gamma(U) = mCl(U) = X$  and  $\gamma(U)$  does not contain in  $\{a,b\}$ . Therefore,  $A=\{a,b\}$  is not  $\gamma$ -open. Note that the collection of all  $\gamma$ -open sets are  $\emptyset$ , X.
- **Definition 2.6** [21] Let (X, m) be an m-space and  $\gamma: m \to P(X)$  be a  $\gamma$ -operation. An operation  $\gamma$ is said to be m-regular if for each  $x \in X$  and each  $U, V \in m$  containing x, there exists  $W \in m$  such that  $x \in W \subseteq \gamma(W) \subseteq \gamma(U) \cap \gamma(V)$ .

**Theorem 2.2** [21] Let (X,m) be an m-space and  $\gamma$  be a  $\gamma$ -operation on m. Then,  $\gamma(X)$  is a topology for X if the operation  $\gamma$  is m-regular.

Several characterizations of minimal structures with notion of hereditary class were provided in [1-8].

### 3. $\mathcal{H}_{\gamma}g$ -closed sets

**Definition 3.1** Let (X, m) be an m-space and  $\gamma$  be a  $\gamma$ -operation on m. A subset A of X is said to be  $\gamma g$ -closed if  $\gamma \operatorname{Cl}(A) \subseteq U$  whenever  $A \subseteq U$  and U is m-open.

**Definition 3.2** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. A subset A of X is said to be  $\mathcal{H}_{\gamma}g$ -closed if  $\gamma \operatorname{Cl}(A) \setminus U \in \mathcal{H}$  whenever  $A \subseteq U$  and U is m-open.

**Remark 3.1** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  a  $\gamma$ -operation on m.

- 1. Let  $\mathcal{H} = \{\emptyset\}$ , then an  $\mathcal{H}_{\gamma}g$ -closed set is a  $\gamma g$ -closed set.
- 2. Let  $\mathcal{H} = \{\emptyset\}$  and  $\gamma = mCl$ , then a  $\gamma g$ -closed set is an mg-closed set.
- 3. Let (X, m) be a topological space, then an mg-closed set is a g-closed set.

**Theorem 3.1** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. Every  $\gamma g$ -closed set is  $\mathcal{H}_{\gamma} g$ -closed.

**Proof:** Suppose that A is  $\gamma g$ -closed and let  $U \in m$  such that  $A \subseteq U$ . Then,  $\gamma \operatorname{Cl}(A) \subseteq U$  and hence  $\gamma \operatorname{Cl}(A) \setminus U = \emptyset \in \mathcal{H}$ . Therefore, A is  $\mathcal{H}_{\gamma} g$ -closed.

The following example shows that the converse of the above theorem is in general not true.

**Example 3.1** Let  $X = \{a, b, c\}$ ,  $m = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\}$ ,  $A = \{a\}$  and  $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}\}$ . Then, (X, m) is a topological space and let  $\gamma = mCl$ , so  $\gamma(X) = \{\emptyset, X\}$ . Then, A is an  $\mathcal{H}_{\gamma}g$ -closed set but it is not  $\gamma g$ -closed. Let  $U = \{a\} \in m$ , then  $A \subseteq U$  and  $\gamma Cl(A) = X$  which is not contained in U. Hence, A is not  $\gamma g$ -closed. Next, Let  $U = \{a\}$ , then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a\} = \{b, c\} \in \mathcal{H}$ . Let  $U = \{a, b\}$ , then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a, b\} = \{c\} \in \mathcal{H}$ . Let U = X, then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a, b\} = \{c\} \in \mathcal{H}$ . Let U = X, then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a, b\} = \{c\} \in \mathcal{H}$ . Let U = X, then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a, b\} = \{c\} \in \mathcal{H}$ . Let U = X, then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a, b\} = \{c\} \in \mathcal{H}$ . Let U = X, then  $A \subseteq U$  and  $\gamma Cl(A) \setminus U = X \setminus \{a, b\} = \{c\} \in \mathcal{H}$ . Therefore, A is an  $\mathcal{H}_{\gamma}g$ -closed set.

**Theorem 3.2** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. If  $m\mathrm{Cl}(\{x\}) \cap A \notin \mathcal{H}$  for every  $x \in \gamma\mathrm{Cl}(A)$ , then  $F \setminus (\gamma\mathrm{Cl}(A) \setminus A) \notin \mathcal{H}$  for any m-closed set F containing x.

**Proof:** If possible, let there exist an m-closed set F containing x such that  $F \setminus (\gamma \operatorname{Cl}(A) \setminus A) = F \cap [A \cup (X - \gamma \operatorname{Cl}(A))] \in \mathcal{H}$ . Then  $F \cap A \in \mathcal{H}$ . Let  $x \in \gamma \operatorname{Cl}(A)$ , since  $m\operatorname{Cl}(\{x\}) \cap A \notin \mathcal{H}$  and  $m\operatorname{Cl}(\{x\}) \cap A \subseteq F \cap A$  then,  $F \cap A \notin \mathcal{H}$ , which is a contradiction. Hence,  $F \setminus (\gamma \operatorname{Cl}(A) \setminus A) \notin \mathcal{H}$  for any m-closed set F containing x.

