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Existence of Renormalized Solutions to Non-Linear p(-)-Parabolic Problems of Generalized
Porous Medium with General Measure Data
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ABSTRACT: In this work, we investigate the existence of renormalized solutions for a nonlinear parabolic
problem with variable exponents and general measure data. The solutions are achieved by combining monotone
operator theory, Marcinkiewicz estimation, and the truncation method.
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1. Introduction

The objective of this paper is to determine some results of the existence for renormalized solution to
a nonlinear parabolic equation modeled as follows:

% - div(@(t,z,w,Vw)) =p inQr:=02x(0,T),
(P) bz, w)(t = 0) = b(z, wp) in Q,
w=0 on (0,T) x 09,

where Q C RV (N > 2) is a bounded open subset with smooth boundary 92, —div(®(t, 2z, w, Vw)) is a
Leray Lions operator which verifies the polynomial p(z)—growth condition with respect to w and Vw and
b(z,w) is an unbounded function of w. Furthermore, we suppose that b(z,wo) € L*(Q2) and u € My (Q7).

The utilization of partial differential equations with variable exponents has found application in various
models of fluid dynamics, particularly in the context of electro-rheological and thermo-rheological fluids
[3]. Additionally, these equations have been employed in fields such as robotics, fluid dynamics, and image
processing (see [16]). Conversely, our interest in investigating problem (P) arises from its relevance in
modelling diverse physical phenomena linked to electro-rheological fluids, as noted in Rajagopal’s work(see
[46]). These fluids possess the unique ability to alter their mechanical properties in response to external
electro-magnetic fields. Key domains benefiting from this research encompass continuum mechanics,
population dynamics, and image processing (see [53,20]). Notably, the central rationale for introducing
the concept of capacity lies in its capacity to yield optimally regular boundary results. Hence, an extended
adaptation of this concept is deemed appropriate when addressing generalized Lebesgue-Sobolev spaces.
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From a theoretical approach, the study of nonlinear boundary problems with variable growth con-
ditions allows the development of a new class of functional frameworks. They are called Lebesgue and
Sobolev spaces with variable exponent which are denoted LP(*)(Q2) and WP(*)(Q), respectively. In this
direction, Sharapudinov et. al. in [52] represents an important step as it introduces a focused study
of the topology of spaces LP(*)(E), which encompass measurable functions on a set E with p(z) > 1.
For a more complete overview, readers are invited to consult the article by Samko et. al. in [51]. In
[20], authors present an overview of various unsolved questions concerning variable exponent spaces. in
addition, we recommend the article [28] to gain a basic understanding of spaces of functions with variable
exponents and to explore spaces of related functions. Authors are also advised to consult similar articles,
such as [26]. By incorporating these references, the authors will provide readers with a solid foundation
for understanding the concepts and recent developments in the field of function spaces with variable
exponents.

More recently, the study of these problems has aroused increasing interest in recent years. Neverthe-
less, all the works devoted to the analysis of this type of problem highlight the existence results of the
problem as it has been developed by some authors, (see [1,42,43,49,50]). A famous book that we strongly
recommend is [45]. Tt is an excellent and very complete introduction to the study of boundary value
problems with variable exponents. In order to develop the analysis, we will review some previous work
in which a special case of the problem (P) has been studied. First, we recall some results related to the
parabolic equation (P) with the datum p being a bounded Radon measure on Qr. In [15], Bouajaja et
al. considered the equation p(z)—parabolic (P) with p(z) = p is a constant, where b is supposed to be a
strictly increasing C! —function, ®(z,t,w)Vw = ®(z,t,w, Vw), and p is a bounded measure. The authors
ensured the existence of a distributive solution to the considered problem, however, because of lack of
regularity of the solution, the distributive formulation is not strong enough to ensure the uniqueness.
Later, in order to overcome this constraint, the new idea of renormalized solutions was for the first time
presented by Di-Perna and Lions in [22]. they investigate the Boltzmann equation, and extended it to
the parabolic (and elliptic) equations with L' data (see [21,8,9,10,33,18]). Concerning the measure
(where p(z) = p is a constant), the existence and uniqueness of the renormalized solution of (P) were
proved in [23] where b(z,w) = w, wy € L*(Q) and for any p measure which does not load on sets of zero
p—capacity, this measures so-called diffuse measures or concentrated measures, and we shall employ the
symbol p € Mo(Qr) to indicate them. The importance of this type of measure was initially remarked in
the stable case in [14], and elaborated in the evolving case in [23]. When b(z, w) = b(w), u € Mo(Qr) and
wo € LY(Q), the same problematic subject was considered in [12], also In the case when u € My (Q7))
and with b(z,w) the existence of the renormalized solution of (P) has been proved in [32], we recall that
several authors have approached the same theme under different assumptions and in different contexts,
see [35,36,37,38]. In a different situation, Chipot et al. [17] establish, under certain conditions, a proof
of an explosion result in the case b(z,t) = w.

Our contribution represents original work by extending and generalizing prior findings found in the
existing literature [2,48]. This paper is dedicated to investigating the well-posedness of renormalized
solutions for problem (P), considering its dependence on parameter s. Our focus encompasses scenarios
involving general measures, and our findings contribute novel insights to the treatment of such problems.
We develop an approximate series of solutions and establish certain preliminary estimates. Subsequently,
we extract a subsequence to arrive at the limiting function, demonstrating its status as a renormalized
solution. By averaging both ”cut-off” test functions and the ”"near-far from” approach, we unveil fresh
properties that facilitate the treatment of the measure’s singular component. Notably, our approach
avoids relying on the strong convergence of truncations, and it is extensible to a broader class of non-
monotone operators, denoted as ®, with respect to w.

The organisation of this document can be summarised as follows. In Section 2, we focus on presenting
fundamental notions about capacity and the essential characteristics of metrics. In Section 3, we introduce
the key assumptions underlying our work, leading to the formulation of an existence theorem. Finally,
Section 4 is entirely devoted to the proof of our central result.
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2. Preliminaries
2.1. Sobolev spaces with variable exponents

In the study of (P), we employ the theory of generalized Lebesgue-Sobolev spaces LP(*)(Q) and

VVO1 P(2) (Q). For the reader’s understanding, we point out only some background facts which will eventu-
ally be applied, we send back to [24,55] for more details.
Consider p : Q — [1,+00) be a continuous function, we have

p~ = minp(z) and p* = maxp(z).
z€Q z€Q

In the following, we suppose that
Ci () = {p is a real measurable functions on Q such that 1 < p~ < p' < N},
where
1<p <p(z) <pt < oo (2.1)
Denote

E= {w : w is a measurable function on Q}
We give the spaces LP(*)(Q2) as follows
LPA(Q) = {w eFE: / lw(2)|PPdz < —|—oo}.
Q

We endow the space LP**)(Q) by the so-called Luxemburg norm

p(2)
dz < 1}.

w(z)

el :inf{)\>0;/9’ ;

Recall the inequality below, which will be used thereafter.

. - + z - +
min { Jull?,) ; el b < / fw(2)PCdz < max {Jull?, 5 ol }-

By hypothesis(2.1), the space LP(*)(Q2) becomes a separable and reflexive Banach space. We set the dual

/ ]_ ’
space of LP(*)(Q)by LP (*)(Q) with o) + 5 = 1. Moreover, for each f € LP(*)(Q) and g € L (*)(Q),
p(z)  P(z
we have here following p(z)-Holder inequality

1 1
[ g3tz < (525 + =) 1 lbio sl

p(2)
. / 0O 1 1 . )
holds true. Now, if p(z),p'(z) € C+(€2) where e + 70 =1 and for each a, b > 0, we obtain Young’s
p(z)  p(z

inequality defined by

aP(®  pr'(2)

CEE e

A variable exponent p is extended from Q — [1,+00) to Qr = Q x [0,T] with p(t, 2) := p(z), for all
(2,t) € Qr-
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2.1.1. Functional Setting. The present paragraph aims at presenting the suggested problem solving
framework (P). We start by defining the space

p(z)
LPA(Qr) = {w : Qr — R; measurable such that/ w(z,t)’ dzdt < oo},
T
equipped with the norm
t)p(2)
Wl Lo (r) = inf{)\ > 0;/ wiz, )‘ dzdt < 1}.
Qr A

The space (LP*)(Qr), | - ||(»)) is then a separable reflexive Banach. We now introduce the Sobolev space
with variable exponent

Wir)(Q) = {w e LPD(Q) ; |Vu| € L) (Q)}.
It has the following standard

Hw”l,p(z) = Hpr(Z) + vaHP(z)'

This is recognized as being equivalent to

el pey = inf {2 > o;/

Q

(!

p(2) Vuw(z)
By +|

: p(z))dz < 1}.

