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Existence of Renormalized Solutions to Non-Linear p(·)-Parabolic Problems of Generalized
Porous Medium with General Measure Data

Abdelaziz Sabiry∗, Ghizlane Zineddaine, Abderrezak Kassidi and Said Melliani

abstract: In this work, we investigate the existence of renormalized solutions for a nonlinear parabolic
problem with variable exponents and general measure data. The solutions are achieved by combining monotone
operator theory, Marcinkiewicz estimation, and the truncation method.
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1. Introduction

The objective of this paper is to determine some results of the existence for renormalized solution to
a nonlinear parabolic equation modeled as follows:

(P)


∂b(z, w)

∂t
− div

(
Φ(t, z, w,∇w)

)
= µ in QT := Ω× (0, T ),

b(z, w)(t = 0) = b(z, w0) in Ω,

w = 0 on (0, T )× ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a bounded open subset with smooth boundary ∂Ω, −div(Φ(t, z, w,∇w)) is a
Leray Lions operator which verifies the polynomial p(z)−growth condition with respect to w and ∇w and
b(z, w) is an unbounded function of w. Furthermore, we suppose that b(z, w0) ∈ L1(Ω) and µ ∈ Mb(QT ).

The utilization of partial differential equations with variable exponents has found application in various
models of fluid dynamics, particularly in the context of electro-rheological and thermo-rheological fluids
[3]. Additionally, these equations have been employed in fields such as robotics, fluid dynamics, and image
processing (see [16]). Conversely, our interest in investigating problem (P) arises from its relevance in
modelling diverse physical phenomena linked to electro-rheological fluids, as noted in Rajagopal’s work(see
[46]). These fluids possess the unique ability to alter their mechanical properties in response to external
electro-magnetic fields. Key domains benefiting from this research encompass continuum mechanics,
population dynamics, and image processing (see [53,20]). Notably, the central rationale for introducing
the concept of capacity lies in its capacity to yield optimally regular boundary results. Hence, an extended
adaptation of this concept is deemed appropriate when addressing generalized Lebesgue-Sobolev spaces.
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From a theoretical approach, the study of nonlinear boundary problems with variable growth con-
ditions allows the development of a new class of functional frameworks. They are called Lebesgue and
Sobolev spaces with variable exponent which are denoted Lp(z)(Ω) and W 1,p(z)(Ω), respectively. In this
direction, Sharapudinov et. al. in [52] represents an important step as it introduces a focused study
of the topology of spaces Lp(z)(E), which encompass measurable functions on a set E with p(z) ≥ 1.
For a more complete overview, readers are invited to consult the article by Samko et. al. in [51]. In
[20], authors present an overview of various unsolved questions concerning variable exponent spaces. in
addition, we recommend the article [28] to gain a basic understanding of spaces of functions with variable
exponents and to explore spaces of related functions. Authors are also advised to consult similar articles,
such as [26]. By incorporating these references, the authors will provide readers with a solid foundation
for understanding the concepts and recent developments in the field of function spaces with variable
exponents.

More recently, the study of these problems has aroused increasing interest in recent years. Neverthe-
less, all the works devoted to the analysis of this type of problem highlight the existence results of the
problem as it has been developed by some authors, (see [1,42,43,49,50]). A famous book that we strongly
recommend is [45]. It is an excellent and very complete introduction to the study of boundary value
problems with variable exponents. In order to develop the analysis, we will review some previous work
in which a special case of the problem (P) has been studied. First, we recall some results related to the
parabolic equation (P) with the datum µ being a bounded Radon measure on QT . In [15], Bouajaja et
al. considered the equation p(z)−parabolic (P) with p(z) = p is a constant, where b is supposed to be a
strictly increasing C1−function, Φ(z, t, w)∇w = Φ(z, t, w,∇w), and µ is a bounded measure. The authors
ensured the existence of a distributive solution to the considered problem, however, because of lack of
regularity of the solution, the distributive formulation is not strong enough to ensure the uniqueness.
Later, in order to overcome this constraint, the new idea of renormalized solutions was for the first time
presented by Di-Perna and Lions in [22]. they investigate the Boltzmann equation, and extended it to
the parabolic (and elliptic) equations with L1 data (see [21,8,9,10,33,18]). Concerning the measure µ
(where p(z) = p is a constant), the existence and uniqueness of the renormalized solution of (P) were
proved in [23] where b(z, w) = w, w0 ∈ L1(Ω) and for any µ measure which does not load on sets of zero
p−capacity, this measures so-called diffuse measures or concentrated measures, and we shall employ the
symbol µ ∈ M0(QT ) to indicate them. The importance of this type of measure was initially remarked in
the stable case in [14], and elaborated in the evolving case in [23]. When b(z, w) = b(w), µ ∈ M0(QT ) and
w0 ∈ L1(Ω), the same problematic subject was considered in [12], also In the case when µ ∈ M0(QT ))
and with b(z, w) the existence of the renormalized solution of (P) has been proved in [32], we recall that
several authors have approached the same theme under different assumptions and in different contexts,
see [35,36,37,38]. In a different situation, Chipot et al. [17] establish, under certain conditions, a proof
of an explosion result in the case b(x, t) = w.

Our contribution represents original work by extending and generalizing prior findings found in the
existing literature [2,48]. This paper is dedicated to investigating the well-posedness of renormalized
solutions for problem (P), considering its dependence on parameter s. Our focus encompasses scenarios
involving general measures, and our findings contribute novel insights to the treatment of such problems.
We develop an approximate series of solutions and establish certain preliminary estimates. Subsequently,
we extract a subsequence to arrive at the limiting function, demonstrating its status as a renormalized
solution. By averaging both ”cut-off” test functions and the ”near-far from” approach, we unveil fresh
properties that facilitate the treatment of the measure’s singular component. Notably, our approach
avoids relying on the strong convergence of truncations, and it is extensible to a broader class of non-
monotone operators, denoted as Φ, with respect to w.

The organisation of this document can be summarised as follows. In Section 2, we focus on presenting
fundamental notions about capacity and the essential characteristics of metrics. In Section 3, we introduce
the key assumptions underlying our work, leading to the formulation of an existence theorem. Finally,
Section 4 is entirely devoted to the proof of our central result.
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2. Preliminaries

2.1. Sobolev spaces with variable exponents

In the study of (P), we employ the theory of generalized Lebesgue-Sobolev spaces Lp(z)(Ω) and

W
1,p(z)
0 (Ω). For the reader’s understanding, we point out only some background facts which will eventu-

ally be applied, we send back to [24,55] for more details.
Consider p : Ω → [1,+∞) be a continuous function, we have

p− = min
z∈Ω

p(z) and p+ = max
z∈Ω

p(z).

In the following, we suppose that

C+(Ω) =
{
p is a real measurable functions on Ω such that 1 < p− ≤ p+ < N

}
,

where

1 < p− ≤ p(z) ≤ p+ <∞. (2.1)

Denote

E =
{
ϖ : ϖ is a measurable function on Ω

}
.

We give the spaces Lp(z)(Ω) as follows

Lp(z)(Ω) =
{
w ∈ E :

∫
Ω

|w(z)|p(z)dz < +∞
}
.

We endow the space Lp(z)(Ω) by the so-called Luxemburg norm

∥w∥p(z) = inf
{
λ > 0;

∫
Ω

∣∣∣w(z)
λ

∣∣∣p(z)dz ≤ 1
}
.

Recall the inequality below, which will be used thereafter.

min
{
∥w∥p

−

p(z) ; ∥w∥p
+

p(z)

}
≤

∫
Ω

|w(z)|p(z)dz ≤ max
{
∥w∥p

−

p(z) ; ∥w∥p
+

p(z)

}
.

By hypothesis(2.1), the space Lp(z)(Ω) becomes a separable and reflexive Banach space. We set the dual

space of Lp(z)(Ω)by Lp′(z)(Ω) with
1

p(z)
+

1

p′(z)
= 1. Moreover, for each f ∈ Lp(z)(Ω) and g ∈ Lp′(z)(Ω),

we have here following p(z)-Hölder inequality∫
Ω

|fg|dz ≤
( 1

p(z)
+

1

p′(z)

)
∥f∥p(z)∥g∥p′(z)

holds true. Now, if p(z), p′(z) ∈ C+(Ω) where
1

p(z)
+

1

p′(z)
= 1 and for each a, b > 0, we obtain Young’s

inequality defined by

ab ≤ ap(z)

p(z)
+
bp

′(z)

p′(z)
.

A variable exponent p is extended from Ω → [1,+∞) to QT = Ω × [0, T ] with p(t, z) := p(z), for all
(z, t) ∈ QT .
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2.1.1. Functional Setting. The present paragraph aims at presenting the suggested problem solving
framework (P). We start by defining the space

Lp(z)(QT ) =
{
w : QT → R;measurable such that

∫
QT

∣∣∣w(z, t)∣∣∣p(z)dzdt <∞
}
,

equipped with the norm

∥w∥Lp(z)(QT ) = inf
{
λ > 0;

∫
QT

∣∣∣w(z, t)
λ

∣∣∣p(z)dzdt < 1
}
.

The space (Lp(z)(QT ), ∥ ·∥p(z)) is then a separable reflexive Banach. We now introduce the Sobolev space
with variable exponent

W 1,p(z)(Ω) =
{
w ∈ Lp(z)(Ω) ; |∇w| ∈ Lp(z)(Ω)

}
.

It has the following standard

∥w∥1,p(z) = ∥w∥p(z) + ∥∇w∥p(z).

This is recognized as being equivalent to

∥w∥1,p(z) = inf
{
λ > 0;

∫
Ω

(∣∣∣w(z)
λ

∣∣∣p(z) + ∣∣∣∇w(z)
λ

∣∣∣p(z))dz ≤ 1
}
.

We also denote by W
1,p(z)
0 (Ω) the subspace of W 1,p(z)(Ω) which is the closure of C∞

0 (Ω) with respect to

the norm ∥ · ∥1,p(z), i.e., W
1,p(z)
0 (Ω) = C∞

0 (Ω)
W 1,p(z)(Ω)

. Moreover, By assuming that p− > 1, one can

say that the spaces W 1,p(z)(Ω) and W
1,p(z)
0 (Ω) are separable and reflexive Banach spaces. Additionally,

if 0 < T <∞, we begin by setting the space

Lp−
(0, T ;W

1,p(z)
0 (Ω)) =

{
w ∈ Lp(z)(QT ) :

(∫ T

0

∥w∥p
−

W
1,p(z)
0 (Ω)

) 1

p−
dt < +∞

}
.

2.2. Measure and Parabolic p(x)-Capacity

We take back the notion of p(z)-capacity for the problem (P). Consider that QT = Ω × (0, T ) for

every T > 0 and let’s note here again V =W
1,p(z)
0 (Ω)∩L2(Ω) has its natural norm ∥.∥

W
1,p(z)
0

+ ∥.∥L2(Ω),

we can define the space Wp(z)(0, T ) by

Wp(z)(0, T ) =
{
∇w ∈ (Lp(z)(QT ))

N ; w ∈ Lp−
(0, T,V) and wt ∈ L(p′)−(0, T,V ′)

}
,

equipped by

∥w∥Wp(z)(0,T ) = ∥w∥Lp− (0,T,V) + ∥∇w∥(Lp(z)(QT ))N + ∥wt∥L(p′)− (0,T,V′).

Recall that Wp(z)(0, T ) is continuously embedded in C([0, T ], L2(Ω)).
Now, we will define the p(z)−parabolic capacity of U where U ⊆ QT be an open set as follows

capp(z)(U) = inf
{
∥w∥Wp(z)(0,T ) : w ∈Wp(z)(0, T ), w ≥ χU a.e. in QT

}
,

where inf{∅} = +∞, then for each Borel set B ⊆ QT , we have

capp(z)(B) = inf
{
capp(z)(U) : U open subset of QT , B ⊆ U

}
.
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Since we want to use certain regular properties, we will set the space Υ as follows

Υ =
{
w ∈ Lp−

(0, T,W
1,p(z)
0 (Ω)) : ∇w ∈ (Lp(z)(QT ))

N

and wt ∈ L(p′)−(0, T,W 1,p′(z)(Ω)) + L1(QT )
}
.