**Theorem 3.3** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. A subset A of X is  $\mathcal{H}_{\gamma}g$ -closed if  $m\mathrm{Cl}(\{x\}) \cap A \notin \mathcal{H}$  holds for every  $x \in \gamma\mathrm{Cl}(A)$ .

**Proof:** Suppose that A is not  $\mathcal{H}_{\gamma}g$ -closed. We show that there exists  $x \in \gamma Cl(A)$  such that  $mCl(\{x\}) \cap A \in \mathcal{H}$ . By assumption, there exists an m-open set U such that  $A \subseteq U$  and  $\gamma Cl(A) \setminus U \notin \mathcal{H}$ . Then,  $\gamma Cl(A) \setminus U \neq \emptyset$  and there exists  $x \in \gamma Cl(A)$  such that  $x \notin U$ . But U is m-open and  $X \setminus U$  is m-closed. Since  $x \in X \setminus U$ ,  $mCl(\{x\}) \subseteq X \setminus U$  and hence  $mCl(\{x\}) \cap A \subseteq (X \setminus U) \cap A = \emptyset \in \mathcal{H}$  and so  $mCl(\{x\}) \cap A \in \mathcal{H}$ . Which is a contradiction hence A is  $\mathcal{H}_{\gamma}g$ -closed.

The following example shows that the converse of the above theorem is not true.

**Example 3.2** Let  $X = \{a, b, c\}$ ,  $m = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\}$ ,  $A = \{a\}$  and  $\mathcal{H} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{b, c\}\}\}$ . Let  $\gamma = mCl$ . Then, by Example 3.1, A is an  $\mathcal{H}_{\gamma}g$ -closed set. There exists  $x = c \in \gamma Cl(A) = X$  such that  $mCl(\{x\}) \cap A = \{c\} \cap \{a\} = \emptyset \in \mathcal{H}$ .

**Theorem 3.4** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. For each  $x \in X$ , either  $\{x\}$  is m-closed or  $X \setminus \{x\}$  is a  $\mathcal{H}_{\gamma}g$ -closed set.

**Proof:** If  $\{x\}$  is m-closed, then we have nothing to prove. Suppose that  $\{x\}$  is not m-closed. Then,  $X \setminus \{x\}$  is not m-open. Let U be any m-open set such that  $X \setminus \{x\} \subseteq U$ . Hence, U = X. Thus,  $\gamma Cl(X \setminus \{x\}) \setminus U = \gamma Cl(X \setminus \{x\}) \setminus X = \emptyset \in \mathcal{H}$  and  $X \setminus \{x\}$  is a  $\mathcal{H}_{\gamma}g$ -closed.

**Theorem 3.5** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. A set A is  $\mathcal{H}_{\gamma}g$ -closed in  $(X, m, \mathcal{H})$  if and only if  $F \in \mathcal{H}$  whenever  $F \subseteq \gamma \operatorname{Cl}(A) \setminus A$  and F is m-closed in X.

**Proof:** Assume that A is  $\mathcal{H}_{\gamma}g$ -closed. Suppose that  $F \subseteq \gamma \operatorname{Cl}(A) \setminus A$  and F is m-closed in X. Then,  $A \subseteq X \setminus F$ . By our assumption,  $\gamma \operatorname{Cl}(A) \setminus (X \setminus F) \in \mathcal{H}$ . But  $F \subseteq \gamma \operatorname{Cl}(A) \setminus (X \setminus F)$  and hence  $F \in \mathcal{H}$ . Suppose that  $F \in \mathcal{H}$  whenever  $F \subseteq \gamma \operatorname{Cl}(A) \setminus A$  and F is m-closed in X. Let  $A \subseteq U$  and  $U \in m$ . Then,  $\gamma \operatorname{Cl}(A) \setminus U = \gamma \operatorname{Cl}(A) \cap (X \setminus U)$  is an m-closed set in X, that is contained in  $\gamma \operatorname{Cl}(A) \setminus A$ . By assumption  $\gamma \operatorname{Cl}(A) \setminus U \in \mathcal{H}$ . This implies A is  $\mathcal{H}_{\gamma}g$ -closed.

**Theorem 3.6** Let  $(X, m, \mathcal{H})$  be an ideal m-space and  $\gamma$  be a  $\gamma$ -operation on m. If A and B are  $\mathcal{H}_{\gamma}g$ -closed in  $(X, m, \mathcal{H})$ , then  $A \cup B$  is  $\mathcal{H}_{\gamma}g$ -closed.