We also denote by Wol’p(z)(Q) the subspace of W1P(*)(Q) which is the closure of C§°(Q) with respect to

wlrz)(Q
the norm | - |1 52, ie., Wol’p(z)(Q) = C§e(Q) “@, Moreover, By assuming that p~ > 1, one can

say that the spaces W1P(*)(Q) and VVO1 P (Z)(Q) are separable and reflexive Banach spaces. Additionally,
if 0 < T < oo, we begin by setting the space

1

T -
LP(0,T; WOLP(Z)(Q)) = {w € LP(z)(QT) : (/0 ||wH€Vl’p(2)(Q)) Podt < Jroo}.

0

2.2. Measure and Parabolic p(x)-Capacity

We take back the notion of p(z)-capacity for the problem (P). Consider that Qr = Q x (0,T) for
every T > 0 and let’s note here again V = Wol’p(z)(Q) N L?(Q) has its natural norm [|.||,;1.06) + |-l 2.
0
we can define the space W),(.)(0,7") by

W01 = {Vu e WOQ)Y w e OV adw e LW 01},
equipped by
HUJHWP(Z)(O,T) = ||w||Lp*(o7T7v) + vall(l/p(z)(QT))N + ||wt||L(p’)*(o,T,V’)'

Recall that W,.)(0,T) is continuously embedded in C([0,T], L*(R)).
Now, we will define the p(z)—parabolic capacity of U where U C Qr be an open set as follows

capy(z)(U) = inf {||w||Wp(z>(07T) fw € Wy (0,T),w > xu a.e. in QT},
where inf{()} = 400, then for each Borel set B C Qr, we have

capp () (B) = inf {capp(z)(U) : U open subset of Qr, B C U}.
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Since we want to use certain regular properties, we will set the space T as follows
T={wer (0,1,W"9(Q) : Ywe (L (Qr)"
and w, € L7 (0,T, W' ) (Q)) + Ll(QT)}.
It is endowed by the following standard

lwlly = Ml o rwpro@) T IVlweo @y + Iwdllon-orwire@)rLien):

In the rest of this paper, My(Qr) designates the set of all Radon measures with bounded variation on

Qr, and Mo(Qr) denotes

Mo(Qr) = {u € My(Qr) = pu(E) = O0forevery E C Q such that cap,.)(E) = 0}.

as mentioned earlier, Mo(Qr) the set of all bounded total variation measures on Q7 that do not load
sets of zero p(x)-capacity, i.e., if u € Mo(Qr), then u(E) = 0, for any E C Q7 such that cap,.)(E) = 0.
To properly specify the nature of a measure in My(Q7), we must then detail the structure of the dual
space (Wy.y(0,T))".

Lemma 2.1 /34, Lemma 4.2] Consider g € (Wp()(0,T))"  then  there  exists
g1 € LW (0, T, W17 3(Q)), gy € LV (0,T,V), F € (LP®(Qr)N and g5 € LF) (0, T, L*())

such that
T
<9, w>>=/ <gl,w>dt+/
0 0

for each w € Wy,y(0,T). Furthermore, we can take (g1, g2, F, g3) such that

T
<wt, gg>dt+ / FVw dadt + / gawdzdt,
QT

T

||91||L<p’)*(o,T;Wﬂ,pwz)(Q)) + H92||Lzr(o,T;v) +E o ey + 1931072200 < Cllgllw, . ©0,7))
given that C' is independent of g.
A decomposition result of Mo(Qr) is given below
Theorem 2.1 [3/, Theorem 4.4] Let p be a bounded measure on Qr. If p € Mo(Qr) then there exists
g € Wy»)(0,T))and h € L*(Qr) such that u = g+ h in the sense that

/ o du=<g, g0>>+/ he dzdt, Yo € C([0,T] x Q).
T T

From the Theorem 2.1 and Lemma 2.1, we have the follows theorem

Theorem 2.2 [34, Theorem 4.5] Let p € Mo(Qr), then there exists a decomposition (F, f, g1, g2) with
F e (LP&(Qr)N, fe LYQr), g1 € LE) (0, T; W12 G)(Q)), go € LP (0,T; V) and

T T
/ odp = / fodzdt Jr/ FYVwdzdt Jr/ <gl,<p>dt f/ <cpt,gg>dt, p €C([0,T] x Q).
Qr Qr T 0 0

such a quadruplet (F, f, g1, 92) will be called a decomposition of p.

It is worth noting that this decomposition of M(Qr) from the aforementioned theorem is not unique,
see [34, Lemma 4.6]. With the help of a decomposition result, see [25, Lemma 2. 1], for each p in
Myp(Qr), can then be written as a summation of its absolutely continuous part pg with respect to the
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capacity p(z) and its singular part As concentrated on a set E of capacity p(z) zero, Therefore, if A4 is
My(Qr) and by the theorem 2.2, we can get

. 0 _

u:f—dw(F)—Faf‘(Z—F)\j—)\s,
in the sense of distributions, for g € LP” (0,T;V), f € LYQr), F € (L”®(Qr))N, where (Al is the
positive part of u and (A] is the negative part of p; It is important to mention that the decomposition
of the absolutely continuous part of p according to Theorem 2.2 is by no means uniquely defined. As
we are concerned about density results to show the existence of a solution, we have to give the following

introductory result which utilizes a proper approximation of the data.
Proposition 2.1 Suppose that p € Mo(Qr), then there exists (f,div(H), g) of p in the sense of Theorem
2.2 and an approzimation p" of p verifying

P eCE@Qr),  1"igr) <6

and
T T
/ wo dp = Mo dz dt—|—/ <div(H’7),<p>dzdt —/ <<pt,g”> dt,
T Qr 0 0

where

frec(Qr): f7— fin LYQr) as n — 0,

H" € C(Qr) : H" — H in L O(Qr)N as n — 0,

g" €CX(Qr): g7 — g in LP (0,T,V) as n — 0.
Proof: See [34, Proposition 2.31]. O

3. Definition of Renormalized Solution and Essential Hypotheses
3.1. Essential Hypotheses

The following Hypotheses are assumed to be true throughout this document:
Hypothesis (1)
Assume that  C RY(N > 1) is a bounded open subset and b : Q x R — R a Carathéodory function
where for each x € Q,b(z,.) is a strictly increasing C! function such that

b(z,0) = 0. (3.1)
Then, there exists vy, A > 0, and a function By, € LP(*)(Q) where
0b(z, s) 0b(z, s)
< ——>72 <K < .
<=5, < A and ‘VZ< 95 )‘ < Bi(z), (3.2)

for a. e. z € Q and any s where |s| < k, and the gradient of 9b(z,s)/0s is defined in the sense of the
distributions by V,(9b(z, s)/0s) .

Hypothesis (H2)

®: (0,T) x QxRN — RV is a Carathéodory function which satisfies classical Leray-Lions hypothesis

(2,5, € > alg], (3.3)
[0z t,5.)| < B[L(= )+ [6P 7 + |57 (3.4)
[@(z.t,5,€) = @(z,t,5,m)] (€ —n) > 0, (3.5)

for each (s,£) € R x RY, a and B are positive real number and for a. e. (z,t) € Qr, and L is a
non-negative function in L? *)(Q7).