It is endowed by the following standard

∥w∥Υ = ∥w∥
Lp− (0,T,W

1,p(z)
0 (Ω))

+ ∥∇w∥(Lp(z)(QT ))N + ∥wt∥L(p′)− (0,T,W 1,p′(z)(Ω))+L1(QT ).

In the rest of this paper, Mb(QT ) designates the set of all Radon measures with bounded variation on
QT , and M0(QT ) denotes

M0(QT ) =
{
µ ∈ Mb(QT ) : µ(E) = 0 for every E ⊂ QT such that capp(z)(E) = 0

}
.

as mentioned earlier, M0(QT ) the set of all bounded total variation measures on QT that do not load
sets of zero p(x)-capacity, i.e., if µ ∈ M0(QT ), then µ(E) = 0, for any E ⊂ QT such that capp(z)(E) = 0.
To properly specify the nature of a measure in M0(QT ), we must then detail the structure of the dual
space (Wp(z)(0, T ))

′.

Lemma 2.1 [34, Lemma 4.2] Consider g ∈ (Wp(z)(0, T ))
′ then there exists

g1 ∈ L(p′)−(0, T,W−1,p′(z)(Ω)), g2 ∈ Lp−
(0, T,V), F ∈ (Lp′(z)(QT ))

N and g3 ∈ L(p′)−(0, T, L2(Ω))
such that

≪ g, w ≫=

∫ T

0

〈
g1, w

〉
dt+

∫ T

0

〈
wt, g2

〉
dt+

∫
QT

F∇w dxdt+

∫
QT

g3wdxdt,

for each w ∈Wp(z)(0, T ). Furthermore, we can take (g1, g2, F, g3) such that

∥g1∥L(p′)− (0,T ;W−1,p′(z)(Ω)) + ∥g2∥Lp− (0,T ;V) + ∥|F |∥(Lp′(z)(QT ))N + ∥g3∥L(0,T ;L2(Ω)) ≤ C∥g∥(Wp(z)(0,T ))′ ,

given that C is independent of g.

A decomposition result of M0(QT ) is given below

Theorem 2.1 [34, Theorem 4.4] Let µ be a bounded measure on QT . If µ ∈ M0(QT ) then there exists
g ∈ (Wp(z)(0, T ))

′and h ∈ L1(QT ) such that µ = g + h in the sense that∫
QT

φ dµ =≪ g, φ≫ +

∫
QT

hφ dzdt, ∀φ ∈ C∞
c ([0, T ]× Ω).

From the Theorem 2.1 and Lemma 2.1, we have the follows theorem

Theorem 2.2 [34, Theorem 4.5] Let µ ∈ M0(QT ), then there exists a decomposition (F, f, g1, g2) with

F ∈ (Lp′(z)(QT ))
N , f ∈ L1(QT ), g1 ∈ L(p′)−(0, T ;W−1,p′(z)(Ω)), g2 ∈ Lp−

(0, T ;V) and∫
QT

φdµ =

∫
QT

fφdzdt+

∫
QT

F∇wdzdt+
∫ T

0

〈
g1, φ

〉
dt−

∫ T

0

〈
φt, g2

〉
dt, φ ∈ C∞

c ([0, T ]× Ω).

such a quadruplet (F, f, g1, g2) will be called a decomposition of µ.

It is worth noting that this decomposition of M0(QT ) from the aforementioned theorem is not unique,
see [34, Lemma 4.6]. With the help of a decomposition result, see [25, Lemma 2. 1], for each µ in
Mb(QT ), can then be written as a summation of its absolutely continuous part µ0 with respect to the
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capacity p(z) and its singular part λs concentrated on a set E of capacity p(z) zero, Therefore, if λs is
Mb(QT ) and by the theorem 2.2, we can get

µ = f − div(F ) +
∂g

∂t
+ λ+s − λ−s ,

in the sense of distributions, for g ∈ Lp−
(0, T ;V), f ∈ L1(QT ), F ∈ (Lp′(z)(QT ))

N , where (λ+s is the
positive part of µ and (λ−s is the negative part of µ; It is important to mention that the decomposition
of the absolutely continuous part of µ according to Theorem 2.2 is by no means uniquely defined. As
we are concerned about density results to show the existence of a solution, we have to give the following
introductory result which utilizes a proper approximation of the data.

Proposition 2.1 Suppose that µ ∈ M0(QT ), then there exists (f, div(H), g) of µ in the sense of Theorem
2.2 and an approximation µη of µ verifying

µη ∈ C∞
c (QT ), ∥µη∥L1(QT ) ≤ C,

and ∫
QT

µηφ dµ =

∫
QT

fηφ dz dt+

∫ T

0

〈
div(Hη), φ

〉
dzdt−

∫ T

0

〈
φt, g

η
〉
dt,

where 
fη ∈ C∞

c (QT ) : f
η → f in L1(QT ) as η → 0,

Hη ∈ C∞
c (QT ) : H

η → H in Lp′(z)(QT )
N as η → 0,

gη ∈ C∞
c (QT ) : g

η → g in Lp−
(0, T,V) as η → 0.

Proof: See [34, Proposition 2.31]. 2

3. Definition of Renormalized Solution and Essential Hypotheses

3.1. Essential Hypotheses

The following Hypotheses are assumed to be true throughout this document:
Hypothesis (H1)
Assume that Ω ⊂ RN (N ≥ 1) is a bounded open subset and b : Ω × R → R a Carathéodory function
where for each x ∈ Ω, b(z, .) is a strictly increasing C1 function such that

b(z, 0) = 0. (3.1)

Then, there exists γ, Λ > 0, and a function Bk ∈ Lp(z)(Ω) where

γ ≤ ∂b(z, s)

∂s
≤ Λ and

∣∣∣∇z

(∂b(z, s)
∂s

)∣∣∣ ≤ Bk(z), (3.2)

for a. e. z ∈ Ω and any s where |s| ≤ k, and the gradient of ∂b(z, s)/∂s is defined in the sense of the
distributions by ∇z(∂b(z, s)/∂s) .
Hypothesis (H2)
Φ : (0, T )× Ω× RN → RN is a Carathéodory function which satisfies classical Leray-Lions hypothesis

Φ(z, t, s, ξ) · ξ ≥ α|ξ|p(z), (3.3)∣∣∣Φ(z, t, s, ξ)∣∣∣ ≤ β
[
L(z, t) + |ξ|p(z)−1 + |s|p(z)−1

]
, (3.4)[

Φ(z, t, s, ξ)− Φ(z, t, s, η)
]
(ξ − η) > 0, (3.5)

for each (s, ξ) ∈ R × RN , α and β are positive real number and for a. e. (x, t) ∈ QT , and L is a
non-negative function in Lp′(z)(QT ).

µ ∈ Mb(QT ), (3.6)

w0 ∈ L1(Ω). (3.7)
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3.2. Definition of Renormalized Solution

Before stating our results, we now present the definition of renormalized solution of (P) and some
essential lemmas that will help us establish the proof of our main result.

Definition 3.1 Let (f, div(F ), g) be a decomposition of µ ∈ M0(QT ). A measurable function w defined
on QT is a renormalized solution of problem (P) if

Tk(b(z, w)− g) belong to Lp−
(0, T ;W

1,p(z)
0 (Ω)), for all k ≥ 0,

b(z, w)− g belong to L∞(0, T ;L1(Ω)), (3.8)

∇Tk(b(z, w)− g) ∈ (Lp(z)(QT ))
N , for all k ≥ 0, (3.9)

for all S belong to W 2,∞(R), that is piecewise C1, with S′ is a function with compact support, we get

∂S(b(z, w)− g)

∂t
− div(S′(b(z, w)− g)Φ(z, t, w,∇w)) + S′′(b(z, w)− g)Φ(z, t, w,∇w)∇(b(z, w)− g)

= fS′(b(z, w)− g)− div(FS′(b(z, w)− g)) + FS′′(b(z, w)− g)∇(b(z, w)− g) in D′(QT ), (3.10)

for each ψ ∈ C(QT ), we obtain

lim
m→∞

1

m

∫
{(z,t)∈QT :m≤|b(z,w)−g|<2m}

Φ(z, t, w,∇w)∇(b(z, w) − g)ψdzdt =

∫
QT

ψdµ+
s , (3.11)

lim
m→∞

1

m

∫
{(z,t)∈QT :−2m<|b(z,w)−g|≤−m}

Φ(z, t, w,∇w)∇(b(z, w) − g)ψdzdt =

∫
QT

ψdµ−
s . (3.12)

and

S(b(z, w)− g)(t = 0) = S(b(z, w0)) in Ω. (3.13)

Remark 3.1 The essential regularity results derived from the distribution equation (3.10) are consid-
ered. It The main regularity results derived from the equation (3.10) in terms of distribution are con-
sidered. It is important to note that thanks to our regularity assumptions of S, all terms present in

(3.10) are well defined. This is possible because Tk(b(z, w)−g) belongs to Lp(z)(0, T ;W
1,p(z)
0 (Ω)) for

all positive k, and because S′ has compact support. More precisely, by choosing a suitable k such that
Supp (S′) ⊂]−k, k[, we ensure that S′(b(z, w)−g) = S′′(b(z, w)−g) = 0 whenever |b(z, w)−g| ≥ k.
As a result we can replace, everywhere in (3.10), ∇(b(z, w)− g) by ∇Tk(b(z, w)− g) ∈ Lp(z)(QT )

N

and ∇w by (∂b(z,w)
∂s )−1(∇Tk(r) + (∇g − ∇zb(z, w))χ{|r|≤k}) ∈ Lp(z)(QT )

N . Moreover, in view of

(3.2)−(3.3) and the definition of ∇w, (∂b(z,w)
∂s )−1(∇Tk(r)−(∇zb(z, w)−∇g)χ{|r|≤k}) ∈ Lp(z)(QT )

N ,
we have ∇(b(z, w) − g) is well defined and since |w| ≤ γ−1(k + |g|) as soon as |r| ≤ k, we can also
deduce that |Φ(t, z, w,∇w)χ(|r| ≤ k)| ∈ Lp′(z)(QT )

N . Additionally, for each S as mentioned earlier,

we have S(b(z, w)− g) = S(Tk(b(z, w)− g)) ∈ Lp−
(0, T ;W

1,p(z)
0 (Ω)) and

S′(b(z, w)− g)Φ(t, z, w,∇w) ∈ Lp′(z)(QT )
N ;

S′(b(z, w)− g)F ∈ Lp′(z)(QT )
N ;

S′(b(z, w)− g)f ∈ L1(QT );
S′′(b(z, w)− g)F · ∇Tk(b(z, w)− g) ∈ L1(QT );
S′′(b(z, w)− g)Φ(t, z, w,∇w) · ∇Tk(b(z, w)− g) ∈ L1(QT ).

Therefore, based on (3.10), we can assert that ∂S(b(z,w)−g)
∂t belongs to the space

L(p′)−(0, T ;W−1,p′(z)(Ω)) + L1(QT ). Consequently, S(b(z, w) − g) belongs to C([0, T ];L1(Ω)), as
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stated in [41, Theorem 1.1]. This allows us to conclude that the initial datum is achieved in a
weak sense, i.e., S(b(z, w)− g)(0) = S(b(z, w)(0)− g(0)) = S(b(z, w0)) in L

1(Ω) (noting that g has
compact support in QT ) for every renormalization S. Additionally, it is worth mentioning that since
∂S(b(z,w)−g)

∂t ∈ L(p′)−(0, T ;W−1,(p′(z)(Ω)) + L1(QT ), we are not limited to using only functions in

C∞
0 (QT ) in (3.10), but we can also include functions from Lp−

(0, T ;W
1,p(z)
0 (Ω)) ∩ L∞(QT ).