**Proof:** Suppose A and B are  $\mathcal{H}_{\gamma}g$ -closed sets in  $(X, m, \mathcal{H})$ . If  $A \cup B \subseteq U$  and U is m-open, then  $A \subseteq U$  and  $B \subseteq U$ . By assumption,  $\gamma \operatorname{Cl}(A) \setminus U \in \mathcal{H}$  and  $\gamma \operatorname{Cl}(B) \setminus U \in \mathcal{H}$  and hence  $\gamma \operatorname{Cl}(A \cup B) \setminus U = [\gamma \operatorname{Cl}(A) \setminus U] \cup [\gamma \operatorname{Cl}(B) \setminus U] \in \mathcal{H}$ . Thus, is  $A \cup B$  is  $\mathcal{H}_{\gamma}g$ -closed.

The following example shows that the intersection of a  $\mathcal{H}_{\gamma}g$ -closed is not  $\mathcal{H}_{\gamma}g$ -closed.

**Example 3.3** Let  $X = \{a, b, c, d\}$ ,  $m = \{\emptyset, X, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$  and  $\mathcal{H} = \{\emptyset, \{a\}, \{b\}\}$  be not an ideal. If  $\gamma = identity$ , then

- $A = \{a, c, d\}$  the collection of all m-open sets containing A is  $\mathcal{U} = \{X, \{a, c, d\}\}$  and  $\gamma Cl(A) = X$ . Therefore,  $\gamma Cl(A) \setminus \mathcal{U} \in \mathcal{H}$  for all  $\mathcal{U} \in \mathcal{U}$  so, A is an  $\mathcal{H}_{\gamma}g$ -closed set.
- $B = \{b, c, d\}$  the collection of all m-open sets containing B is  $\mathcal{U} = \{X, \{b, c, d\}\}$  and  $\gamma Cl(B) = X$ . Therefore,  $\gamma Cl(B) \setminus U \in \mathcal{H}$  for all  $U \in \mathcal{U}$  so, B is an  $\mathcal{H}_{\gamma}g$ -closed set.
- $A \cap B = \{c, d\}$  the collection of all m-open sets containing  $A \cap B$  is  $\mathcal{U} = \{X, \{a, c, d\}, \{b, c, d\}, \{c, d\}\}$  and  $\gamma Cl(A \cap B) = X$ . It is clear that,  $\gamma Cl(A \cap B) \setminus U \notin \mathcal{H}$  for some  $U \in \mathcal{U}$  so,  $A \cap B$  is not an  $\mathcal{H}_{\gamma}g$ -closed set.

**Theorem 3.7** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. If A is  $\mathcal{H}_{\gamma}g$ -closed and  $A \subseteq B \subseteq \gamma \operatorname{Cl}(A)$  in  $(X, m, \mathcal{H})$ , then B is  $\mathcal{H}_{\gamma}g$ -closed.

**Proof:** Suppose A is  $\mathcal{H}_{\gamma}g$ -closed and  $A \subseteq B \subseteq \gamma \operatorname{Cl}(A)$  in  $(X, m, \mathcal{H})$ . Suppose  $B \subseteq U$  and U is m-open. Then,  $A \subseteq U$ . Since A is  $\mathcal{H}_{\gamma}g$ -closed, we have  $\gamma \operatorname{Cl}(A) \setminus U \in \mathcal{H}$ . Since  $B \subseteq \gamma \operatorname{Cl}(A)$ ,  $\gamma \operatorname{Cl}(B) \subseteq \gamma \operatorname{Cl}(A)$  and  $\gamma \operatorname{Cl}(B) \setminus U \subseteq \gamma \operatorname{Cl}(A) \setminus U \in \mathcal{H}$ , then  $\gamma \operatorname{Cl}(B) \setminus U \in \mathcal{H}$ . Hence, B is  $\mathcal{H}_{\gamma}g$ -closed.

**Theorem 3.8** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. If  $A \subseteq Y \subseteq X$  and suppose that A is  $\mathcal{H}_{\gamma}g$ -closed in X. Then, A is  $\mathcal{H}_{\gamma}g$ -closed relative to the subspace  $m_Y = \{B = U \cap Y : U \in m\}$  with respect to the hereditary  $\mathcal{H}_Y = \{F \subseteq Y : F \in \mathcal{H}\}$ .

**Proof:** Suppose  $A \subseteq U \cap Y$  and  $U \in m$ , then  $A \subseteq U$ . Since A is  $\mathcal{H}_{\gamma}g$ -closed in X we have  $\gamma \operatorname{Cl}(A) \setminus U \in \mathcal{H}$ . Now  $(\gamma \operatorname{Cl}(A) \cap Y) \setminus (U \cap Y) = (\gamma \operatorname{Cl}(A) \setminus U) \cap Y \in \mathcal{H}_Y$ , whenever  $A \subseteq U \cap Y$  and  $U \in m$ . Hence, A is  $\mathcal{H}_{\gamma}g$ -closed relative to the subspace  $m_Y$ .