JAS Mb(QT)7 (36)

wy € L*(Q). (3.7)
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3.2. Definition of Renormalized Solution

Before stating our results, we now present the definition of renormalized solution of (P) and some
essential lemmas that will help us establish the proof of our main result.

Definition 3.1 Let (f,div(F), g) be a decomposition of u € Mo(Qr). A measurable function w defined
on Q 1s a renormalized solution of problem (P) if

Ty (b(z,w) — g) belong to LP (0, T; Wol’p(z)(Q)), for all k>0,
b(z,w) — g belong to L>°(0,T; L*(R)), (3.8)

VT (b(z,w) — g) € (LPE(Qr)N, for all k >0, (3.9)
for all S belong to W2°°(R), that is piecewise Ct, with S’ is a function with compact support, we get

W — div(S'(b(z,w) — g)®(2,t,w, Vw)) + S (b(z,w) — g9)®(2,t,w, Vw)V(b(z,w) — g)

= [8'(b(z,w) — g) — div(FS'(b(z,w) — g)) + FS"(b(z,w) — 9)V(b(z,w) — g) in D'(Qr), (3.10)
for each ¢ € C(Qr), we obtain

lim 1 O(z,t,w, Vw)V(b(z,w) — g)bdzdt = / pdul, (3.11)

m=e0 M J{(2,)eQrm<|b(z,w)—g|<2m}

lim e O(z,t,w, Vw)V(b(z,w) — g)pdzdt = pdp, . (3.12)

M=00 M J{(2,t)eQr:—2m<|b(z,w)—g|<—m} Qr

and
S(b(z,w) — g)(t =0) = S(b(z,wp)) in . (3.13)

Remark 3.1 The essential regularity results derived from the distribution equation (3.10) are consid-
ered. Tt The main regularity results derived from the equation (3.10) in terms of distribution are con-
sidered. It is important to note that thanks to our regularity assumptions of S, all terms present in
(3.10) are well defined. This is possible because T}, (b(z, w) — g) belongs to LP(*)(0, T; Wol’p(z)(Q)) for
all positive k, and because S’ has compact support. More precisely, by choosing a suitable k such that
Supp (S") C]—k, k[, we ensure that S’ (b(z,w) —g) = S”(b(z,w) — g) = 0 whenever |b(z,w)—g| > k.
As a result we can replace, everywhere in (3.10), V(b(z,w) — g) by VTi(b(z,w) — g) € L’ (Qr)N
and Vw by (db(z N Y (VT (r) + (Vg — V.b(z, w))X{jri<ky) € LP#(Qr)N. Moreover, in view of
(3.2)—(3.3) and the definition of Vw, (ab = w)) VT (r) = (V2b(z,w) = Vg)X{ri<ky) € L2 (Qr)N
we have V(b(z,w) — g) is well defined and since |w| < y7(k + |g|) as soon as |r| < k, we can also
deduce that |®(, z, w, Vw)x(|r| < k)| € LP'*)(Q7)N. Additionally, for each S as mentioned earlier,

we have S(b(z,w) — g) = S(Tk(b(z,w) — g)) € L (0,T; Wol’p(z)(Q)) and

S/(b(sz) g)<I>(t7z,1/u,Vw) € Lp (QT) ;

S'(b(z,w) — g)F € LP'&(Qr)N

S'(b(z,w) — 9)f € L' (Qr);

S"(b(z,w) — g)F - VT1,(b(z,w) — g) € LY(Qr);

S"(b(z,w) — g)®(t, z,w, Vw) - VT (b(z,w) — g) € L*(Qr).

Therefore, based on (3.10), we can assert that % belongs to the space

LP)(0,T; W= (2)(Q)) + LY (Q7). Consequently, S(b(z,w) — g) belongs to C([0,T]; L'()), as
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stated in [41, Theorem 1.1]. This allows us to conclude that the initial datum is achieved in a
weak sense, i.e., S(b(z,w) — g)(0) = S(b(z,w)(0) — g(0)) = S(b(z,wp)) in L(Q) (noting that g has
compact support in Q) for every renormalization S. Additionally, it is worth mentioning that since
W e L) (0, 7; WL () (Q)) + LY(Q7), we are not limited to using only functions in
Cs°(Qr) in (3.10), but we can also include functions from LP (0, T Wol’p(z)(Q)) NL>(Qr).
It is important to mention that the preparation of the renormalized solution is independent of the de-
composition of u, for that we will use the following result

Lemma 3.1 Let (f,H, g1,92) and (f, H, g1, d2) be two different decompositions of p with p € Mo(Qr)
by the Theorem 2.1, we get

/OT<(92 — jg)t,g0>dt - /QT (H - H).Vgodzdt n / (f - f)cpdzdt n /UT <91 - g~1,g0>dt

t

for every ¢ € C([0,T] x Q). Moreover ga — go € C([0,T]; L*(Qr)) and (g2 — g2)(0) = 0.
Proof: See[34, Lemma 4.6]. O

The following result shows that in the presence of bounded perturbations of the time derivative component
of u, the definition of a renormalized solution is stable.

Proposition 3.1 [37, Proposition 3] If w is a renormalized solution of (P), then w satisfies (3.8)-(5.12)
for any decomposition (f,div(H),§) of p.

4. Main Result and Proof
In this part, we demonstrate the following main result.

Theorem 4.1 Under assumptions (3.2)-(3.7) there ezists at least a renormalized solution w of P.

Proof: The complexity of extending the main result when p is in Mo(Qr) is due to the fact that there
is a singular part of the data and to a absence of regularity. To overcome these difficulties in the proof
of our main result, we will divide the proof into several steps. We start by introducing an approximate
problem. Then we will establish some a priori estimates. Finally, we will be showing that u satisfies
(3.8)-(3.13) of Definition 3.1.

Step 1: Approximate problem

Let us return to the essential decomposition theorem for measures data. As previously stated, if 4 belong
to My(Qr), it can be decomposed as follows:

99
ot

There are several methods for approximating this measure by determining the existence of solutions to
(P); we will choose the following.

p=f—div(F)+ = + AL =A%,

p" € C(Qr) such that [[u"| 1) < C,
_ : 9" \n \n (4.1)
u'h = f"—dw(F”)—l—E—&—)\Jr -\
where
frecx@Qr), f"— fin LY(Qr), asn =0, (4.2)
F e (C°(Qr))N, F" — F in (L" ®(Qr)N, asn — 0, (4.3)

g7 €C(Qr), ¢" — gin LP (0,T, Wy (Q) N L3(Q)), as n — 0, (4.4)
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AN € C3°(Qr) where Xl — A} in the narrow topology of measures, (4.5)

AT € C3°(Qr) where A7 — A% in the narrow topology of measures. (4.6)

Furthermore, let us

by(z,k) = T1(b(z,k)) + nk, for all k € R and n > 0, (4.7)
n

wy € C(Q) : by(z,wy) — by(2z,we) in L'() as n — 0. (4.8)

Consider now the following regularized problem (7P,).

8bn(§£w ) _ div [@(z,t,w”,Vw”) =u" inQr:Qx(0,7T),
(P0)  Quwn(zt) =0 on 8Q x (0,T),
by (z, w)(t = 0) = by(z,w]) in Q.

As a result, it 1is straightforward to demonstrate the existence of a weak solution
w" € LP (0,T; Wol’p(z)(Q)) of (Pn)(for more information, see [5]). This approach gives standard com-
pactness results which we put together in the next step.