It is important to mention that the preparation of the renormalized solution is independent of the de-
composition of µ, for that we will use the following result

Lemma 3.1 Let (f,H, g1, g2) and (f, H̃, g̃1, g̃2) be two different decompositions of µ with µ ∈ M0(QT )
by the Theorem 2.1, we get∫ T

0

〈
(g2 − g̃2)t, φ

〉
dt =

∫
QT

(
H̃ − H

)
.∇φdzdt +

∫
Qt

(
f̃ − f

)
φdzdt +

∫ T

0

〈
g1 − g̃1, φ

〉
dt

for every φ ∈ C∞
c ([0, T ]× Ω). Moreover g2 − g̃2 ∈ C([0, T ];L1(QT )) and (g2 − g̃2)(0) = 0.

Proof: See [34, Lemma 4.6]. 2

The following result shows that in the presence of bounded perturbations of the time derivative component
of µ, the definition of a renormalized solution is stable.

Proposition 3.1 [37, Proposition 3] If w is a renormalized solution of (P), then w satisfies (3.8)-(3.12)
for any decomposition (f̃ , div(H̃), g̃) of µ.

4. Main Result and Proof

In this part, we demonstrate the following main result.

Theorem 4.1 Under assumptions (3.2)-(3.7) there exists at least a renormalized solution w of P.

Proof: The complexity of extending the main result when µ is in M0(QT ) is due to the fact that there
is a singular part of the data and to a absence of regularity. To overcome these difficulties in the proof
of our main result, we will divide the proof into several steps. We start by introducing an approximate
problem. Then we will establish some a priori estimates. Finally, we will be showing that u satisfies
(3.8)-(3.13) of Definition 3.1.
Step 1: Approximate problem
Let us return to the essential decomposition theorem for measures data. As previously stated, if µ belong
to Mb(QT ), it can be decomposed as follows:

µ = f − div(F ) +
∂g

∂t
+ λs+ − λs−.

There are several methods for approximating this measure by determining the existence of solutions to
(P); we will choose the following.{

µη ∈ C∞
c (QT ) such that ∥µη∥L1(Ω) ≤ C,

µη = fη − div(F η) +
∂gη

∂t
+ λη+ − λη−,

(4.1)

where

fη ∈ C∞
c (QT ), f

η → f in L1(QT ), as η → 0, (4.2)

F η ∈ (C∞
c (QT ))

N , F η → F in (Lp′(z)(QT ))
N , as η → 0, (4.3)

gη ∈ C∞
c (QT ), g

η → g in Lp−
(0, T,W

1,p(z)
0 (Ω) ∩ L2(Ω)), as η → 0, (4.4)
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λη+ ∈ C∞
0 (QT ) where λ

η
+ → λs+ in the narrow topology of measures, (4.5)

λη− ∈ C∞
0 (QT ) where λ

η
− → λs− in the narrow topology of measures. (4.6)

Furthermore, let us

bη(z, k) = T 1
η
(b(z, k)) + ηk, for all k ∈ R and η > 0, (4.7)

wη
0 ∈ C∞

c (Ω) : bη(z, w
η
0) → bη(z, w0) in L

1(Ω) as η → 0. (4.8)

Consider now the following regularized problem (Pη).

(
Pη

) 
∂bη(z, w

η)

∂t
− div

[
Φ(z, t, wη,∇wη)

]
= µη in QT : Ω× (0, T ),

wη(z, t) = 0 on ∂Ω× (0, T ),

bη(z, w
η)(t = 0) = bη(z, w

η
0) in Ω.

As a result, it is straightforward to demonstrate the existence of a weak solution

wη ∈ Lp−
(0, T ;W

1,p(z)
0 (Ω)) of

(
Pη

)
(for more information, see [5]). This approach gives standard com-

pactness results which we put together in the next step.
Step 2 : By selecting Tk(bη(z, w)) as a test function in

(
Pη

)
, we obtain

∫
Ω

Tk(bη(z, w
η))(t)dz +

∫ t

0

∫
Ω

Φ(t, z, wη,∇wη) · ∇Tk(bη(z, wη))dzdt

=

∫ t

0

∫
Ω

Tk(bη(z, w
η))dµη +

∫
Ω

Tk(bη(z, w
η
0))dz (4.9)

where t ∈ [0, T ] and Tk(s) the primitive function of Tk(s). Due to (3.3) and the boundedness of
∥bη(z, wη)∥L1(QT ), it results that∫

Ω

Tk(bη(z, w
η))(t)dz +

∫
{|bη(z,wη)|≤k}

∂bη(z, w
η)

∂s
Φ(t, z, wη,∇wη) · ∇wηdzdt

+

∫
{|bη(z,wη)|≤k}

Φ(t, z, wη,∇wη) · ∇zbη(z, w
η)dzdt ≤ k∥µ∥Mb(QT ) +

∫
Ω

Tk(bη(z, w
η
0))dz.

Then,∫
Ω

Tk(bη(z, w
η))(t) + α

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzdt ≤ k∥µ∥Mb(QT ) + β

∫
Ek

L(z, t) · |∇zbη(z, w
η)|

+β

∫
Ek

|wη|p(z)−1·|∇zbη(z, w
η)dzdt+

β

γ

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)−1·|∇zbη(z, w

η)|dzdt+k∥bη(z, wη
0)∥L1(Ω)

where Ek = {(z, t) : |bη(z, wη)| ≤ k}, by (3.2) and Young’s inequality, we can infer that

β

∫
Ek

|∇wη|p(z)−1 · |∇zbη(z, w
η)dzdt ≤ β

γ

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)−1 · |∇zbη(z, w

η)dzdt

≤ α

2

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzdt

+
T (Λ + 1)

p−

(
max

((2β(p′)−
αγ

)p−−1

,
(2β(p′)−

αγ

)p+−1)
max

(
∥Bk∥p

−

Lp(z)(Ω)
, ∥Bk∥p

+

Lp(z)(Ω)

)
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and ∫
Ek

|wη|p(z)−1 · |∇zbη(z, w
η)|dzdt ≤

∫
Ek

|k
γ
|p(z)−1|∇zbη(z, wη)|dzdt

≤ Cmax
(
∥Bk∥p

−

Lp(z)(Ω)
, ∥Bk∥p

+

Lp(z)(Ω)

)
.

In view of Tk(s) ≥ 0 and |Tk(s)| ≥ |s| − 1, we have∫
Ω

|bη(z, wη)(t)|dz + α

2

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzdt ≤ k(∥µ∥Mb(QT ) + ∥bη(z, uη)∥

+ C
(
max

(
∥L∥(p

′)−

Lp′(z)(Ω)
, ∥L∥(p

′)+

Lp′(z)(Ω)

)
+max

(
∥Bk∥p

−

Lp(z)(Ω)
, ∥Bk∥p

+

Lp(z)(Ω)

))
.

Finally, we obtain∫
Ω

|bη(z, uη)(t)|dz +
α

2

∫ t

0

∫
Ω

|∇Tk(bη(z, wη))|p(z)dzdt ≤ C(k + 1) ∀k > 0, for all t ∈ [0, T ].

Based on the previously obtained estimates, we can infer that ∥bη(z, wη)∥L∞(0,T,L1(Ω)) ≤ C and∫
QT

|∇Tk(bη(z, wη))|p(z)dzdt ≤ C(k + 1).

Likewise, by selecting Tk(r) as the test function in
(
Pη

)
, we can also derive an estimate on rη = bη(z, w

η)−
gη.∫

Ω

Tk(s)(r
η)(t)dz + α

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzdt ≤

∫
Ω

Tk(s)(bη(z, w
η
0))dz + k∥f∥L1(QT )

+

∫
Ek

|F · ∇Tk(r)dzdt+ β
(∫

Ek

L(z, t)|∇gη|dzdt+
∫
Ek

|wη|p(z)−1|∇gη|dzdt+
∫
Ek

|∇wη|p(z)−1dzdt
)

+

∫
Ek

|Φ(t, z, w,∇wη) · ∇zbη(z, w
η)|dzdt+

∫
QT

Tk(rη)dλ
η
+ −

∫
QT

Tk(rη)dλ
η
−

where C is a constant independent on η and Ek = {(z, t) : |bη(z, wη)− gη| ≤ k}.
By utilizing (3.1), (3.2), and applying Young’s inequality, we obtain∫

Ek

|F · ∇Tk(rη)|dzdt ≤
α

2

( 1

(p′)+
+

1

p−

)∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzdt

+ C
(
max

(
∥Bk∥p

−

Lp(z)(Ω)
, ∥Bk∥p

+

Lp(z)(Ω)

)
+max

(
∥F η∥(p

′)+

Lp′(z)(QT )
, ∥F η∥(p

′)−

Lp′(z)(QT )

)
+max

(
∥∇gη∥p

−

Lp(z)(QT )
, ∥∇gη∥p

+

Lp(z)(QT )

))
,

∫
Ek

|wη|p(z)−1|∇g|dzdt ≤
∫
Ek

(k + |gη|)p
′(z)−1|∇g|dzdt

≤ C
(
max

(
∥gη∥p

−

Lp(z)(QT )
, ∥gη∥p

+

Lp(z)(QT )

)
+max

(
∥∇gη∥p

−

Lp(z)(QT )
, ∥∇gη∥p

+

Lp(z)(QT )

))
,

∫
Ek

|Φ(t, z, wη,∇wη)∇zbη(z, w
η)|dzdt ≤ α

4(p−)′

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzdt

+
T (Λ + 1)

p−
max

(( 4β
αγ

)p−−1
,
( 4β
αγ

)p+−1
)
max

(
∥Bk∥p

−

Lp(z)(Ω)
, ∥Bk∥p

+

Lp(z)(Ω)

)
,
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and

β

∫
Ek

|∇wη|p(z)−1 |∇gη| dzdt ≤ β

γ

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)−1 |∇gη|p(z) dzdt

≤ α

4(p′)−

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z) dzdt

+
T (Λ + 1)

p−
max

(( 4β
αγ

)p−−1
,
( 4β
αγ

)p+−1
)∫

Ek

|∇gη|p(z) dzdt.

Hence,∫
Ω

T k(bη(z, w
η)− gη)(t)dz +

α

2

∫
Ek

∂bη(z, w
η)

∂s
|∇wη|p(z)dzds

≤ C
(
max

{
∥L∥p

−

Lp′(z)(QT )
, ∥L∥p

+

Lp′(z)(QT )

}
+max

{
∥∇gη∥p

−

Lp′(z)(QT )
, ∥∇gη∥p

+

Lp′(z)(QT )

}
+max

{
∥gη∥p

−

Lp′(z)(QT )
, ∥gη∥p

+

Lp′(z)(QT )

}
+max

{
∥Bk∥p

−

Lp(z)(Ω)
, ∥Bk∥p

+

Lp(z)(Ω)

})
+ k

(
||fη∥+ ∥F η∥p

′(z)

Lp′(z)(QT )
+ ∥bη(z, wη

0)∥L1(Ω) + ∥λη+∥L1(QT ) + ∥λη−∥L1(QT )

)
, (4.10)

as F η is bounded in (Lp′(z)(QT ))
N , gη is bounded in Lp−

(0, T ;W
1,p(z)
0 (Ω)), fη, λη+, λ

η
+ are bounded in

L1(QT ) and bη(z, w
η
0) is bounded in L1(Ω), we obtain∫

Ω

Tk(r
η)(t)dz ≤ C ∀t ∈ [0, T ],

which implies the estimate of rη in L∞(0, T ;L1(Ω)), and also∫
QT

∥∇wη∥p(z)χ{|rη|≤k}dzdt ≤ C(k + 1),

which yields that Tk(r
η) is bounded in Lp−

(0, T ;W
1,p(z)
0 (Ω)), for any k > 0 (recall that gη is itself is

bounded in LP−
(0, T ;W

1,p(z)
0 (Ω))).