**Theorem 3.9** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. If A is  $\mathcal{H}_{\gamma}g$ -closed in X and F is  $\gamma$ -closed, then  $A \cap F$  is  $\mathcal{H}_{\gamma}g$ -closed in X.

**Proof:** Let  $A \cap F \subseteq U$  and U is m-open. Then  $A \subseteq U \cup (X \setminus F)$ . Since A is  $\mathcal{H}_{\gamma}g$ -closed, we have  $\gamma \operatorname{Cl}(A) \setminus (U \cup (X \setminus F)) \in \mathcal{H}$ . Now,  $\gamma \operatorname{Cl}(A \cap F) \subseteq \gamma \operatorname{Cl}(A) \cap F = (\gamma \operatorname{Cl}(A) \cap F) \setminus (X \setminus F)$ . Therefore,

$$\gamma \operatorname{Cl}(A \cap F) \setminus U \subseteq (\gamma \operatorname{Cl}(A) \cap F) \setminus (U \cap (X \setminus F))$$
$$\subseteq \gamma \operatorname{Cl}(A) \setminus (U \cup (X \setminus F))$$
$$\in \mathcal{H}.$$

Hence,  $A \cap F$  is  $\mathcal{H}_{\gamma}g$ -closed in X.

Let  $(X, m, \mathcal{H})$  be a hereditary m-space. If for each  $H_1 \in \mathcal{H}$  there exists  $H_2 \in \mathcal{H} \cap m$  such that  $H_1 \subseteq H_2$ , then m is said to be saturated by  $\mathcal{H}$ .

**Theorem 3.10** Let  $(X, m, \mathcal{H})$  be an ideal m-space and  $\gamma$  be a  $\gamma$ -operation on m. Let  $B \subseteq A \subseteq X$  and B be  $\mathcal{H}_{\gamma}g$ -closed relative to A and A be a  $\mathcal{H}_{\gamma}g$ -closed subset of X. If m is saturated by  $\mathcal{H}$ , then B is  $\mathcal{H}_{\gamma}g$ -closed in X.

**Proof:** Let m be saturated by  $\mathcal{H}$ . Let  $B \subseteq U$  and U be m-open in X. Then  $B \subseteq U \cap A$ . Since B is  $\mathcal{H}_{\gamma}g$ -closed relative to A, we have  $\gamma \operatorname{Cl}_A(B) \subseteq (U \cap A) \cup H_1$  for some  $H_1 \in \mathcal{H}$ . By assumption, there exists  $H_2 \in \mathcal{H} \cap m$  such that  $A \cap \gamma \operatorname{Cl}(B) \subseteq (U \cap A) \cup H_2$ . So  $A \subseteq (U \cup H_2) \cup [X \setminus \gamma \operatorname{Cl}(B)]$ . Since A is  $\mathcal{H}_{\gamma}g$ -closed and  $(U \cup H_2) \cup [X \setminus \gamma \operatorname{Cl}(B)] \in m$ ,  $\gamma \operatorname{Cl}(A) \subseteq (U \cup H_2) \cup [X \setminus \gamma \operatorname{Cl}(B)] \cup H_3$  for some  $H_3 \in \mathcal{H}$ . By assumption, there exist  $H_4 \in \mathcal{H} \cap m$  such that  $\gamma \operatorname{Cl}(A) \subseteq (U \cup H_2) \cup [X \setminus \gamma \operatorname{Cl}(B)] \cup H_4$ . Since  $B \subseteq A$ , we have  $\gamma \operatorname{Cl}(B) \subseteq \gamma \operatorname{Cl}(A) \subseteq (U \cup H_2) \cup [X \setminus \gamma \operatorname{Cl}(B)] \cup H_4$ . Hence,  $\gamma \operatorname{Cl}(B) \subseteq U \cup (H_2 \cup H_4)$  for some  $H_2, H_4 \in \mathcal{H}$ . Therefor,  $\gamma \operatorname{Cl}(B) \setminus U \subseteq (H_2 \cup H_4)$ . This shows that B is  $\mathcal{H}_{\gamma}g$ -closed in X.

**Definition 3.3** Let (X, m) be an m-space. For a subset A of X,  $\Lambda_m(A) = \{0\}$  is defined as follows:  $\Lambda_m(A) = \{0\} \{0\} \{0\} \}$ .

**Theorem 3.11** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. If  $\gamma \operatorname{Cl}(A) \setminus \Lambda_m(A) \in \mathcal{H}$ , then A is  $\mathcal{H}_{\gamma}g$ -closed.