Step 2 : By selecting Ty (b, (2, w)) as a test function in (P,), we obtain

/Qﬁ(bn(z,w”))(t)dz—i—/o /Q@(t,z,w”,an)~VTk(bn(z,w"))dzdt
— [ [ nisg(ewmdi + [ Tioyzufhas (19)
0o Jo Q

where t € [0,T] and Ty(s) the primitive function of Tj(s). Due to (3.3) and the boundedness of
0y (2, w")||L1(Qy), it Tesults that

_ n
/ T (by (2, w™))(t)dz + / M@(L z,w, Vw") - Vw"dzdt
Q

{by (z,wm)| <k} Js

—|—/ ®(t, z,w", Vw") - V, by (2, w")dzdt < kHN”Mb(QT) + / Tk(bn(z,wg))dz.
{\bn(z,w")|§k} Q

Then,
_ by (2, 0"
[T o +a [ POt < Mln + 5 [ £Got) Vb
Q Ej Js Eg
b n
+8 \w”|p<z)_1-|vzbn(z,w”)dzdt—l—g %Wmﬂpw—l-wzbn(z,w”)|dzdt+k||b,,(z7wg)HLl(Q)
Ek Ek

where Ej, = {(z,t) : |by(z,w")| <k}, by (3.2) and Young’s inequality, we can infer that

B by (z,w™)

B[ VPV b, (2w dzdt < = | R L VP TLVb, (2, w")d2dt
Ep Y JE, o]
n
< 9/ M|an|p(z)dzdt
2 /g, Os

+ T(?)—’—l)(max ((Qﬁg?;)_)p_l’ (Zﬁgi;)_ )p*'fl) max (HBkHi;(z)(Q), HBI@||I£:(Z)(Q)>
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and

/E|w"|P(z)_1-|Vzb,,(z,w")|dzdt§/ |§|”(Z)_1|Vzbn(z,w,,)\dzdt
k

Ey

- +
< Cmax (1Bl i 1Bl gy )
In view of T (s) > 0 and |Ty(s)| > |s| — 1, we have

o’ Oby (2, w" .
[ aeomias + § [P 00 p©dsde < bl + 1)
k

0 (max (LN o 1100 )+ m (1BIZ o 1Bl )

Finally, we obtain
t
/Q by (2, u")(t)|dz + %/0 /Q VT (by (2, w")|PPdzdt < C(k+1) Vk >0, for all t € [0, 7).
Based on the previously obtained estimates, we can infer that [|b, (2, w")| 101,21 (q)) < C and

/ VT (by (2, w")|PPdzdt < C(k +1).
T

Likewise, by selecting T (r) as the test function in (P,), we can also derive an estimate on 77 = b, (z, w")—
g".

_ by, _
/QTk(s)(rn)(t)dera/Ek(a)v w" [P dzdt§/QTk(s)(bn(z,wg))derka||L1(QT)

+/ |F~VTk(r)dzdt+,8< C(z,t)|Vg"|dzdt+/ |w"\P<Z>—1|vg"|dzdt+/ \Vw"|P<Z>—1dzdt)
Ex

Ey, Ey Ey,

+/ |<I>(t,z,w,an).Vzbn(z,w")\dzdt—i—/ Tk(rn)d)\i—/ T (1) AN
Ex Q Qr

T

where C'is a constant independent on n and Ej = {(z,t) : |b,(z,w") — ¢"| < k}.
By utilizing (3.1), (3.2), and applying Young’s inequality, we obtain

1 1 ob n
/ |F - VT (r,)|dzdt < 9(,—+ n —_)/ 9n (= 0) G 12 gy
B 2\(p)* p/Jg  Os
- + ®)* @)~
+ 0 (max (1Bl IBelZoiory) +max (I E00 o 1520 00)

 max (1V9" %0y V9" s my) )

/ PV g|dzdt < / (k + g" )" O |V gdzdt
Ey Ey

- +
< C(max (||9”||Lp(z> (Qr)’ ||g HLp(z) QT)) + max (HVQWHZE;)(z)(QT)» ||vgn||1£p(z)(QT)))’

«@ Oby(z, w")
/ |D(t, z, w", Vw")V by (2, w")|dzdt < e / "88 |V P& dzdt
Ex

-
S TRED (L (e

2 »t
p= , ay ) max (||Bk||Lp(z)(Q)7 ||Bk||Lp(Z)(Q))’
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and
T PO gt dadt < 2 [ P Gt g g gy
. v JE, 0s
«o 0by (2, w") (2)
Vw|PY dzdt
10 S 05 VY
N T(A:k 1) A ((ﬁ)p_fl’ (ﬁ)p‘*fl) / Vg P dzdt.
p ary ary E

Hence,

— n
/ Too(by(z,w") — g")(t)dz + 9/ Man\p(z)dzds
Q 2 Ey 85

< o max{|c|?,

"
P
LP'(Z)(QT)7| Vgl

p+
12| T @n

Do @yt T max {[IVg"17,

Lr'(z )(QT)’|
+maX{Hgn||Z£p'(z)(QT)7 ||g ||Lp (z)(QT } +maX{HB]€||Lp(Z) (Q)’ ||BkH Lp(=z )(Q)})
k(1 IS, o+ In (o wlliscey + NI @r) + 1N lir@n ), (4:10)

as F" is bounded in (L") (Q1))N, g" is bounded in LP (0,T; Wy "'*(Q)), f7, A, A7 are bounded in
LY(Qr) and b,(z,wy) is bounded in L'(£2), we obtain

/Tk(r")(t)dz <C Vtelo,T],
Q
which implies the estimate of r" in L>°(0,T; L()), and also
/ IV [P x(jyn<pydzdt < C(k + 1),
Qr

which yields that Ty (r") is bounded in L? (0,T; Wol’p(z)(Q)), for any k > 0 (recall that g7 is itself is
bounded in L™ (0, T; We ) ())).

According to the properties of T, and the fact that | 11 (@ry and [by(z,w")|11(q) are bounded, it can
be concluded from (4.10) that

/ (b (2 ") — g")(8)]dz < C + 1. (4.11)
Q
This means that

b,(z,w") — g" is bounded in L>(0, T, L*(Q2)). (4.12)

In addition, using the Holder inequality and (3.2) and from (4.10), we conclude that

Aa z
2b/f |Vb77(z7wn)|p( )X{|bn(z7wﬁ)_gn|<k}dzd8 § C,
T
1\~ - .
with (F) = mm{ Pl 11)”+_1} and as g is bounded in L? (0,7} Wol’p( )(Q))7 we get
1

/ |V T (by (2, w") — g")[PF)dzds < C, (4.13)

thus

T (by(z,w") — g") is bounded in the space L¥ (0,T; Wol’p(z)(Q)), (4.14)
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for each k& > 0 and independently of 7. As a result, for every S € W2°(R) where S’ has a compact
support i.e., supp(S’) C [—k, k], we get

S(by(z,w") — g") is bounded in the space LP (0,T; Wy (), (4.15)

95 (by (2, w™) — g")

o is bounded in L' (Qr) + L™ (0, T; W17 (2)(Q)). (4.16)

In fact, from (4.14) and thanks to the famous Stampacchia Theorem, we can obtain (4.15). In order to
prove (4.16), we do a multiplication of the equation (P,) by S’(b,(z,w") — g") to obtain

95 (by (2, w") — ")
ot

= div(S'(by(z,w") — g")®(z,t,w", Vw"))
= (2, t,w", V)V (by(z,w") — g") + f75" (by (2, 0") — g")
= div(F"S' (by(z,w") — ")) + F'VS' (by (z,w") — g")
+ NS (by (2, w") — g") — XLS"(by(2,w") — ¢g")  in D'(Qr). (4.17)
Since by, (z,w") — ¢g" € L>=(0,T,L'()) < LYQr), thus S(b,(z,w") — g7) € LY(Qr) and

ny _ g"
as(bn(z’alg ) —9") € D'(Qr). Then we get

{ 18 (by(z,w") = g") € LN(Qr),  F"S'(by(z,w") —g") € (LP D (Qr),
NLS (by(z,w") — g") € LY(Qr),  ALS'(by(2,w") — g") € LN(Qr).