According to the properties of T k and the fact that |µη|L1(QT ) and |bη(z, wη)|L1(Ω) are bounded, it can
be concluded from (4.10) that ∫

Ω

|(bη(z, wη)− gη)(t)|dz ≤ C + 1. (4.11)

This means that

bη(z, w
η)− gη is bounded in L∞(0, T, L1(Ω)). (4.12)

In addition, using the Hölder inequality and (3.2) and from (4.10), we conclude that

α

2bκ1

∫
QT

|∇bη(z, wη)|p(z)χ{|bη(z,wη)−gη|<k}dzds ≤ C,

with
( 1

b1

)κ

= min
{
( 1
b1
)p

−−1; ( 1
b1
)p

+−1
}
and as gη is bounded in Lp−

(0, T ;W
1,p(z)
0 (Ω)), we get∫

QT

|∇Tk(bη(z, wη)− gη)|p(z)dzds ≤ C, (4.13)

thus

Tk(bη(z, w
η)− gη) is bounded in the space Lp−

(0, T ;W
1,p(z)
0 (Ω)), (4.14)
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for each k ≥ 0 and independently of η. As a result, for every S ∈ W 2,∞(R) where S′ has a compact
support i.e., supp(S′) ⊂ [−k, k], we get

S(bη(z, w
η)− gη) is bounded in the space Lp−

(0, T ;W
1,p(z)
0 (Ω)), (4.15)

∂S(bη(z, w
η)− gη)

∂t
is bounded in L1(QT ) + L(p′)−(0, T ;W−1,p′(z)(Ω)). (4.16)

In fact, from (4.14) and thanks to the famous Stampacchia Theorem, we can obtain (4.15). In order to
prove (4.16), we do a multiplication of the equation

(
Pη

)
by S′(bη(z, w

η)− gη) to obtain

∂S(bη(z, w
η)− gη)

∂t
= div(S′(bη(z, w

η)− gη)Φ(z, t, wη,∇wη))

− Φ(z, t, wη,∇wη)∇S′(bη(z, w
η)− gη) + fηS′(bη(z, w

η)− gη)

− div(F ηS′(bη(z, w
η)− gη)) + F η∇S′(bη(z, w

η)− gη)

+ λη+S
′(bη(z, w

η)− gη)− λη−S
′(bη(z, w

η)− gη) in D′(QT ). (4.17)

Since bη(z, w
η) − gη ∈ L∞(0, T, L1(Ω)) ⊂ L1(QT ), thus S(bη(z, w

η) − gη) ∈ L1(QT ) and
∂S(bη(z, w

η)− gη)

∂t
∈ D′(QT ). Then we get

{
fηS′(bη(z, w

η)− gη) ∈ L1(QT ), F ηS′(bη(z, w
η)− gη) ∈ (Lp′(z)(QT ))

N ,
λη+S

′(bη(z, w
η)− gη) ∈ L1(QT ), λη−S

′(bη(z, w
η)− gη) ∈ L1(QT ).

Given that supp(S′) ⊂ [−k, k] and supp(S′′) ⊂ [−k, k], wη can be replaced by (bη(z, w
η))−1(rη −

∇zbη(z, w
η) + gη) in {|bη(z, wη)− gη| ≤ k}, where rη := bη(z, w

η)− gη, In fact we obtain

∣∣∣S′(bη(z, w
η)−gη)Φ(z, t, wη,∇wη)

∣∣∣ ≤ β∥S∥L∞(R)+
∣∣∣(∂bη(z, wη)

∂s

)−1(
Tk(r

η)−∇zbη(z, w)+g
η
)∣∣∣p(z)−1]

≤ β∥S∥L∞(R)

[
L(z, t) + |(bη(z, wη))−1)(rη −∇zbη(z, w) + gη)|p(z)−1

+ ρ|∇Tk(rη)−∇zbη(z, w) +∇gη|p(z)−1
]

(4.18)

where ρ = max(( 1γ )
p+−1, ( 1γ )

p−−1), this means that S′(bη(z, w
η) − gη)Φ(z, t, wη,∇wη) ∈ (Lp′(z)(QT ))

N

and we have from (4.10) that ∇(bη(z, w
η)− gη) ∈ Lp(z)(QT ).

Furthermore, we get{
S′′(bη(z, w

η)− gη)Φ(z, t, wη,∇wη)∇(bη(z, w
η)− gη) ∈ L1(QT )

S′′(bη(z, w
η)− gη)F η∇(bη(z, w

η)− gη) ∈ L1(QT ).

As a consequence, we conclude that

∂S(bη(z, w
η)− gη)

∂t
∈ L1(QT ) + L(p′)−(0, T ;W−1,p′(z)(Ω)).

Step 3 : Reasoning again as before. Thanks to (4.12), we have for a subsequence always indexed by η,

bη(z, w
η)− gη converges to b(z, w)− g a.e in QT . (4.19)

through rη := bη(z, w
η)− gη, which gives that wη = (bη(z, w

η
)−1

(rη −∇zbη(z, w
η) + gη), using(4.4) and

(4.8), we have

wη → w almost everywhere in QT , (4.20)
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by (4.14), we get

Tk(r
η) converges to Tk(r) weakly in Lp−

(0, T ;W
1,p(z)
0 (Ω)). (4.21)

We deduce from (4.18) that for each k > 0,

Φ(z, t, wη,∇wη)χ{|bη(z,wη)−gη|≤k} ⇀ σk in (Lp′(x)(QT ))
N as η → 0, (4.22)

and

σk ∈ (Lp′(z)(QT ))
N , ∀k > 0.

By using (4.2), (4.8), (4.20) and by Lebesgue’s convergence theorem we obtain

∇zb(z, w
η) → ∇zb(z, w) strongly in (Lp(z)(QT ))

N .

as η tends to zero, for any k > 0.
We will now demonstrate that b(z, w) − g ∈ L∞(0, T, L1(Ω)), to do this we use (4.10) and the fact that
|T k(s)| ≥ |s| − 1, which leads to∫

Ω

|bη(z, wη)− gη|(t)dz ≤ C
(
max

{
∥Bk∥(p

′)−

Lp(z)(QT )
; ∥Bk∥(p

′)+

Lp(z)(QT )

}
+max

{
∥L∥(p

′)−

Lp(z)(QT )
; ∥L∥(p

′)+

Lp(z)(QT )

}
+max

{
∥∇gη∥p

−

Lp(z)(QT )
; ∥∇gη∥p

+

Lp(z)(QT )

})
+ k∥µη∥L1(QT ) + k∥bη(z, wη

0)∥L1(Ω) +meas(Ω), (4.23)

almost everywhere in (0, T ), where C is a constant independent of η. From (4.2)-(4.8) and using(4.19)
we deduced that b(z, w)− g ∈ L∞(0, T, L1(Ω)).
Step 4:
The time regularization of Tk(w) is defined as follows: Let (vv0)v be a sequence of functions in Ω, such
that

vv0 ∈ L∞(Ω) ∩W 1,p(z)
0 (Ω), ∥vv0∥L∞(Ω) ≤ k, ∀ v > 0, (4.24)

and {
vv0 converge to Tk(w0) almost everywhere in Ω,
1
v∥(v

v
0)t∥Lp(z)(Ω) converge to 0 as v go to ∞.

(4.25)

For each k > 0 and all v > 0, Tk(w)v is a the unique solution of the monotonous problem

∂(Tk(w))v
∂t

+ v(Tk(w)v − Tk(w)) = 0 in D′(Ω), (4.26)

Tk(w)v(t = 0) = vv0 in Ω. (4.27)

Thus,

Tk(v)v ∈ L∞(QT ) ∩ Lp−
(0, T ;W

1,p(z)
0 (Ω)) and

∂(Tk(w))v
∂t

∈ Lp−
(0, T ;W

1,p(z)
0 (Ω)).

Note that(4.24)-(4.27) give the following convergence result

Tk(v)v → Tk(v) in L
p−

(0, T ;W
1,p(z)
0 (Ω)) and almost everywhere in QT , (4.28)

as v converge to +∞, with ∥Tk(v)v∥L∞(QT ) ≤ k, for all v > 0. In addition, we state a fundamental result
on the usefulness of the approximate capacities, which will be indispensable for dealing the measure
(singular part). 2
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Lemma 4.1 [37, Lemma 5] Assume that µs = µ+
s − µ−

s ∈ Mb(QT ) with µ−
s and µ+

s are concentrated
respectively on two disjoint sets E− and E+ of zero p(z)-capacity. Then, for all δ > 0, there exist
K−

δ ⊆ E− and K+
δ ⊆ E+ compact sets where

µ+
s (E

+\K+
δ ) ≤ δ, µ−

s (E
−\K−

δ ) ≤ δ, (4.29)

and there exist two functions ψ−
δ , ψ

+
δ ∈ C1

0(QT ), where

ψ−
δ ≡ on K−

δ and ψ+
δ ≡ 1 on K+

δ , (4.30)

0 ≤ ψ−
δ ≤ 1, 0 ≤ ψ+

δ ≤ 1, (4.31)

sup(ψ−
δ ) ∩ s sup(ψ

+
δ ) ≡ ∅, (4.32)

moreover

∥ψ−
δ ∥Γ ≤ δ, ∥ψ+

δ ∥Γ ≤ δ, (4.33)

thus, there exists a particular decomposition of (ψ−
δ )t and (ψ+

δ )t where

∥(ψ−
δ )

1
t∥L(p−)′ (0,T ;W−1,p′(z)(Ω)) ≤

δ

3
, ∥(ψ−

δ )
2
t∥L1(QT ) ≤

δ

3
, (4.34)

∥(ψ+
δ )

1
t∥L(p−)′ (0,T ;W−1,p′(z)(Ω)) ≤

δ

3
, ∥(ψ+

δ )
2
t∥L1(QT ) ≤

δ

3
, (4.35)

with ψ−
δ and ψ+

δ converge to zero weakly∗ in L∞(QT ), in L1(QT ), and up to subsequences, almost
everywhere as δ disappears. Furthermore, if λη+ and λη− are as in Theorem 4.1, we get∫

QT

ψ−
δ dλ

η
+ = ℓ(η, δ) ,

∫
QT

ψ−
δ dµ

η
+ ≤ δ, (4.36)

∫
QT

ψ+
δ dλ

η
− = ℓ(η, δ) ,

∫
QT

ψ+
δ dµ

η
− ≤ δ, (4.37)

∫
QT

(1− ψ+
δ ψ

+
ε )dλ

η
+ = ℓ(η, δ, ε) ,

∫
QT

(1− ψ+
δ ψ

+
ε )dµ

η
+ ≤ δ + ε, (4.38)

∫
QT

(1− ψ−
δ ψ

−
ϵ )dλ

η
− = ℓ(η, δ, ε) ,

∫
QT

(1− ψ−
δ ψ

−
ε )dµ

η
− ≤ δ + ε. (4.39)

In the following, we will again refer to the subsequences of ψ+
δ and ψ−

δ , which all satisfy the convergence
results given in Lemma 4.1. Next, we will establish the key result in the proof of the main theorem.

Theorem 4.2 Consider rη = b(z, wη)− gη and r = b(z, w)− g. Then for each k > 0

Tk(r
η) → Tk(r) strongly in Lp−

(0, T ;W
1,p(z)
0 (Ω)) as η go to 0.

The proof is done in several steps.

Proof: The proof will easily follow from an asymptotic estimate

lim
η→0

∫
QT

Φ(t, z, wη,∇wη)∇Tk(rη)dzdt ≤
∫
QT

Φ(t, z, w,∇w)∇Tk(r)dzdt, (4.40)
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in the sequel, first let us present the next function that, we shall employ throughout the rest of this proof

Fm(s) =


1, if |s| ≤ m,
2m− s

n
, if m < s ≤ 2m,

2m+ s

m
, if − 2m < s ≤ −m,

0, if |s| ≥ 2m.