**Proof:** Let  $\gamma \text{Cl}(A) \setminus \Lambda_m(A) \in \mathcal{H}$  and V be any m-open set containing A. Then

$$\gamma \operatorname{Cl}(A) \setminus V \subseteq \bigcup_{U \in m} \{ \gamma \operatorname{Cl}(A) \setminus U : A \subseteq U \}$$
$$= \gamma \operatorname{Cl}(A) \setminus \bigcap_{U \in m} \{ U : A \subseteq U \}$$
$$= \gamma \operatorname{Cl}(A) \setminus \Lambda_m(A) \in \mathcal{H}$$

Thus,  $\gamma \text{Cl}(A) \setminus V \in \mathcal{H}$  and hence A is  $\mathcal{H}_{\gamma}g$ -closed set.

The following example shows that the converse of the above theorem is not true.

**Example 3.4** Let  $X = \{a, b, c, d\}$ ,  $m = \{\emptyset, X, \{a, d\}, \{b, c\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}$  and  $\mathcal{H} = \{\emptyset, \{a\}, \{c\}\}\}$ . Let  $\gamma = mCl$  thus,  $\gamma(X) = \{\emptyset, X, \{a, d\}, \{b, c\}\}\}$ . Then, for  $A = \{b, d\}$  the collection of all m-open sets containing A is  $\mathcal{U} = \{X, \{a, b, d\}, \{b, c, d\}\}$  and  $\gamma Cl(A) \setminus \mathcal{U} \in \mathcal{H}$  for all  $U \in \mathcal{U}$  so, A is an  $\mathcal{H}_{\gamma}g$ -closed set. But,  $\Lambda_m(A) = \cap \{U : A \subseteq U \in m\} = \{b, d\}$  and  $\gamma Cl(A) \setminus \Lambda_m(A) = X \setminus \{b, d\} \notin \mathcal{H}$ .

# 4. $\mathcal{H}_{\gamma}g$ -open sets

**Definition 4.1** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. A subset A of X is said to be  $\mathcal{H}_{\gamma}g$ -open if  $X \setminus A$  is  $\mathcal{H}_{\gamma}g$ -closed.

For a *m*-space (X, m) and a  $\gamma$ -operation on m, the interior operator  $\gamma Int$  is associated with closure operator  $\gamma Cl$  i.e.  $\gamma Cl \sim^X \gamma Int$  (see [19]). Therefore,  $\gamma Cl(A) = X \setminus \gamma Int(X \setminus A)$  for all  $A \subseteq X$ .

**Theorem 4.1** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. A set A is  $\mathcal{H}_{\gamma}g$ -open in  $(X, m, \mathcal{H})$  if and only if  $F \setminus U \subseteq \gamma \operatorname{Int}(A)$  for some  $U \in \mathcal{H}$ , whenever  $F \subseteq A$  and F is m-closed.

**Proof:** Suppose A is  $\mathcal{H}_{\gamma}g$ -open. Suppose  $F \subseteq A$  and F is m-closed. We have  $X \setminus A \subseteq X \setminus F$ . By assumption,  $\gamma \operatorname{Cl}(X \setminus A) \setminus (X \setminus F) \in \mathcal{H}$  and  $\gamma \operatorname{Cl}(X \setminus A) \subseteq (X \setminus F) \cup U$  for some  $U \in \mathcal{H}$ . This implies  $X \setminus ((X \setminus F) \cup U) \subseteq X \setminus \gamma \operatorname{Cl}(X \setminus A)$  and hence  $F \setminus U \subseteq \gamma \operatorname{Int}(A)$ .

Conversely, assume that  $F \subseteq A$  and F is m-closed imply  $F \setminus U \subseteq \gamma \operatorname{Int}(A)$  for some  $U \in \mathcal{H}$ . Consider, an m-open set G such that  $X \setminus A \subseteq G$ . Then  $X \setminus G \subseteq A$ . By assumption,  $(X \setminus G) \setminus U \subseteq \gamma \operatorname{Int}(A) = X \setminus \gamma \operatorname{Cl}(X \setminus A)$ . This gives that  $X \setminus (G \cup U) \subseteq X \setminus \gamma \operatorname{Cl}(X \setminus A)$ . Then,  $\gamma \operatorname{Cl}(X \setminus A) \subseteq G \cup U$  for some  $U \in \mathcal{H}$ . This shows that  $\gamma \operatorname{Cl}(X \setminus A) \setminus G \in \mathcal{H}$ . Hence,  $X \setminus A$  is  $\mathcal{H}_{\gamma}g$ -closed and A is  $\mathcal{H}_{\gamma}g$ -open.  $\square$ 

Recall that the sets A and B are said to be  $\gamma$ -separated [11] if  $\gamma \operatorname{Cl}(A) \cap B = \emptyset$  and  $A \cap \gamma \operatorname{Cl}(B) = \emptyset$ . Let (X, m) be a topological space and  $\mathcal{H}$  is an ideal on X. Then, for  $\gamma = ()^*$ ,  $\gamma$ -separated will be  $*_*$ -separated [18].