Given that supp(S’) C [—k,k] and supp(S”) C [—k,k], w" can be replaced by (by,(z,w"))~1(r" —
V.by(z,w") + ¢") in {|b,(z,w") — ¢g"| < k}, where " := b, (z,w") — ¢", In fact we obtain

W) B (Tk(rn) —V2by(2,w) +gn>

< BIISIl Lo ) [ﬁ(zyt) +[(by (2, wM) T (" = Vb (z,w) + g7)PH

p(Z)*l}

S/ (b (2, w0") = g")@(z, £, w7, Vo) | < BIIS |y + |

+ pIVTL() = Vaby(z,w) + Vg P71 (418)

where p = max((2)7"~1, (2)7" 1), this means that S'(b,(z,w") = g")®(z,t,w", V) € (L' (Qr)N
and we have from (4.10) that V(b,(z,w") — g") € LP&)(Qr).

Furthermore, we get

{ 5

As a consequence, we conclude that

) - gn)q)(z?tvwnaan)v(bn(szn) - g’?) € Ll(QT)
) = g F"V (by(z,w") — g") € LY(Qr).

z,w"
z,w"

95(by (2, w") — ")
ot

€ LY(Qr) + L®) (0, T; w5 ()).
Step 3 : Reasoning again as before. Thanks to (4.12), we have for a subsequence always indexed by 7,
by (z,w") — g" converges to b(z,w) — g a.e in Q. (4.19)

through " := b, (z,w") — ¢", which gives that w" = (b,(z, w")_l(r" — V.by(z,w") + ¢"), using(4.4) and
(4.8), we have

w’” — w  almost everywhere in Qr, (4.20)



EXISTENCE OF RENORMALIZED SOLUTIONS 13
by (4.14), we get
Ty (r") converges to Ty(r) weakly in LP~ (0,73 W) (Q)). (4.21)
We deduce from (4.18) that for each k£ > 0,
D(z,t,w", an)X{‘bn(z,wn)_gn‘Sk} — o1 in (Lp/(””)(QT))N asn — 0, (4.22)
and
o € (L”(Qr)N, Vk > 0.
By using (4.2), (4.8), (4.20) and by Lebesgue’s convergence theorem we obtain
V.b(z,w") = V.b(z,w) strongly in (LP*) (Qp))N.

as 7 tends to zero, for any k > 0.
We will now demonstrate that b(z,w) — g € L*(0,T, L' (Q)), to do this we use (4.10) and the fact that
|Tk(s)| > |s| — 1, which leads to

()~ . ()t
[ otz = 9711z < 0 (max LB 00 1BUED )

Nt Nt - ) +
+max {1100 g5 IEIED o)+ max (Vg2 0 1991 ) })
+ K1 L1 (@ry + Ellon (2, wg)l L1 () + meas(2),  (4.23)

almost everywhere in (0,7"), where C' is a constant independent of 7. From (4.2)-(4.8) and using(4.19)
we deduced that b(z,w) — g € L>=(0,T, L(2)).

Step 4:

The time regularization of Ty (w) is defined as follows: Let (vy), be a sequence of functions in 2, such
that

vy € L=(Q) NWe P2 (Q), 0§l < ky ¥ o >0, (4.24)
and
vy converge to Ty (wo)  almost everywhere in €,
L)l converge to 0 as v go to oo (4.25)
v I\V0 )t Lr=) (@) & g .
For each k£ > 0 and all v > 0, Tj(w), is a the unique solution of the monotonous problem
(T, v :
% Fo(Th(w)y — Te(w)) =0 in D'(Q), (4.26)
Ti(w)y(t =0) =v§ in Q. (4.27)
Thus,
- z 8 T v - z
Ty (v), € L¥(Qr) N LP (0,T; Wy ") (Q)) and % e LP (0, T; Wy " ()).
Note that(4.24)-(4.27) give the following convergence result
T1(v)y — Tr(v) in LP (0, T Wol’p(z)(Q)) and almost everywhere in Qr, (4.28)

as v converge to 400, with || Tx(v)y[ 1 (@,) < k, for all v > 0. In addition, we state a fundamental result
on the usefulness of the approximate capacities, which will be indispensable for dealing the measure
(singular part). O
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Lemma 4.1 [37, Lemma 5] Assume that ps = pf — p; € My(Qr) with py and pf are concentrated
respectively on two disjoint sets E~ and E of zero p(z)-capacity. Then, for all § > 0, there exist
Ky CE™ and K; C E* compact sets where

pt(BNED) <6, py (B\K;) <4, (4.29)

and there exist two functions wéﬂwgr € C(Qr), where

Yy = on Ky and ¥ =1 on K, (4.30)
0<4y <1, 0<yy <1, (4.31)
sup(v5 ) Nssup(¥y) =0, (4.32)
moreover
l5 Ie <6, lvflle <4, (4.33)

thus, there exists a particular decomposition of (Y5 )¢ and (w;')t where

- d _ ]

[l (w05 )tlHur>'(07T;w—1,p'(z>(g)) < 3 (5 )%HLl(QT) S 3 (4.34)
+31 g +)2 5

1@ Lo orw-rwo@) < 50 10 en < 3 (4.35)

with ¢; and ¢35 converge to zero weakly* in L®(Qr), in LY(Qr), and up to subsequences, almost
everywhere as 0 disappears. Furthermore, if X and X! are as in Theorem 4.1, we get

[ wpaxt=re), [ v <s (4:36)
Graxt =e(n,0) | wiaut <o (4:37)
Qr QT
[ a-vguoan —wse) . [ @-vyesnt <o+ (4.39)

In the following, we will again refer to the subsequences of w;' and 15 , which all satisfy the convergence
results given in Lemma 4.1. Next, we will establish the key result in the proof of the main theorem.

Theorem 4.2 Consider v = b(z,w") — g" and r = b(z,w) — g. Then for each k > 0
Ty (r") — Ti(r) strongly in LP (0, T; Wol’p(z)(Q)) as n go to 0.

The proof is done in several steps.

Proof: The proof will easily follow from an asymptotic estimate

lim q)(t,z,w",Vw")VTk(r")dzdt§/ O (t, z,w, Vw) VT (r)dzdt, (4.40)

1=0J)Qr T



EXISTENCE OF RENORMALIZED SOLUTIONS 15

in the sequel, first let us present the next function that, we shall employ throughout the rest of this proof

Loaf |s| <m,
2m — s

, if m<s<2m,
Fa(s) =9 2m% s (4.41)

, if —2m<s< —m,
m
0, if |s|>2m.

Step 4.1: Near and farm from F
Let ET and E~ be the sets, where respectively, AT and A; are concentrated and for each §,¢ > 0, let
F, T, ¢; and 7 as in Lemma 4.1. Let’s set 5. = ¢;¢2_ +pyp; we get

/ O(z, t,w", Vw )V (T (r") — Ti(r)r) Fin (r'")dzdt
:/ O (z,t,w", Vw)V(Ti(r") — T (1)) Fin (1) ps dzdt
+/ O(z,t,w", Vw")V(Ti(r") — Tk(r)r) Fin (r")(1 — s ¢ )dzdt.  (4.42)