(4.41)

Step 4.1: Near and farm from E
Let E+ and E− be the sets, where respectively, λ+s and λ−s are concentrated and for each δ, ε > 0, let
ψ+
δ , ψ

+
ε , ψ

−
δ and ψ−

ε as in Lemma 4.1. Let’s set φδ,ε = ψ+
δ ψ

+
η + ψ−

δ ψ
−
ε we get∫

QT

Φ(z, t, wη,∇wη)∇(Tk(r
η)− Tk(r)r)Fm(rη)dzdt

=

∫
QT

Φ(z, t, wη,∇wη)∇(Tk(r
η)− Tk(r)r)Fm(rη)φδ,εdzdt

+

∫
QT

Φ(z, t, wη,∇wη)∇(Tk(r
η)− Tk(r)r)Fm(rη)(1− φδ,ε)dxdt. (4.42)

On the other side, if m > k, knowing that Φ(z, t, wη,∇wηχ{|rη|≤2m})∇Tk(r)r is weakly compact in
L1(QT ) when η tends to 0, Fm(rη) converges to Fm(r) in the weak∗ topology of L∞(QT ) and a. e. in
QT , by Lebesgue convergence theorem we get

lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇(Tk(r
η)− Tk(r)r)Fm(rη)φδ,εdzdt (4.43)

= lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇(Tk(r
η))φδ,εdzdt−

∫
QT

σ2n∇Tk(r)rFm(rη)φδ,εdzdt

= lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇(Tk(r
η))φδ,εdzdt−

∫
QT

σ2n∇Tk(r)φδ,εdzdt+ ℓ(η),

as δ go to zero, then φδ,η → 0 weakly∗ in L∞(QT ), we get∫
QT

σ2n∇Tk(r)φδ,εdzdt = ℓ(δ),

as a consequence, if we show that

lim
η→0

lim
δ→0

lim
ε→0

∫
QT

Φ(z, t, w,∇wη)∇Tk(rη)φδ,εdzdt ≤ 0, (4.44)

from (4.43) thus, we can conclude that

lim
η→0

lim
δ→0

lim
ε→0

∫
Q

Φ(z, t, w,∇wη)∇(Tk(r
η)− Tk(r)r)Fn(r

η)φδ,εdzdt ≤ 0. (4.45)

Step 4.2: Near to E. To prove (4.44), we must verify the following result. 2

Lemma 4.2 Let φε
+, φ

ε
− are two non-negative functions in C∞

c (QT ) and ε is a positive real number such
that  0 ≤ φε

+ ≤ 1, 0 ≤ φε
− ≤ 1,

0 ≤
∫
QT

φε
−dµ

+
s ≤ ε, 0 ≤

∫
QT

φη
+dµ

−
s ≤ ε.

(4.46)
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Let wη be a solution of
(
Pη

)
, we get

1

m

∫
{−2m<rη≤−m}

Φ(z, t, wη,∇wη)∇bη(z, wη)φε
+dzdt = ℓ(η,m, ε), (4.47)

1

m

∫
{m<rη≤2m}

Φ(z, t, wη,∇wη)∇bη(z, wη)φε
−dzdt = ℓ(η,m, ε). (4.48)

Proof: To establish the proof of (4.48), assume that βm(s) = βm(s+), we consider βm(rη)φε
− as test

function in
(
Pη

)
and by easily changing the order of all terms, we obtain

1

m

∫
{m<rη≤2m}

Φ(z, t, wη,∇wη)∇bη(z, wη)φε
−dzdt+

∫
QT

βm(rη)φε
−dλ

η
−

=
1

m

∫
{m<rη≤2m}

Φ(z, t, wη,∇wη)∇gηφε
−dzdt+

∫
QT

βm(rη)
dφη

−
dt

dzdt

−
∫
QT

Φ(z, t, wη,∇wη)∇φε
−βm(rη)dzdt+

∫
QT

βm(rη)φε
−dλ

η
+

+

∫
QT

fηβm(rη)φε
−dzdt−

∫ T

0

〈
div(F η), βm(rη)φε

−

〉
dt, (4.49)

with βm(s) =

∫ s

0

βm(r)dr. Since

∫
QT

βm(rε)φε
−dλ

η
− ≥ 0 and using (3.3), (3.4) and Young’s inequality

we have

1

m

∫
{m<rη≤2m}

Φ(z, t, wη,∇wη)∇bη(z, wη)φε
−dzdt ≤

C

m

∫
QT

(|∇gη|p(z) + |Bk|p(z) + |L|p
′(z))dzdt

+

∫
QT

βm(rη)
dφη

−
dt

dzdt−
∫
QT

Φ(z, t, wη,∇wη)∇φε
−βm(rη)dzdt+

∫
QT

βm(rη)φε
−dλ

η
+

+

∫
QT

fηβm(rη)φε
−dzdt−

∫ T

0

〈
div(Hη), βm(rη)φε

−

〉
dt. (4.50)

By means (4.12) and (4.14) and to the fact that φε
− ∈ C∞

c (QT ), βm(rη) converges to βm(r) a.e. in QT

and in L∞(QT ) weak
∗ as η tends to 0 and βm(r) converges to 0 a.e. in QT and in L∞(QT ) weak

∗ as m
tends to +∞ and thanks to Lebesgue convergence theorem, we get∫

QT

Φ(z, t, wη,∇wη)∇φε
−βm(rη)dzdt = ℓ(η,m) . (4.51)

As βm(rη) converges to βm(r) in L1(QT ) when η tends to 0 and βm(r) converges to 0 in L1(QT ) when
m tends to +∞, we have ∫

QT

βm(µη)
dφη

−
dt

dzdt = ℓ(η,m) .

Furthermore, thanks to Lebesgue’s convergence theorem and fηconverges to f weakly in L1(QT ), we
deduce that ∫

QT

fηβm(rη)φε
−dzdt = ℓ(η,m).
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By exploiting the fact that div(F η) converges to div(F ) strongly in L(p−)′(0, T ;W−1,p′(z)(Ω)) and βm(rη)

converges to βm(r) weakly in Lp−
(0, T ;W

1,p(z)
0 (Ω)) to zero strongly in Lp−

(0, T ;W
1,p(z)
0 (Ω)) (this fact is

an simple result of the estimate on the truncates of wη in (4.12) and (4.14)), we have∫ T

0

〈
div(F η), βm(rη)φε

−

〉
dt = ℓ(η,m).

At last, as βm(rη) is non-negative and bounded and according to (4.46) and φε
− is continuous, we obtain∫

QT

βm(rη)φη
−dλ

η
+ ≤

∫
QT

φε
−dµ

+
s + ℓ(η) = ℓ(η, ε).

From all the above, we obtain (4.48) and we can show (4.47) analogously by taking βm(s) = βm(s−) and
βm(rη)φε

+ as a function of the test in
(
Pη

)
. 2

Let us now verify (4.44): for k > 0 fixed, we consider (k − Tk(r
η))Hm(rη)ψ+

δ ψ
+
ε as the test function in(

Pη

)
, by defining Λm,k(s) =

∫ s

0

(k − Tk(r))Hm(r)dr and using integration by part, we get

−
∫
QT

Λm,k(r
η)
d

dt
(ψ+

δ ψ
+
ε )dzdt+

∫
QT

(k − Tk(r
η))Hm(rη)Φ(z, t, wη,∇wη)∇(ψ+

δ ψ
+
η )dzdt

+

∫
QT

Φ(z, t, wη,∇wη)∇Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dzdt−

∫
QT

Φ(z, t, wη,∇wη)∇Tk(r
η)Fm(rη)ψ+

δ ψ
+
ε dzdt

=

∫
QT

fηHm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dzdt−

∫ T

0

〈
div(F η), Hm(rη)(k − Tk(r

η))ψ+
δ ψ

+
ϵ

〉
dt (4.52)

+

∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
+ −

∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
−.

For m > k, we obtain

Hm(rη)Φ(z, t, wη,∇wη)χ{|rη|≤k} = Φ(z, t, wη,∇wη)χ{|rη|≤k} a.e. in QT , (4.53)

thus, we have∫
QT

Φ(z, t, wη,∇wη)∇Tk(rη)ψ+
δ ψ

+
ε dzdt+

∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
+

= −
∫
QT

Λm,k(r
η)
d

dt
(ψ+

δ ψ
+
η )dzdt+

2k

m

∫
{−2m<r≤−m}

Φ(z, t, wη,∇wη)∇rηψ+
δ ψ

+
ε dzdt

+

∫
QT

(k − Tk(r
η))Hm(rη)Φ(z, t, wη,∇wη)∇(ψ+

δ ψ
+
ε )dzdt−

∫
QT

fη(k − Tk(r
η))Hm(rη)ψ+

δ ψ
+
ε dzdt

−
∫ T

0

〈
div(F η), Hm(rη)(k − Tk(r

η))ψ+
δ ψ

+
ε

〉
dt+

∫
QT

(k − Tk(r
η))Hm(rη)ψ+

δ ψ
+
ε dλ

η
−. (4.54)

Let us examine term by term the right side of (4.54). First, according to (4.12), we get the weak

convergence in Lp−
(0, T ;W

1,p(z)
0 (Ω)) of Λm,k(r

η) to Λm,k(r) and since Λm,k(r
η) ∈ Lp−

(0, T ;W
1,p(z)
0 (Ω))∩

L∞(QT ), we deduce that

∫
QT

Λm,k(r
η)
d

dt
(ψ+

δ ψ
+
ε )dzdt =

∫
QT

Λm,k(r
η)
dψ+

δ

dt
ψ+
ε dzdt

+

∫
QT

Γm,k(r
η)
dψ+

ε

dt
ψ+
δ dzdt+ ℓ(η) = ℓ(ε, δ). (4.55)
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By combining (4.12), (4.14), Lebesgue convergence Theorem, Lemma 4.1 and using the weak convergence
in L∞(QT ) of (k − Tk(r

η))Hm(rη) to (k − Tk(r))Hm(r) and a.e. in QT , we conclude that∫
QT

(k − Tk(r
η))Hm(rη)Φ(z, t, wη,∇wη)∇(ψ+

δ ψ
+
ε )dzdt

=

∫
QT

(k − Tk(r))Hm(r)σ2m∇(ψ+
δ ψ

+
η )dzdt+ ℓ(η) = ℓ(η, δ). (4.56)

Furthermore, (k − Tk(r
η))Hm(rη)ψ+

δ ψ
+
ε converges weakly to (k − Tk(r))Hm(r)ψ+

δ ψ
+
ε in

Lp−
(0, T ;W

1,p(z)
0 (Ω)) and in L∞(QT ) weak

∗ topology, then thanks to Lemma 4.1, we have∫ T

0

〈
div(F η), Hm(rη)(k − Tk(r

η))ψ+
δ ψ

+
η

〉
dt = ℓ(η, δ) and

∫
QT

fη(k − Tk(r
η))Hm(rη)ψ+

δ ψ
+
ε dzdt = ℓ(ε, δ).

applying Young’s inequality, hypotheses (3.3)-(3.4) and since 0 ≤ ψ+
δ ≤ 1, we have∣∣∣ 1

m

∫
{−2m<rη≤−m}

Φ(z, t, wη,∇wη)∇rηψ+
δ ψ

+
ε dzv

∣∣∣
≤ 1

m

∫
{−2m<rη≤−m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wηψ+

ε dzdt+
C

m

∫
QT

(|∇gη|p(z) + |Bk|p(z) + |L|p
′(z))dzdt,

using Lemma 4.2 for φε
+ = ψ+

ε , we get

1

m

∫
{−2m<rη≤−m}

Φ(z, t, wη,∇wη)∇rηψ+
η dzdt = ℓ(η,m, ε).