**Theorem 4.2** Let  $(X, m, \mathcal{H})$  be an ideal m-space and  $\gamma$  be a  $\gamma$ -operation on m. If A and B are  $\gamma$ -separated  $\mathcal{H}_{\gamma}g$ -open sets in X, Then,  $A \cup B$  is  $\mathcal{H}_{\gamma}g$ -open.

**Proof:** Suppose A and B are  $\gamma$ -separated  $\mathcal{H}_{\gamma}g$ -open sets in X and F is an m-closed subset of  $A \cup B$ . Then, since A and B are  $\gamma$ -separated, we have  $F \cap \gamma \operatorname{Cl}(A) \subseteq A$  and  $F \cap \gamma \operatorname{Cl}(B) \subseteq B$ . Now,  $F \cap \gamma \operatorname{Cl}(A)$  is m-closed by assumption,  $(F \cap \gamma \operatorname{Cl}(A)) \setminus U_1 \subseteq \gamma \operatorname{Int}(A)$  and  $(F \cap \gamma \operatorname{Cl}(B)) \setminus U_2 \subseteq \gamma \operatorname{Int}(B)$  for some  $U_1, U_2 \in \mathcal{H}$ . This mean that  $(F \cap \gamma \operatorname{Cl}(A)) \setminus \gamma \operatorname{Int}(A) \in \mathcal{H}$  and  $(F \cap \gamma \operatorname{Cl}(B)) \setminus \gamma \operatorname{Int}(B) \in \mathcal{H}$ . Then,  $[(F \cap \gamma \operatorname{Cl}(A)) \setminus \gamma \operatorname{Int}(A)] \cup [(F \cap \gamma \operatorname{Cl}(B)) \setminus \gamma \operatorname{Int}(B)] \in \mathcal{H}$ . Hence,  $[F \cap (\gamma \operatorname{Cl}(A) \cup \gamma \operatorname{Cl}(B))] \setminus [\gamma \operatorname{Int}(A) \cup \gamma \operatorname{Int}(B)] \in \mathcal{H}$ . But  $F = F \cap (A \cup B) \subseteq F \cap \gamma \operatorname{Cl}(A \cup B)$ , and we have

$$F \setminus \gamma \operatorname{Int}(A \cup B) \subseteq [F \cap \gamma \operatorname{Cl}(A \cup B)] \setminus \gamma \operatorname{Int}(A \cup B)$$
$$\subseteq [F \cap \gamma \operatorname{Cl}(A \cup B)] \setminus [\gamma \operatorname{Int}(A) \cup \gamma \operatorname{Int}(B)] \in \mathcal{H}.$$

Hence,  $F \setminus U \subseteq \gamma \operatorname{Int}(A \cup B)$  for some  $U \in \mathcal{H}$ . Then,  $A \cup B$  is  $\mathcal{H}_{\gamma}g$ -open.

**Corollary 4.1** Let  $(X, m, \mathcal{H})$  be an ideal m-space and  $\gamma$  be a  $\gamma$ -operation on m. If  $X \setminus A$  and  $X \setminus B$  are  $\gamma$ -separated and A, B are  $\mathcal{H}_{\gamma}g$ -closed sets in X, Then,  $A \cap B$  is  $\mathcal{H}_{\gamma}g$ -closed.

By Theorem 3.6, we have the following corollary:

**Corollary 4.2** Let  $(X, m, \mathcal{H})$  be an ideal m-space and  $\gamma$  be a  $\gamma$ -operation on m. If A and B are  $\mathcal{H}_{\gamma}g$ -open sets in X, Then,  $A \cap B$  is  $\mathcal{H}_{\gamma}g$ -open.

**Theorem 4.3** Let  $(X, m, \mathcal{H})$  be an ideal m-space and  $\gamma$  be a  $\gamma$ -operation on m such that the operation  $\gamma$  is m-regular. If  $A \subseteq B \subseteq X$  and A is  $\mathcal{H}_{\gamma}g$ -open relative to B and B is  $\mathcal{H}_{\gamma}g$ -open in X. Then, A is  $\mathcal{H}_{\gamma}g$ -open in X.