On the other side, if m > k, knowing that ®(z,t,w", Vw"x{mm<am})VTk(r), is weakly compact in
LY(Qr) when 7 tends to 0, F,,(r") converges to F,,(r) in the weak* topology of L>(Qr) and a. e. in
Qr, by Lebesgue convergence theorem we get

limO Oz, t, w", Vw")V(Ti(r") — Ti(r)r) Fin (r") s cdzdt (4.43)
=9/ Qr
= lin%) O (z,t,w", V) V(T (r"))ps cdzdt —/ 0oy VT (1) F (r") s e dzdt
=0 JQr T
= lin}J O(z,t,w", V) V(T (r"))ps dzdt — / 0on V Tk (1)ps cdzdt + £(n),
n— Qr T

as § go to zero, then s, — 0 weakly* in L>(Qr), we get
/ 0on VT (1) s cdzdt = £(6),
T
as a consequence, if we show that

el Tl T n n < )
vllli% (%12% ;1_13(1) o D(z,t,w, V")V (r")ps dzdt < 0, (4.44)

from (4.43) thus, we can conclude that

lim lim lim [ ®(z,t,w, Vw)V(T(r") — Ti(r),) Fo (r")ps e dzdt < 0. (4.45)
n—06—0e—0 Q

Step 4.2: Near to E. To prove (4.44), we must verify the following result. O

g

Lemma 4.2 Let ¢, ¢°
that

are two non-negative functions in C°(Qr) and € is a positive real number such

(4.46)
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Let w" be a solution of (Pn), we get

1
— O(z,t,w", Vw)Vb, (2, w")p dzdt = £(n, m,¢), (4.47)
m J{—2m<rn<—m}

1
—/ O(z,t,w", Vw") Vb, (2, w") e dzdt = £(n, m, ). (4.48)
M J{m<rn<2m}

Proof: To establish the proof of (4.48), assume that (,,(s) = Bm(sT), we consider ,,(r")p° as test
function in (P,) and by easily changing the order of all terms, we obtain

1
—/ <I>(z7t,w"7Vw”)Vbn(z,w”)goidzdt+/ B (rM) = d\"
m J{m<rn<2m} Qr

1 - de”
= —/ O(z,t,w", Vw")\Vg"p dzdt + 6m(r")&dzdt
M J{m<rn<2m} dt

Qr

— [ @t Vun Ve Mz + [ (et an
T Qr

T
+ f"ﬁm(r”)gas_dzdt—/ <div(F’7), ﬂm(r")gos_>dt, (4.49)
Qr 0

S

with 3,,(s) = / Bm (r)dr. Since B (1%)¢° dAT > 0 and using (3.3), (3.4) and Young’s inequality
0 Q

we have ’

1 C /
— / Oz, t,w", Vw") Vb, (2, w")e? dzdt < — / (IVg" PP + | By P + |L[P ) dzdt
m {m<rn<2m} m Qr

_ do"
¥ ,Bm(r")%dzdt - / Bz, t, 0", V)VE B (rM)dzdt + | B (r)% dNT
Qr T Qr

+ /Q ) £ B (P75 dzdt — /O ! <div(H"), Bm(r")api>dt. (4.50)

By means (4.12) and (4.14) and to the fact that ¢ € C°(Qr), Bm (") converges to B, (r) a.e. in Qr
and in L*(Qr) weak* as 1 tends to 0 and f,,,(r) converges to 0 a.e. in Qr and in L>®(Qr) weak* as m
tends to +oo and thanks to Lebesgue convergence theorem, we get

/ O(z,t,w", Vw")\Ve B (r")dzdt = £(n,m) . (4.51)

As B,,(r") converges to 3,,(r) in L'(Qr) when 7 tends to 0 and 3,,(r) converges to 0 in L*(Qr) when
m tends to 400, we have

_ do"
By (1) = dzdt = €(n,m) .
Or dt

Furthermore, thanks to Lebesgue’s convergence theorem and f"converges to f weakly in L'(Q7), we
deduce that

/ F"Bm (rM) e dzdt = £(n, m).
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By exploiting the fact that div(F") converges to div(F) strongly in L® )" (0, T; W17 (*)(Q)) and 8, (")
converges to B, (r) weakly in LP (0,7} Wol’p(z)(Q)) to zero strongly in LP (0,7} W&’p(z)(Q)) (this fact is
an simple result of the estimate on the truncates of w” in (4.12) and (4.14)), we have

/OT <div(F’7), Bm(r”)cpi>dt = ((n,m).

At last, as 8,,(r") is non-negative and bounded and according to (4.46) and ¢° is continuous, we obtain
BN, < [t dud 4 tla) = E(n.2).
QT T

From all the above, we obtain (4.48) and we can show (4.47) analogously by taking 3,,(s) = Bn(s™) and
Bm (r")¢%. as a function of the test in (P). O
Let us now verify (4.44): for k > 0 fixed, we consider (k — Tj(r")) H,, (r")5 1+ as the test function in
(7777), by defining Ay, 1(s) = / (k — Tyx(r))H,,(r)dr and using integration by part, we get

0

—/ Am,k(r")iw;w:)dzdmf (k — T (r")) Hu (r")® (2, t,w", V")V () 1 dzdt
Qr dt Qr

+/ @(z,t,w",Vw")VHm(r")(k—Tk(r"))zp;wjdzdt—/ ®(z,t,w", Vw" ) VT (") Fp (rMvF T dzdt
Qr

Qr
— [ PG~ T ded [ (A (E), () = T e (4.52)
Qr 0
[ = T VAN, = | Hn () = T ) v

For m > k, we obtain
Hy(r")®(z, t,w", Vw)x {jpm<iy = (2,1, w", V) xjrn <) a-e. in Qr, (4.53)

thus, we have

/ Bz, t, 0", Ve VT () dF dedt + | Ho () (k — To(r") vt daT
T Qr

d 2k
- _ A i (rM)—( ;w;)dzdt + —/ ®(z,t,w", V") Vrypd S dzdt
Qr dt m J{—am<r<—m}

+/ (k = T (r") Hp (r")® (2, t,w", V)V (Y ¢ )dzdt —/Q 1k = Tp(r")) Hyp (rpf o F dzdt

= [ () B0 = T Y+ [ = Tl 070 (4.54)

T

Let us examine term by term the right side of (4.54). First, according to (4.12), we get the weak
convergence in LP (0, T; Wol’p(z)(Q)) of Ay (1) to Ay, x(r) and since Ay, 1 (r") € LP (0,7 Wol’p(z)(Q))ﬂ
L>(Qr), we deduce that

n d +,,+ _ n dw; +
A i (r") — (5 7 )dzdt = A k(") —2-0p 7 dzdt
o dt ; dt

du+
—i—/Tka(r"):ftE Sdzdt +((n) = (e,6). (4.55)
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By combining (4.12), (4.14), Lebesgue convergence Theorem, Lemma 4.1 and using the weak convergence
in L*(Qr) of (k—Tp(r"))Hu(r") to (k — Ti(r))Hp(r) and a.e. in Qr, we conclude that

/ (k= Tp(r")) Hp (r")® (2, t, w", VW)V (i T ) dzdt

T

- / (k — To(r)) Hon (1) ooV (03 051 )zt + €(n) = €0, 5). (4.56)

T
Furthermore, (k — Ty(r"))H,, (r")¢f¢d  converges weakly to (kK — Tu(r)Hy,(r)yfvd in
L (0,T; Wi P (Q)) and in L®(Qr) weak* topology, then thanks to Lemma 4.1, we have
T
/ <diU(Fn)v H (1) (k — Tk(”))¢;¢;>dt = {(n,0) and F(k = T(r™) Hon (") 2 dzdt = £(<,6).
0 Qr

applying Young’s inequality, hypotheses (3.3)-(3.4) and since 0 < ¢f” < 1, we have

1
‘—/ <I>(z,t,wﬂVw")Vr"w;d}jdzv‘
m {—2m<rn<—m}

n ’
<Ll Pl (ot Vu)Turuitdad+ S [ (99O + B+ L O,
M J(omern<my 05 mJQr
using Lemma 4.2 for ¢ = ¢, we get
1
— ®(z, t,w", V")V Fdzdt = (n,m,e).

m J{—2m<rn<—m}

Thanks to (4.37) in Lemma 4.1, we obtain

[ Halm k= Teietaxt| <o [ wterant =2k [ uferax; + o) = o),
Qr T

Qr
Putting all the previous results together, we obtain
Hpy(r")(k = Ti(r"))5 v dAL + / O(z,t, ", V) VT (r"yg S dzdt = €(n,m,0,e),
QT T
and according to Hy (r")(k = Tio(r"))ypg 2 dN] > 0, we obtain [, ®(z,t,w", Va")VTi(r"); ¢ dzdt <
Qr

{(n,é,e). For the same reason as before and taking (k + Ty (r")) H,, (r")15 ¥- as a test function, we get
fQT O(z,t,w", Vw) VT (r") s - dzdt < €(n,d,€). Then we have (4.44) which gives (4.45).