Thanks to (4.37) in Lemma 4.1, we obtain∣∣∣ ∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
−

∣∣∣ ≤ 2k

∫
QT

ψ+
δ ψ

+
ε dλ

η
− = 2k

∫
QT

ψ+
δ ψ

+
ε dλ

−
s + ℓ(η) = ℓ(η, δ).

Putting all the previous results together, we obtain∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
+ +

∫
QT

Φ(z, t, wη,∇wη)∇Tk(rη)ψ+
δ ψ

+
ε dzdt = ℓ(η,m, δ, ε),

and according to
∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
+ ≥ 0, we obtain

∫
QT

Φ(z, t, wη,∇wη)∇Tk(r
η)ψ+

δ ψ
+
ε dzdt ≤

ℓ(η, δ, ε). For the same reason as before and taking (k + Tk(r
η))Hm(rη)ψ−

δ ψ
−
ε as a test function, we get∫

QT
Φ(z, t, wη,∇wη)∇Tk(rη)ψ−

δ ψ
−
ε dzdt ≤ ℓ(η, δ, ε). Then we have (4.44) which gives (4.45).

Remark 4.1 As shown above, we obtain∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
+ +

∫
QT

∂b(z, wη)

∂s
Φ(z, t, wη,∇wη)χ{|rη|≤k}∇wηψ+

δ ψ
+
η dzdt

+

∫
QT

Φ(z, t, wη,∇wη)χ{|rη|≤k}∇zbη(z, w
η)ψ+

δ ψ
+
ε dzdt−

∫
QT

Φ(z, t, wη,∇wη)χ{|rη|≤k}∇gηψ+
δ ψ

+
ε dzdt

= ℓ(η,m, δ, ε).

From (3.3), (4.12), (4.14) and by means Lemma 4.1, we have∫
QT

Hm(rη)(k − Tk(r
η))ψ+

δ ψ
+
ε dλ

η
+ = ℓ(η,m, δ, ε).

In a similarly, we obtain∫
QT

Hm(rη)(k + Tk(r
η))ψ−

δ ψ
−
ε dλ

η
− = ℓ(η,m, δ, ε) .

Step 4.3: Far-from E First, let us show a result that will be fundamental for dealing with the
second term of the right-hand side of (4.42).
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Lemma 4.3 Let m ≥ 1 be fixed. Let choose rη = bη(z, w
η)− gη, we get

lim
r→+∞

lim
η→0

∫ T

0

〈∂rη
∂t

;Hm(rη)(Tk(r
η)− Tk(r)r)(1− ϕδ,ε)

〉
dsdt ≥ 0, (4.57)

where is the duality pairing between L1(Ω)+W−1,p′(z)(Ω) and L∞(Ω)∩W 1,p(z)
0 (Ω) and the function Hm

is obtained by (4.41).

Proof: Assume that m ≥ 1 be fixed, let Hm(u) =

∫ u

0

Hm(s)ds ∈ C1(R), H ′
m = Hm and supp(Hm) ⊂

[−2m, 2m] thanks to (4.15) and (4.16), the function Hm(rη) ∈ Lp−
(0, T,W

1,p(z)
0 (Ω)) and

∂Hm(rη)

∂t
∈

L1(QT ) + L(p′)−(0, T,W−1,p′(z)(Ω)).
Furthermore, for each k ≤ m, we obtain Tk(Hm(rη)) = Tk(r

η) a.e. in QT and Tk(Hm(r))r = (Tk(r))r
a.e. in QT , for all r > 0, moreover∫ T

0

∫ t

0

⟨∂r
η

∂t
;Hm(rη)(Tk(r

η)− Tk(r)r)(1− ϕδ,ε)⟩dsdt (4.58)

=

∫ T

0

∫ t

0

⟨∂Hm(rη)

∂t
; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)⟩dsdt

=

∫ T

0

∫ t

0

〈∂(Tk(Hm(rη))− Tk(Hm(r))r)

∂t
; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)

〉
dsdt

+

∫ T

0

∫ t

0

〈∂Tk(Hm(r))r
∂t

; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,η)
〉
dsdt

+

∫ T

0

∫ t

0

〈∂(Hm(rη)− Tk(Hm(rη)))

∂t
; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)

〉
dsdt

= I1 + I2 + I3.

Integrating by parts, we get

I1 =

∫ T

0

∫ t

0

〈∂(Tk(Hm(rη))− Tk(Hm(r))r)

∂t
; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)

〉
dsdt (4.59)

=
1

2

∫
QT

∣∣∣Tk(Hm(rη))− Tk(Hm(r))r

∣∣∣2(1− ϕδ,ε)dtdz −
T

2

∫
Ω

∣∣∣Tk(Hm(rη0))− Tk(Hm(r))r(0)
∣∣∣2dz

+
1

2

∫
QT

∣∣∣Tk(Hm(rη))− Tk(Hm(r))r

∣∣∣2 ∂ϕδ,ε
∂t

dtdz.

In view of (4.8), (4.19), (4.24) and (4.28), we have that

I1 = ℓ(η, r). (4.60)

Applying (4.26) with Tk(Hm(r))r, we obtain

I2 =

∫ T

0

∫ t

0

〈∂Tk(Hm(r))r
∂r

; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)
〉
dsdt (4.61)

= r

∫ T

0

∫ t

0

(Tk(Hm(r))−Tk(Hm(r))r)(Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)dsdtdz.

Let δ, ε and m fixed, and as Tk(Hm(rη))(1−ϕδ,ε) converges weakly∗ to Tk(Hm(r))(1−ϕδ,ε) in L∞(QT )
and a.e. in QT , we get

I2 = r

∫ T

0

∫ t

0

(Tk(Hm(r))−Tk(Hm(r))r)(Tk(Hm(rη)) − Tk(Hm(r))r)(1 − ϕδ,ε)dsdtdz ≥ w(η). (4.62)
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Let us know that, for k fixed, we have Gk(s) = s− Tk(s), then

I3 =

∫ T

0

∫ t

0

⟨∂(Hm(rη)− Tk(Hm(rη)))

∂t
; (Tk(Hm(rη))− Tk(Hm(r))r)(1− ϕδ,ε)⟩dsdt (4.63)

=

∫ T

0

∫ t

0

⟨∂Gk(Hm(rη))

∂t
;Tk(Hm(rη))(1− ϕδ,ε)⟩dsdt−

∫ T

0

∫ t

0

⟨∂Gk(Hm(rη))

∂t
;Tk(Hm(r))r(1− ϕδ,ε)⟩dsdt

= I3.1 + I3.2.

According to (4.8),(4.19) and applying the integration by parts formula, we deduced that

I3.1 =

∫ T

0

∫ t

0

〈∂Gk(Hm(rη))

∂t
;Tk(Hm(rη))(1− ϕδ,ε)

〉
dsdt = k

∫ T

0

∫ t

0

〈∂|Gk(Hm(rη))|
∂t

; (1− ϕδ,ε)
〉
dsdt

= k

∫
QT

|Gk(Hm(rη))|dzdt− Tk

∫
Ω

|Gk(Hm(rη))(0)|dz + k

∫
QT

|Gk(Hm(rη))|∂ϕδ,ε
∂t

dzdt (4.64)

= k

∫
QT

|Gk(Hm(r))|(1− ϕδ,ε)dzdt− Tk

∫
Ω

|Gk(Hm(r))(0)|dz + k

∫
QT

|Gk(Hm(r))|∂ϕδ,ε
∂t

dzdt+ ℓ(η).

Similarly, by applying integration by parts and by the definition of Tk(Hm(r))r, we have

I3.2 = −
∫ T

0

∫ t

0

〈∂Gk(Hm(rη))

∂t
;Tk(Hm(r))r(1− ϕδ,ε)

〉
dsdt (4.65)

= −
∫
QT

Gk(Hm(rη))Tk(Hm(r))r(1− ϕδ,ε)dzdt+ T

∫
Ω

Gk(Hm(rη(0)))Tk(Hm(r))r(0)dz

+ r

∫
QT

∫ t

0

(Tk(Hm(r))− Tk(Hm(r))r)Gk(Hm(rη))(1− ϕδ,ε)dsdtdz

−
∫
QT

∫ t

0

Gk(Hm(r))Tk(Hm(r))r
∂ϕδ,ε
∂t

dsdzdt.

From (4.8), (4.19), (4.24), (4.28) and the fact that (Tk(Hm(r)) − Tk(Hm(r))r)Gk(Hm(r)) ≥ 0 a.e. in
QT , it is straightforward to verify that

I3.2 = −
∫
QT

Gk(Hm(r))Tk(Hm(r))r(1− ϕδ,ε)dzdt+ T

∫
Ω

Gk(Hm(r(0)))Tk(Hm(r))r(0)dz (4.66)

+ r

∫
QT

∫ t

0

(Tk(Hm(r))− Tk(Hm(r))r)Gk(Hm(r))(1− ϕδ,ε)dsdtdz

−
∫
QT

∫ t

0

Gk(Hm(r))Tk(Hm(r))r
∂ϕδ,ε
∂t

dsdzdt+ ℓ(η)

≥ −
∫
QT

Gk(Hm(r))Tk(Hm(r))(1− ϕδ,ε)dzdt+ T

∫
Ω

Gk(Hm(r(0)))Tk(Hm(r))(0)dz

−
∫
QT

∫ t

0

Gk(Hm(r))Tk(Hm(r))
∂ϕδ,ε
∂t

dsdzdt+ ℓ(η, r).

Due to Gk(s)Tk(s) = k|Gk(s)| for each s ∈ R, it is possible to conclude from (4.66) that

I3.2 ≥ −k
∫
QT

|Gk(Hm(r))|2(1− ϕδ,ε)dzdt+ Tk

∫
Ω

|Gk(Hm(r(0)))|2dz (4.67)

− k

∫
QT

∫ t

0

|Gk(Hm(r))|2 ∂ϕδ,ε
∂t

dsdzdt+ ℓ(η, r).

Note that

I3.1 + I3.2 ≥ ℓ(η, r). (4.68)
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As a result of the previous convergence results, we can deduce from (4.58), (4.60), (4.62), (4.63) and
(4.68) that (4.57) is valid and that the proof of Lemma 4.3 is finished. 2

Step 5: Here, we will verify that the limit σk = Φ(z, t, w,∇w)χ{|r|≤k} and we’ll demonstrate the weak
convergence in L1(QT ) of Φ(z, t, w

η,∇wη)∇Tk(rη) as η tends to zero.

Lemma 4.4 The subsequence of wη given in Step 3 verifies for every k ≥ 0,

lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇Tk(rη)dzdt ≤
∫
QT

σk∇Tk(r)dzdt. (4.69)

Proof: For any k ≥ 0, let W η
r := (Tk(r

η) − Tk(r)r) and using Hm(rη)W η
r (1 − ϕδ,ε) as test function in(

Pη

)
, we obtain∫ T

0

〈∂rη
∂t

;Hm(rη)W η
r (1− ϕδ,ε)

〉
dt+

∫
QT

Φ(z, t, wη,∇wη)∇W η
r Hm(rη)(1− ϕδ,ε)dxdt (4.70)

+

∫
QT

Φ(z, t, wη,∇wη)∇Hm(rη)W η
r (1− ϕδ,ε)dzdt−

∫
QT

Φ(z, t, wη,∇wη)∇ϕδ,εHm(rη)W η
r dzdt

=

∫
QT

fηFm(rη)W η
r (1− ϕδ,ε)dzdt−

∫ T

0

〈
div(F η);Hm(rη)W η

r (1− ϕδ,ε)
〉
dt

+

∫
QT

Hm(rη)W η
r (1− ϕδ,ε)dλ

η
+ −

∫
QT

Hm(rη)W η
r (1− ϕδ,ε)dλ

η
−,

thus passing to the limit in (4.70) as η tends to 0, r tends to +∞ and m tends to +∞, the real number
k ≥ 0 is fixed and according to Lemma 4.3, we find

lim
r→+∞

lim
η→0

∫ T

0

〈∂rη
∂t

, Hm(rη)W η
r (1− ϕδ,ε)

〉
dt ≥ 0.