**Proof:** Let A be  $\mathcal{H}_{\gamma}g$ -open relative to B and B be  $\mathcal{H}_{\gamma}g$ -open relative to X. Suppose  $F \subseteq A$  and F is m-closed. Since A is  $\mathcal{H}_{\gamma}g$ -open relative to B, by Theorem 4.1, we have  $F \setminus U_1 \subseteq \gamma \operatorname{Int}_B(A)$  for some  $U_1 \in \mathcal{H}$ . This implies that there exists an  $\gamma$ -open set  $G_1$  such that  $F \setminus U_1 \subseteq G_1 \cap B \subseteq A$  for some  $U_1 \in \mathcal{H}$ . Since B is  $\mathcal{H}_{\gamma}g$ -open in X,  $F \subseteq B$  and F is m-closed, we have  $F \setminus U_2 \subseteq \gamma \operatorname{Int}(B)$  for some  $U_2 \in \mathcal{H}$ . This implies that there exists an  $\gamma$ -open set  $G_2$  such that  $F \setminus U_2 \subseteq G_2 \subseteq B$  for some  $U_2 \in \mathcal{H}$ . Now,  $F \setminus (U_1 \cup U_2) \subseteq (F \setminus U_1) \cap (F \setminus U_2) \subseteq G_1 \cap G_2 \subseteq G_1 \cap B \subseteq A$ . This is implies that  $F \setminus (U_1 \cup U_2) \subseteq \gamma \operatorname{Int}(A)$  for some  $U_1 \cup U_2 \in \mathcal{H}$  and hence A is  $\mathcal{H}_{\gamma}g$ -open in X.

**Theorem 4.4** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. If  $\gamma Int(A) \subseteq B \subseteq A$  and A is  $\mathcal{H}_{\gamma}g$ -open set, then B is  $\mathcal{H}_{\gamma}g$ -open in X.

**Proof:** Suppose  $\gamma Int(A) \subseteq B \subseteq A$  and A is  $\mathcal{H}_{\gamma}g$ -open. Then,  $X \setminus A \subseteq X \setminus B \subseteq X \setminus \gamma Int(A) = \gamma Cl(X \setminus A)$  and  $X \setminus A$  is  $\mathcal{H}_{\gamma}g$ -closed. By Theorem 3.7,  $X \setminus B$  is  $\mathcal{H}_{\gamma}g$ -closed and hence B is  $\mathcal{H}_{\gamma}g$ -open.

**Theorem 4.5** Let  $(X, m, \mathcal{H})$  be a hereditary m-space and  $\gamma$  be a  $\gamma$ -operation on m. A subset A is  $\mathcal{H}_{\gamma}g$ -closed in X if and only if  $\gamma Cl(A) \setminus A$  is  $\mathcal{H}_{\gamma}g$ -open.

**Proof:** Suppose  $F \subseteq \gamma Cl(A) \setminus A$  and F is m-closed. Then,  $X \setminus [\gamma Cl(A) \cap (X \setminus A)] = (X \setminus \gamma Cl(A)) \cup A \subset X \setminus F$  and hence  $A \subset X \setminus F \in m$ . Since A is  $\mathcal{H}_{\gamma}g$ -closed,  $F = \gamma Cl(A) \cap F = \gamma Cl(A) \setminus (X \setminus F) \in \mathcal{H}$ . This implies that  $F \setminus U = \emptyset$ , for some  $U \in \mathcal{H}$ . Clearly,  $F \setminus U \subseteq \gamma Int(\gamma Cl(A) \setminus A)$ . By Theorem 4.1,  $\gamma Cl(A) \setminus A$  is  $\mathcal{H}_{\gamma}g$ -open.

Conversely, Suppose  $A \subseteq G$  and G is m-open in X. Then,  $[\gamma Cl(A) \cap (X \setminus G)] \subseteq [\gamma Cl(A) \cap (X \setminus A)] = \gamma Cl(A) \setminus A$ . By hypothesis,  $[\gamma Cl(A) \cap (X \setminus G)] \setminus U \subseteq \gamma Int[\gamma Cl(A) \setminus A] = \emptyset$ , for some  $U \in \mathcal{H}$ . This implies that  $[\gamma Cl(A) \cap (X \setminus G)] \subseteq U \in \mathcal{H}$  and hence  $\gamma Cl(A) \setminus G \in \mathcal{H}$ . Thus, A is  $\mathcal{H}_{\gamma}g$ -closed.  $\Box$ 

**Definition 4.2** Let  $\gamma$  (resp.  $\delta$ ) be an operation on m (resp. n). A function  $f:(X,m)\to (Y,n)$  is said to be  $(\gamma,\delta)$ -closed if f(V) is  $\delta$ -closed in Y for each  $\gamma$ -closed set V of X.

**Definition 4.3** [23] A function  $f:(X,m)\to (Y,n)$  is said to be (m,n)-continuous if for each n-open set V of Y  $f^{-1}(V)$  is m-open in X.

**Theorem 4.6** Let  $f:(X,m,\mathcal{H})\to (Y,n)$  be an (m,n)-continuous and  $(\gamma,\delta)$ -closed function. If  $A\subseteq X$  is  $\mathcal{H}_{\gamma}g$ -closed in X, then f(A) is  $f(\mathcal{H})_{\delta}g$ -closed in Y, where  $f(\mathcal{H})=\{f(U):U\in\mathcal{H}\}$ .