Remark 4.1 As shown above, we obtain

n
o)~ TG v any + [ P g Gy o< Vs v deae
Qr Qr $ -
+/ ‘I’(th,w",Vw")X{\mgk}Vzbn(Z,wn)i/);?/JZrdZdt—/ Dz, t,w", V') X ()<} Ve"0T T dzdt

={(n,m,d,¢).
From (3.3), (4.12), (4.14) and by means Lemma 4.1, we have

Hy (r")(k = Tio(r")yp3 2 dNL = £(n,m, 8, ).
Qr

In a similarly, we obtain
| Halam) e+ )05 0 X = b m 5.2

Step 4.3: Far-from E First, let us show a result that will be fundamental for dealing with the
second term of the right-hand side of (4.42).
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Lemma 4.3 Let m > 1 be fized. Let choose r" = b,(z,w") — ¢", we get

T n
lim lim <8L; Ho (P (T (r) — Ti (1)) (1 — ¢55)>d5dt >0, (4.57)
r—+o00m0 Jg ot ’

where is the duality pairing between L*(Q) + W 17" () (Q) and L (Q) N Wol’p(z)(ﬂ) and the function H,,
is obtained by (4.41).

Proof: Assume that m > 1 be fixed, let H,, / H,.(s)ds € C*(R),H',, = H,, and supp(H ) C
m( ")

[—2m, 2m] thanks to (4.15) and (4.16), the function H,,(r") € LP (0,T, Wo¥)(Q)) and €

LY(Qr) + LED (0,7, W17 () (Q)). _ _
Furthermore, for each k < m, we obtain T (H,,(r")) = Tx(r") a.e. in Qr and Ti(H . (r))r = (Tr(r)),
a.e. in Qr, for all r > 0, moreover

k/" J/ 8r" Ho (r") (T () — Ti(r),) (1 — 5.2))dsdt (4.58)
/ /<8Hat( )(Tk(ﬁ (r") = Ti(Hpn(r)r) (1 — ¢5.c))dsdt
0 0
/ / t = Tl )r) (3, (7)) T (Fon (1)) (1 — 05.) st
/ / aTk 8t =5 (Ti(Hom (Tn))_Tk(ﬁm(r))r)(l—¢5,n)>dsdt

Hu(r") = Te( ") o 5 o e o
+/0 /0 ot (T (Hom(r ))_Tk(Hm(T))r)(l—¢5,5)>dsdt
:Il +IQ +Ig

Integrating by parts, we get

h= / /‘ tTMH (D)WﬂaiM”N—TMﬁﬁW»Ml—%Q>wﬁ (4.59)
_2/T ‘

“(1 = . )dtdz — %/Q (15 (H (7)) — T (7)), (0)] 2

Te(Hum (r")) = Ti(Hun(r))7

#5002
In view of (4.8), (4.19), (4.24) and (4.28), we have that
T, =4(n,r). (4.60)
Applying (4.26) with Ty (H,,(r)),, we obtain
7= [ [ (T (1 0 )~ T4~ )Y (1.61)

= T/O /0 (Tk(ﬁm(r))—Tk(Fm(r))T)(Tk(ﬁm(rn)) — Tk(Fm(T))r)(l — ¢575)d8dtdz.

Let 4, € and m fixed, and as Ty (H,,(r"))(1 — ¢s.c) converges weakly* to Ty (H (1)) (1 — ¢s.c) in L>=(Qr)
and a.e. in Qr, we get

T t
T =r / / (T (1) Te(Fon (7)) (T (Fon (7)) — Te(Fon (7)) (1 — b5.0)dsdtdz > w(n). (4.62)
0 0
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Let us know that, for k fixed, we have Gi(s) = s — Tj(s), then

Ty = /T /t a(ﬁm(wv)—Tk(ﬁm(r")));(Tk(Fm(rn))_Tk(ﬁm(r))T)(l—¢5,g)>dsdt (4.63)
/ / DG at VT (o ))(1—¢5,5))dsdt—/0 /0<W§Tk(ﬁm(ﬂ)r(l—¢>5,5))dsdt
=131+ I3.2.

According to (4.8),(4.19) and applying the integration by parts formula, we deduced that

131_/ / aGk 8t Tk(H (rn))(1—¢5,5)>dsdt:k/OT/Ot(W;W;(l—%,EDM

k[ jeuT m(r"))\dzdt—Tk/ |Gk(ﬁm(r’7))(0)\dz+k/ (G (FTm( ))|8¢65d dt (4.64)
Qr Q Qr

= [ 1T g5zt~ Tk [ GOz 4 [ 1G22 a1 167,
Qr Q Qr

Similarly, by applying integration by parts and by the definition of T} (H,,(r)),, we have
Ty = / / 0Gy(H 8t ) (o (7)) (1 — ¢5,5)>dsdt (4.65)
= o, G (H oy (r") T (H o (1)) (1 _¢5,5)dzdt+T/QGk(Hm(Tn(o)))Tk(FM(T))r(O)dZ
o / (BT (1)) = (T (7)), G (T (7)) (1 — 5.t

/ /Gk PN T (H o (7)) 8g“dddt

From (4.8), (4.19), (4.24), (4.28) and the fact that (Tx(H (7)) — Th(Hpm(r)):)Gr(Hpm(r)) > 0 a.e. in
Qr, it is straightforward to verify that

T30 =— Gk(f (PN T (H o (7)) (1—¢5e)dzdt—|—T/ G (Hom (r(0)) T (H o (1) (0)dz  (4.66)
+T/QT/ TH To(H o (7)) Gro(H o () (1 = 65.c)dsdtdz

—/ / Ge(H (1)) Ty (H o (1)) 8?‘5% dzdt + 0(n)
Qr JO

> — Gk(i (r) Tk (Hom (r ))(1—¢5e)dzdt+T/ Gro(H (r(0))) T (Hm (r))(0)dz

/Q/ Gu(H Hin(r)) ‘b“dsdzdw(n, ).

Due to G (s)Tk(s) = k|Gr(s)| for each s € R, it is possible to conclude from (4.66) that

Tao > fk/ |G (H ()2 (1 — ¢5,5)dzdt+Tk/ |G (H, (r(0)))?dz (4.67)

- k/ / G(H |28¢55d dzdt + 0(n,1).
Qr

Note that

31 +Z52 > €(n,7). (4.68)
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As a result of the previous convergence results, we can deduce from (4.58), (4.60), (4.62), (4.63) and
(4.68) that (4.57) is valid and that the proof of Lemma 4.3 is finished. O

Step 5: Here, we will verify that the limit o, = ®(z,t, w, Vw)x{r<k} and we’ll demonstrate the weak
convergence in L'(Qr) of ®(z,t,w", Vw")VT(r") as n tends to zero.