As W η
r converges to (Tk(r) − Tk(r)r) weakly in Lp−

(0, T ;W
1,p(z)
0 (Ω)) which compactly embedded into

L1(QT ), then W
η
r converges to (Tk(r)−Tk(r)r) a.e in QT and weakly∗ in L∞(QT ) as η → 0 and for each

r > 0.
Using Lebesgue convergence Theorem, for all r > 0, for every m ≥ 1 and the properties of Tk(r)r, we
obtain

lim
r→+∞

lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇ϕδ,εHm(rη)W η
r dzdt = 0.

Due to the convergence of div(F η) to div(F ) strongly in L(p′)−(0, T ;W−1,p′(z)(Ω)) and using (4.12),
(4.14), and the characteristics of Tk(r)r, we obtain

lim
r→+∞

lim
η→0

∫ T

0

〈
div(F η), Hm(rη)W η

r (1− ϕδ,ε)
〉
dt = 0.

The weak convergence of fη to f in L1(QT ), the almost everywhere convergence of Hm(rη)W η
r to

Hm(r)(Tk(r) − Tk(r)r) in QT and weakly∗ in L∞(QT ), as η → 0 and for every r > 0, and accord-
ing to Lebesgue’s dominated convergence Theorem and properties of Tk(r)r, this leads to fη converges
to f weakly in L1(QT ), and Hm(rη)W η

r conveys to Hm(r)(Tk(r)− Tk(r)r) almost everywhere in QT and
weakly∗ in L∞(QT ), when η → 0, we conclude that

lim
r→+∞

lim
η→0

∫
QT

fηHm(rη)W η
r (1− ϕδ,ε)dzdt = 0.
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Since ∥Hm(rη)W η
r ∥L∞(QT ) ≤ 2k and by means Lemma 4.1, we get

|
∫
QT

Hm(rη)W η
r (1 − ϕδ,ε)dλ

η
+| ≤ 2k

∫
QT

(1 − ψ+
δ ψ

+
η )dλ

η
+ + 2k

∫
QT

(1 − ψ−
δ ψ

−
ε )dλ

η
+,

and ∫
QT

Hm(rη)W η
r (1− ϕδ,ε)dλ

η
+ = ℓ(η, δ, ε).

Similarly, ∫
QT

Hm(rη)W η
r (1− ϕδ,ε)dλ

η
− = ℓ(η, δ, ε).

Next, we prove that
∫
QT

Φ(z, t, wη,∇wη)∇Hm(rη)W η
r (1− ϕδ,ε)dzdt = ℓ(η,m, δ, ε). For this purpose, we

have ∣∣∣ 1
m

∫
{m≤|rη|<2m}

Φ(z, t, wη,∇wη)∇rηW η
r (1− ϕδ,ε)dzdt

∣∣∣
≤ 2k

m

∫
{m≤|rη|<2m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wη(1− ϕδ,ε)dzdt

+
C

m

∫
QT

(|L|p
′(z) + |Bk|p

′(z) + |∇gη|p(z))dzdt

≤ 2k

m

∫
{m≤|rη|<2m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wη(1− ϕδ,ε)dzdt

+
C

m
(ρ(L) + ρ(Bk) + ρ(∇gη)) = I1 + I2,

where C is a constant independent of m and
ρ(L) ≤ max

{
∥L∥(p

′)−

Lp′(z)(QT )
, ∥L∥(p

′)+

Lp′(z)(QT )

}
,

ρ(Bk) ≤ max
{
∥Bk∥(p

′)−

Lp′(z)(QT )
, ∥Bk∥(p

′)+

Lp′(z)(QT )

}
,

ρ(∇gη) ≤ max
{
∥∇gη∥p

−

Lp(z)(QT )
, ∥∇gη∥p

+

Lp(z)(QT )

}
.

As I2 = ℓ(m), we obtain

I1 =
2k

m

∫
{m≤|rη|<2m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wη(1− ψ+

δ ψ
+
ε )dzdt

− 2k

m

∫
{m≤|rη|<2m}

∂bη(z,<
η)

∂s
Φ(z, t, wη,∇wη)∇wηψ−

δ ψ
−
ε dzdt

+
2k

m

∫
{m≤|rη|<2m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wη(1− ψ−

δ ψ
−
ε )dzdt

− 2k

m

∫
{m≤|rη|<2m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wηψ+

δ ψ
+
ε dxdt.

Taking φδ,ε
− = 1 − ψ+

δ ψ
+
ε , and from Lemmas 4.2, 4.1 we infer

∫
QT

φδ,ε
− dµ+

s ≤ δ + ε, thus, as φδ,ε verifies

(4.44), and by means Lemma 4.2, we find

2k

m

∫
{m≤|rη|<2m}

∂bη(z, w
η)

∂s
Φ(z, t, wη,∇wη)∇wη(1 − ψ+

δ ψ
+
ε )dzdt ≤ ℓ(η,m) + δ + ε = ℓ(η, , δ, ε).
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Similarly, we arrive at the same result for the other terms. Therefore, we make our estimate far-from E :∫
QT

Φ(z, t, wη,∇wη)∇W η
r Hm(rη)(1− ϕδ,ε)dxdt ≤ ℓ(η, r,m, δ, ε). (4.71)

Putting together (4.42), (4.45) and (4.71), and again choosing m > k, we get

lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇Tk(rη)dzdt ≤
∫
QT

σk∇Tk(r)dzdt.

2

Lemma 4.5 Let k ≥ 0, the subsequence of wη established in step 3 verifies the following conditions

lim
η→0

∫
QT

∂bη(z, w
η)

∂s

[
Φ(z, t, wη,∇wηχ{|rη|≤k})− Φ(z, t, w,∇wχ{|r|≤k})

]
(4.72)

×
[
∇wηχ{|rη|≤k} −∇wχ{|r|≤k}

]
dzdt = 0.

Proof: For fixed k > 0, due to (3.2) and (3.5), we obtain

J η =

∫
QT

∂bη(z, w
η)

∂s

(
Φ(z, t, wη,∇wηχ{|rη|≤k} − Φ(z, t, w,∇wχ{|r|≤k}

)
(4.73)

×
(
∇wηχ{|rη|≤k} −∇wχ{|r|≤k}

)
dzdt ≥ 0.

We write J η = J η
1 + J η

2 + J η
3 with

J η
1 = −

∫
QT

∂bη(z,w
η)

∂s Φ(z, t, wη,∇wη)∇wχ{|rη|≤k}dzdt,

J η
2 = −

∫
QT

∂bη(z,w
η)

∂s Φ(z, t, wη,∇wη)∇wχ{|rη|≤k}dzdt,

J η
3 = −

∫
QT

∂bη(z,w
η)

∂s Φ(z, t, w,∇w)χ{|r|≤k}(∇wηχ{|rη|≤k} −∇wχ{|r|≤k})dzdt.

Observe that rη = bη(z, w
η) − gη and

∂bη(z,w
η)

∂s ∇wηχ{|rη|≤k} =
(
∇Tk(rη) + (gη −∇zb(z, w

η))χ{|rη|≤k}
)

almost everywhere in QT . We can consider that k where χ{|rη|<k} converges to χ{|r|≤k} almost everywhere
(see [14, Lemma 3.2]). We can achieve the following equation by passing to the limit in J η

1 ,J
η
2 and J η

3

as η tends to zero

lim
η→0

J η
1 = lim

η→0

(∫
QT

Φ(z, t, wη,∇wη)∇Tk(rη)dzdt+
∫
QT

Φ(z, t, wη,∇wη)χ{|rη|≤k}∇gηdzdt
)

− lim
η→0

∫
QT

Φ(z, t, wη,∇wη)∇zbη(z, w
η)dzdt.

Thanks to (4.69), we get

lim
η→0

J η
1 ≤

∫
QT

σk∇Tk(r)dzdt−
∫
QT

σk∇zb(z, w)dzdt+

∫
QT

σk∇gdzdt

From (4.21)-(4.22), we obtain

lim
η→0

J η
2 = − lim

η→0

∫
QT

Φ(z, t, wη,∇wη)χ{|rη|≤k}
∂bη(z, w

η)

∂s(∂b(z, w)
∂s

)−1(
∇Tk(r) + (∇g −∇zb(z, w

η))χ{|rη|≤k}

)
dzdt = −

∫
QT

σk(∇Tk(r)−∇zb(z, w) +∇g)dzdt.
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As a result of (4.4) and (4.21), we get for all k ≥ 0

lim
η→0

J η
3 = − lim

η→0

∫
QT

(
Φ(z, t, w,∇w)χ{|r|≤k}

(
∇Tk(r)− (∇g −∇zb(z, w

η))χ{|rη|≤k}

− ∂b(z, wη)

∂s

(∂b(z, w)
∂s

)−1
(
∇Tk(r) + (∇g −∇zb(z, w

η)
)
χ{|rη|≤k}

)
dzdt = 0,

then, by passing to the limit in (4.73) as η tends to 0, we obtain (4.72). 2

Corollary 4.1 For fixed k ≥ 0, the subsequence wη setting in Step 3 satisfies

Φ(z, t, wη,∇wη)∇Tk(rη)⇀ σk∇Tk(r) weakly in L1(QT ), as η → 0, (4.74)

with

σk = Φ(z, t, w,∇w)χ{|r|≤k} almost everywhere in QT . (4.75)

Proof: Observe that

rη = bη(z, w
η) − gη and

∂bη(z,w
η)

∂s ∇wηχ{|rη|≤k} =
(
∇Tk(rη) +

(
gη − ∇zb(z, w

η)
)
χ{|rη|≤k}

)
a.e. in QT

and consider k where χ{|rη|<k} converges a.e. to χ{|r|≤k} (see [14, Lemma 3.2]).
We note that wη converges to w almost everywhere in QT , and Tk(r

η) converges weakly to Tk(r) in

Lp−
(0, T ;W

1,p(z)
0 (Ω)),Φ(z, t, wη,∇wη)χ{|rη|≤k} converges weakly to σk in (Lp′(z)(QT ))

N . According to
(4.69), (4.72) and due to

∂bη(z, w
η)

∂s

[
Φ(z, t, wη,∇wηχ{|rη|≤k}) − Φ(z, t, w,∇wχ{|r|≤k}

][
∇wηχ{|rη|≤k} − ∇wχ{|r|≤k}

]
converges to 0,

strongly in L1(QT ) as η tends to 0.
Combining the results of the convergence results given previously and the application of the usual Minty
argument, we can affirm that (4.74) and (4.75) are true.

Observe that ∇wη =
(∂bη(z, wη)

∂s

)−1

(∇Tk(rη)−∇zbη(z, w
η) + gη) a.e. in Qt, g

η converges strongly to

g in Lp−
(0, T ;W

1,p(z)
0 (Ω)), and according to (4.74)-(4.75), we get∫

QT

Φ
(
z, t, wη,

(∂bη(z, wη)

∂s

)−1

(∇Tk(rη)−∇zbη(z, w
η) + gη)

)
(∇Tk(rη)−∇zbη(z, w

η) + gη)dzdt

=

∫
QT

Φ
(
z, t, w,

(∂b(z, w)
∂s

)−1

(∇Tk(r)−∇zb(z, w) + g)
)
(∇Tk(r)−∇zb(z, w) + g)dzdt+ ℓ(η).