**Proof:** Let A be an  $\mathcal{H}_{\gamma}g$ -closed subset of X and  $f(A) \subseteq G$ , where G is n-open. Then,  $A \subseteq f^{-1}(G)$  and  $f^{-1}(G)$  is an m-open set in X. Then, by definition of  $\mathcal{H}_{\gamma}g$ -closed,  $\gamma Cl(A) \setminus f^{-1}(G) \in \mathcal{H}$  and hence  $f(\gamma Cl(A)) \setminus G \in f(\mathcal{H})$ . Since f is  $(\gamma, \delta)$ -closed,  $\delta Cl(f(A)) \subseteq \delta Cl(f(\gamma Cl(A))) = f(\gamma Cl(A))$ . Then,  $\delta Cl(f(A)) \setminus G \subseteq f(\gamma Cl(A)) \setminus G \in f(\mathcal{H})$  and hence f(A) is  $f(\mathcal{H})_{\gamma}g$ -closed in Y.

## References

- 1. A. Al-Omari and T. Noiri, On  $\Psi_*$ -operator in ideal m-spaces, Bol. Soc. Paran. Mat. (3s.), 30 (1)(2012), 53 66.
- 2. A. Al-Omari and T. Noiri, Local closure functions in ideal topological spaces, Novi Sad J. Math., 43(2) (2013), 139-149.
- $3.\ A.\ Al-Omari\ and\ T.\ Noiri,\ On\ operators\ in\ ideal\ minimal\ spaces,\ Mathematica,\ {\bf 58}(81),\ No.\ 1-2\ (2016),\ 3-13.$
- 4. A. Al-Omari and T. Noiri, A note on topologies generated by m-structures and  $\omega$ -topologies, Commun. Fac. Sci. Univ. Ank. Series A1, 67 (1) (2018), 141–146.
- 5. A. Al-Omari and T. Noiri, Properties of  $\gamma H$ -compact spaces with hereditary classes, Atti Accad. Pelor. Peric., Cl. Sci. Fis. Mat. Natur. 98 (2) (2020), A4 [11 pages].
- A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61(84), No. 2 (2019), 101–110.
- A. Al-Omari and T. Noiri, Generalizations of Lindelöf spaces via hereditary classes, Acta Univ. Sapientie Math. 13
  (2) (2021), 281-291.
- 8. A. Al-Omari and T. Noiri, Properties of  $\theta$ - $\mathcal{H}$ -compact sets in hereditary m-spaces, Acta Et Commentationes Universitatis Tartuensis De Mathematica **26** (2) (2022), 193-206.
- 9. F. Cammaroto and T. Noiri,  $On\ \Lambda_m$ -sets and related topological spaces, Acta Math. Hungar.,  $\mathbf{109}(3)\ (2005),\ 261-279.$
- 10. Á. Császár, Modification of generalized topologies via hereditary classes, Acta Math. Hungar., 115(1-2) (2007), 29-35.
- 11. Á. Császár,  $\gamma\text{-}connected\ sets,$  Acta Math. Hungar,  $\mathbf{101}(4),$  (2003), 273–279, https://doi.org/10.1023/B:AMHU.0000004939.57085.9e
- 12. D. Janković and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- 13. K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- 14. N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89-96.
- H. Maki, K. C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.

- S. Modak, Dense sets in weak structure and minimal structure, Commun. Korean Math. Soc., 28(3), (2013), 589–596. http://dx.doi.org/10.4134/CKMS.2013.28.3.589
- 17. S. Modak and T. Noiri, Some generalizations of locally closed sets,, Iran. J. Math. Sci. Inform., 14(1), (2019), 159–165. DOI: 10.7508/ijmsi.2019.01.014
- 18. S. Modak and T. Noiri, Connectedness of ideal topological spaces, Filomat, 29(4), (2015), 661-665.
- 19. S. Modak and S. Selim, Set operators and associated functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 70(1), (2021), 456–467, doi: 10.31801/cfsuasmas.644689.
- 20. T. Noiri, A unified theory for modifications of g-closed sets, Rend. Circ. Mat. Palermo 56 (2007), 171-184.
- 21. T. Noiri, A unified theory for generalizations of compact spaces, Anal. Univ. Sci. Budapest., 54 (2011), 79-96.
- 22. H. Ogata, Operations on topological spaces and associated topology, Math. Japon. 36(1) (1991), 175-184.
- 23. V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor. (2), 43(23) (2000), 31–41.
- 24. R. Vaidyanathaswani, The localization theory in set-topology, Proc. Indian Acad. Sci., 20 (1945), 51-62.

Ahmad Al-Omari, Al al-Bayt University, Department of Mathematics, Jordan. E-mail address: omarimutah1@yahoo.com

and

Takashi Noiri 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 JAPAN.

 $E\text{-}mail\ address: \verb|t.noiri@nifty.com||$