(4.76)

Hence, Φ
(
z, t, wη,

(
∂bη(z,w

η)
∂s

)−1

(∇Tk(rη) − ∇zbη(z, w
η) + gη)

)
(∇Tk(rη) − ∇zbη(z, w

η) + gη) converges

strongly to Φ
(
z, t, w,

(
∂b(z,w)

∂s

)−1

(∇Tk(r)−∇zb(z, w)+ g)
)
(∇Tk(r)−∇zb(z, w)+ g) in L1(QT ), then by

coercivity argument

min
{
(
α

γ
)p

−−1; (
α

γ
)p

+−1
}∣∣∣∇Tk(rη) + (gη −∇zbη(z, w

η))
∣∣∣p(z)

≤ Φ
(
z, t, wη,

(∂bη(z, wη)

∂s

)−1

(∇Tk(rη)−∇zbη(z, w
η) + gη)

)
almost everywhere in QT , since g

η converges strongly to g in Lp−
(0, T ;W

1,p(z)
0 (Ω)) and using Vitali’s

theorem, we conclude that

Tk(r
η) → Tk(r) strongly in Lp−

(0, T ;W
1,p(z)
0 (Ω)).
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This implies the proof of Theorem 4.2. 2

Step 6: Assume that k be a positive real number and let S be a function in W 2,∞(R) where S′ has
compact support such that supp(S′) ⊂ [−k, k] and φ ∈ C∞

c (QT ).
Let w satisfies (3.10), (3.13), (3.11) and (3.12), if we take S′(rη)φ as test function in

(
Pη

)
, we get∫ T

0

〈
φt, S(r

η)
〉
dt+

∫
QT

S′(rη)Φ(z, t, wη,∇wη)∇φdzdt+
∫
QT

S′′(rη)Φ(z, t, wη,∇wη)∇rηφdzdt (4.77)

=

∫
QT

fηS′(rη)φdzdt+

∫
QT

F ηS′(rη)∇φdzdt+
∫
QT

S′′(rη)F η∇rηφdzdt+
∫
QT

S′(rη)φdλη+

−
∫
QT

S′(rη)φdλη−,

with rη = b(z, wη)− gη. Due to Theorem 4.2, we can pass to the limit in all terms of (4.77), when η → 0
except the last two terms which pose some complications, we can write according to the arguments of
[39] that ∫

QT

S′(rη)φdλη+ =

∫
QT

S′(rη)φψ+
δ dλ

η
+ +

∫
QT

S′(rη)φ(1− ψ+
δ )dλ

η
+. (4.78)

Note that ψ+
δ is defined the same way as in Lemma 4.1, then we get∣∣∣ ∫

QT

S′(rη)φ(1− ψ+
δ )dλ

η
+

∣∣∣ ≤ C

∫
QT

(1− ψ+
δ )dλ

η
+ = ℓ(η, δ),

by taking S′(rη)φψ+
δ in

(
Pη

)
, we obtain∫

QT

S′(rη)φψ+
δ dλ

η
+ = −

∫
QT

fηS′(rη)φψ+
δ dzdt−

∫
QT

F ηS′(rη)∇(φψ+
δ )dzdt

−
∫
QT

F ηS′′(rη)∇rηφψ+
δ dzdt+

∫
QT

S′(rη)φψ+
δ dλ

η
− −

∫
QT

S(rη)(φψ+
δ )ηdzdt

+

∫
QT

S′(rη)Φ(z, t, wη,∇wη)∇(φψ+
δ )dzdt+

∫
QT

S′′(rη)Φ(z, t, wη,∇wη)∇rηψ+
δ φdzdt.

Thanks to (4.2)-(4.3) and properties of ψ+
δ , we get∫

QT

fηS′(rη)φψ+
δ dzdt = ℓ(η, δ),

∫
QT

F ηS′(rη)∇(φψ+
δ )dzdt = ℓ(η, δ).

By Lemma 4.1, we have ∣∣∣ ∫
QT

S′(rη)φψ+
δ dλ

η
−

∣∣∣ ≤ C

∫
QT

ψ+
δ dλ

η
− = ℓ(η, δ),

as S(r) ∈ Lp−
(0, T ;W

1,p(z)
0 (Ω)) ∩ L∞(QT ), we obtain

∫
QT

S(rη)(φ)ψ+
δ )tdzdt = ℓ(η, δ).

According to Theorem 4.2 and Lemma 4.1, we infer

∫
QT

S′(rη)Φ(z, t, wη,∇wη)∇(ψ+
δ φ) dzdt = ℓ(η, δ),

and
∫
QT

S′′(rη)Φ(z, t, wη,∇wη)∇rηψ+
δ φ dzdt = ℓ(η, δ).

Next, using (4) we conclude ∫
QT

S′(rη)φ dλη+ = ℓ(η). (4.79)
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In the same way, we can also show that∫
QT

S′(rη)φ dλη− = ℓ(η). (4.80)

Due to the convergence findings given previously, one can pass to the limit as η tends to zero in (4.77)
and to deduced that w satisfies (3.10). It is now necessary to show that S(r) satisfies (3.13). In the
beginning, it is crucial to remember that because we have S(bη(z, w

η)− gη) → S(b(z, w)− g) a.e. in QT ,
and

S(bη(z, w
η)− gη) is bounded in Lp−

(0, T,W
1,p(z)
0 (Ω)) ∩ L∞(QT ), (4.81)

secondly, we consider the convergence of the terms of (4.77), we deduce that

∂S(bη(z, w
η)− gη)

∂t
is bounded in L1(QT ) + L(p′)−(0, T,W−1,p′(z)(Ω)). (4.82)

Thanks to (4.81)-(4.82), and by Aubin’s type lemma we conclude (see e.g., [41,44], the proof of this
Corollary is identical to the corresponding result in the case of a constant exponent p) that S(bη(z, w

η)−
gη) is in a compact set of C([0, T ];L1(Ω)). On the one hand, we have S(bη(z, w

η)− gη)(t = 0) converges
to S(b(z, w)− g)(t = 0) in L1(Ω). On the other side, the smoothness of S give that S(bη(z, w

η)− gη)(t =
0) = S((bη(z, w

η
0)) converges strongly to S(b(z, w0)) in Lq(QT ) for all q < +∞, according to (4.8), we

deduced that (3.13) is true.
Now, we consider βm(rη) as test function in

(
Pη

)
where φ ∈ C∞

c (QT ), we obtain

−
∫ T

0

〈
φt ; βm(rη)

〉
dt+

∫
QT

βm(rη)Φ(z, t, wη,∇wη)∇φdzdt+ 1

m

∫
{m≤rη<2m}

Φ(z, t, wη,∇wη)∇rηφdzdt

=

∫
QT

fηβm(rη)φdzdt−
∫ T

0

〈
div(F η) ; βm(rη)φ

〉
dzdt

+

∫
QT

βm(rη)φ dλη+ −
∫
QT

βm(rη)φdλη−. (4.83)

We reason as before, in particular as in the proof of Lemma 4.2 to obtain∫ T

0

〈
φt ; βm(rη)

〉
dt = ℓ(η,m),

∫
QT

βm(rη)Φ(z, t, wη,∇wη)∇φdzdt = ℓ(η,m),

and ∫
QT

fηβm(rη)φdzdt = ℓ(η,m),

∫ T

0

〈
div(F η);βm(rη)φ

〉
dzdt = ℓ(η,m).

In light of the Theorem 4.2 we get

1

m

∫
{m≤rη<2m}

Φ(z, t, wη,∇wη)∇rηφdzdt =
1

m

∫
{m≤r<2m}

Φ(z, t, w,∇w)∇rφdzr + ℓ(η).

We now examine the last two terms on the right side of (4.83), for this we have∫
QT

βm(rη)φdλη+ =

∫
QT

ϕm(rη)dλη+ +

∫
QT

φdλη+,

where ϕm(s) = Hm(s+). By construction of λη+, we have∫
QT

φdλη+ =

∫
QT

φdλ+s + ℓ(η).
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Adopting the same reasoning as in (4.77) -(4.78) by considering ϕm(rη) = S′(rη) we get∫
QT

ϕm(rη)φdλη+ = ℓ(η).

If we can show that ∫
QT

βm(rη)φ dλη− = ℓ(η), (4.84)

thus, we get for each φ ∈ C∞
c (QT )

lim
m→∞

1

m

∫
{m≤r<2m}

Φ(z, t, wη,∇wη)∇rφdzdt =
∫
QT

φdλ+s . (4.85)

Therefore, we have∫
QT

βm(rη)φdλη− =

∫
QT

βm(rη)φψ−
δ dλ

η
− +

∫
QT

βm(rη)φ(1− ψ−
δ )dλ

η
−,

thanks to Lemma 4.1, we get ∫
QT

βm(rη)φ(1− ψ−
δ ) dλ

η
− = ℓ(η, δ).

Using βm(rη)φψ−
δ as test function in the formulation of wη, we obtain∫

QT

βm(rη)φψ−
δ dλ

η
− =

∫ T

0

〈
(φψ−

δ )t;βm(rη)
〉
dt−

∫
QT

βm(rη)Φ(z, t, wη,∇wη)∇(φψ−
δ )t)dzdt

− 1

m

∫
{m≤rη<2m}

Φ(z, t, wη,∇wη)∇rηφψ−
δ dzdt+

∫
QT

fηβm(rη)φψ−
δ dzdt

+

∫
QT

F ηβm(rη)∇(φψ−
δ )t)dzdt+

1

m

∫
{m≤rη<2m}

F η∇rηφψ−
δ dzdt+

∫
QT

βm(rη)φψ−
δ dλ

η
+.

By (4.20)-(4.21), Lemmas 4.1, 4.2 and the famous Lebesgue’s convergence Theorem lead to (4.84). Hence,
we have (4.85) for each φ ∈ C∞

c (QT ).
If φ ∈ C∞(QT ), we can separate

1

m

∫
{m≤r<2m}

Φ(z, t, wη,∇wη)∇rφdzdt = 1

m

∫
{m≤r<2m}

Φ(z, t, wη,∇wη)∇rφψ+
δ dxdt (4.86)

+
1

m

∫
{m≤r<2m}

Φ(z, t, wη,∇wη)∇rφ(1− ψ+
δ )dzdt,

from (4.85), we obtain

lim
m→∞

1

m

∫
{m≤r<2m}

Φ(z, t, wη,∇wη)∇rφψ+
δ dzdt =

∫
QT

φdµ+
s + ℓ(δ),

using Lemma 4.2, we obtain

1

m

∫
{m≤rη<2m}

Φ(z, t, wη,∇wη)∇rηφ(1− ψ+
δ )dzdt = ℓ(η,m, δ).

Due to Theorem 4.2, we conclude that

1

m

∫
{m≤r<2m}

Φ(z, t, wη,∇wη)∇rφ(1− ψ+
δ )dzdt = ℓ(m, δ).

By taking all of the previous factors into account, we have (3.11) for all
φ ∈ C∞(QT ) and using a density argument (3.11) holds for all φ ∈ C(QT ). To obtain (3.12) we can
proceed as before using ψ+

δ instead of ψ−
δ and the other way around, which completes the proof of

Theorem 4.1.
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6. Bidaut-Véron M F, Nguyen Q H. Stability properties for quasilinear parabolic equations with measure data. J. Eur.
Math. Soc. (JEMS). 2015;17(9):2103-2135.

7. Blanchard D. Truncations and monotonicity methods for parabolic equations. Nonlinear Anal. T.M.A.1993;21:725-743.

8. Blanchard D., Francfort G. A few results on a class of degenerate parabolic equations. Ann. SCM. Norm. Sup. Piss.
1991;8(2):213-249.

9. Blanchard, D., Murat, F.: Renormalized solutions of nonlinear parabolic problems with L1 data, exis- tence and
uniqueness. Proc. R. Soc. Edinb. Sect. 1997;A 127:1137-1152.

10. Blanchard D., Porretta A. Stefan problems with nonlinear diffusion and convection. J. Dier. Equ. 2005;210(2):383-428.

11. Blanchard D., Redwane H. Renormalized solutions for a class of nonlinear evolution problems. J. Math. Pures Appl.
1998;77(2):117-151.

12. Blanchard D., Petitta F., Redwane H. Renormalized solutions of nonlinear parabolic equations with diffuse measure
data. Manuscr. Math. 2013;141(34):601-635.
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