Lemma 4.4 The subsequence of w" given in Step 3 verifies for every k > 0,

lim @(z,t,w”,Vw”)VTk(r”)dzdt§/ 0 VT (r)dzdt. (4.69)

1=0JQr T

Proof: For any k > 0, let W := (T}, (r") — Ti(r),) and using H,,(r")W(1 — ¢s.) as test function in
(737,), we obtain

T orn
/ <§;Hm(r”)Wﬁ(1—¢5,s)>dt+/ O(z,t,w", V) VW, Hp, (r") (1 — @5, )dawdt (4.70)
0

T

+/ @(z,t,w",Vw”)VHm(T”)Wﬂ(l—(b(;,s)dzdt—/ D(z,t,w", Vw)Vs . Hp, (r" )W, dzdt

T

- / FTEn (W (1 = 65.2)dzdt — / ' (div(F"); Hyp ()W (1 = 65.2) )t

+ Hp (r"YWH (1 — ¢5.0)dN] — / Ho (r"YWH (1 — ¢ps,e)dA",
QT T

thus passing to the limit in (4.70) as 1 tends to 0, r tends to 400 and m tends to +o0o, the real number
k > 0 is fixed and according to Lemma 4.3, we find

T
or"

im i . HW(1 — > 0.
[ (% 20—
As W7 converges to (Ti(r) — Ty(r),) weakly in LP~ (0, T; Wo**)(Q)) which compactly embedded into
LY(Qr), then W converges to (Tk(r) — Ti(r),) a.e in Q7 and weakly* in L>°(Qr) as 7 — 0 and for each
r > 0.
Using Lebesgue convergence Theorem, for all > 0, for every m > 1 and the properties of T (7)., we

obtain

lim lim D(z,t,w", Vw)\V s e Hp (r" )W dzdt = 0.

r—+oon—0 Qr

Due to the convergence of div(F") to div(F) strongly in L&) (0,7; W~12()(Q)) and using (4.12),
(4.14), and the characteristics of Tk (7)., we obtain

T
lim lim <dz‘v(F”),Hm(r’7)Wr’7(l—¢575)>dt:O.

r—+4o00 n—0 0

The weak convergence of f7 to f in L'(Qr), the almost everywhere convergence of H,,(r")W/ to
H,, (r)(Tk(r) — Ty (r),) in Qr and weakly* in L*°(Qr), as n — 0 and for every r > 0, and accord-
ing to Lebesgue’s dominated convergence Theorem and properties of Tk (r),., this leads to f” converges
to f weakly in LY (Qr), and H,,(r")W,? conveys to H,,(r)(Tk(r) — Tk(r),) almost everywhere in Q7 and
weakly* in L°(Qr), when 1 — 0, we conclude that

lim lim ST Hp, (rMWH(1 — ¢5,c)dzdt = 0.

r—+oon—0 Qr
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Since || Hyy, (r" )W Lo (@) < 2k and by means Lemma 4.1, we get

[ HLMWIO - gsaaN| < 2k / (1 — grohdNl + 2% / (1 — gyoo)an,
QT T

T

and

Hpy (rMYWN (1 — ¢5.6)dN] = £(n, 6, ).
Qr

Similarly,

Hp(r" W (1 = ¢5.0)dNL = £(n, 6,¢).
Qr

Next, we prove that fQT O (z,t,w", Vw")VH,, (r" YW (1 — ¢s5.)dzdt = £(n,m,d, ). For this purpose, we
have

1
’7/ Bz, t,w", V) VW (1 — ¢5..)dzdt
M J{m<|rn|<2m}

2k b !
L2 000 g 4 T T (1 — )zt
M Jim<|rr|<am) 08
+ S 1Ll O 1By + (Vg )zt
m Jor
2k b !
<= M@(z,t7w’7,Vw”)Vw"(l _¢6,8)d2dt
M Jim<pj<amy 08

+ %(p(ﬁ) +p(Bk) + p(Vg")) =11 + I,

where C' is a constant independent of m and

.
p(ﬁ) <max{||£”Lp " (Qr )7||£||(Lpp)(z) )}7
p(Br) < max { [ Bl %) s BRI E00 00 b
o
p(Vg") < maX{HVg"HLp(z)(QT), IVg" HLp(z)(QT)}

As Ty = ¢(m), we obtain

2k b "
7, -2k OonlZ ") 4, TV (1 — o )zt
m Jim<|rn|<2m} s
2k b "
_ sk mcp(zi’ w", Vw)Vwmps . dzdt
m 88
{m<|rn|<2m}
2k b. "
L2k 900 W) g 4w, Ve )V (1 — s )t

m Jim<prrj<omy 08

n
_ 2k M@(z,t,w", V)V v dadt.

m Jim<jmi<omy 08

Taking ¢>° =1 — YFyt, and from Lemmas 4.2, 4.1 we infer fQT > Fdut < 8+ ¢, thus, as p%¢ verifies
(4.44), and by means Lemma 4.2, we find

n
2" M@(z,t,w",Vm")Vw"(l — w;rwj)dzdt < ln,m)+06+e = Ln,,de).

M Jim<jnj<amy 08
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Similarly, we arrive at the same result for the other terms. Therefore, we make our estimate far-from E :
/ O(z,t,w", Vw) VW H,,(r")(1 — ¢5,¢)dzdt < £(n,r,m,d,¢). (4.71)
T
Putting together (4.42), (4.45) and (4.71), and again choosing m > k, we get

lim @(z,t,w",Vw”)VTk(r")dzdtS/ oxVTi(r)dzdt.

1=0JQr T
O
Lemma 4.5 Let k > 0, the subsequence of w" established in step 3 verifies the following conditions
) Ob, (z,w"
7171_% QTU((‘)S) {(I)(z,t, wl, V'l (m<ky) — (2,1, w, VU’X{ITISk})} (4.72)
X [V'wnx{wqgk} - V'wX{mSk}]dzdt =0.
Proof: For fixed k > 0, due to (3.2) and (3.5), we obtain
0b n
T :/ %(@(z,t,w",anxﬂrﬂgk} fé(z,t,w,VwX{‘,.‘Sk}) (4.73)
T

X (anX{erllgk} - VwX{MSk})dZdt > 0.
We write J7 = J" + T3 + J5' with

jln = fQT WQ(% t,w", Vw")VwX“M‘Sk}dZdt,
Iy = - fQT w(@(zv t,w", Vul)Vwx | <kydzdt,

n(z,w"
T3 == [o, L2 (2t w, V) X<y (VX (1o <ky — VX (jr|<ry)d2dt.

Oby (z,w"
Observe that 77 = by,(z,w") — ¢ and %VU}”X{MKM = (VTk(r") + (g7 — Vzb(z7w’7))x{|r7,‘5k})
almost everywhere in Q7. We can consider that k where x|, <) converges to x{|,<x} almost everywhere
(see [14, Lemma 3.2]). We can achieve the following equation by passing to the limit in 7', 7, and J3'
as 7 tends to zero

lim 7 = lim (/ @(z,t,w",Vw")VTk(r”)dzdtJr/ <I>(z,t,w”,Vw”)x{WKk}Vg”dzdt)
n—0 n—0 Or =

T

— lim O (z,t,w", Vw)V b, (2, w")dzdt.
n—0 Qr

Thanks to (4.69), we get

lim j{'g/ UkVTk(r)dzdt—/ Uszb(z,w)dzdt—i—/ o, Vgdzdt

n—0 -
From (4.21)-(4.22), we obtain

n
lim 7)) = — lim D(z,t,w", Vw")x{\rn\q}m
n—0 n—0 Qr - 65

(%;w)) ! (VTk(r) + (Vg — V.b(z, w”))x{‘rn‘gk})dzdt = - /QT ok (VTi(r) — Vib(z,w) + Vg)dzdt.
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As a result of (4.4) and (4.21), we get for all K >0

%ii% J3' = — lim (<I>(z, t,w, Vw) X {|r|<k} (VTk(T) — (Vg = V.b(z,w")) xgjrn )<k}

1=0JQr
ab(2’7w77) 5b(z,w) —1
a ds ( Os ) (VT]G(T) + (Vg — Vzb(z,w”))xﬂrn‘gk})dzdt =0,
then, by passing to the limit in (4.73) as 7 tends to 0, we obtain (4.72). -

Corollary 4.1 For fixed k > 0, the subsequence w" setting in Step 3 satisfies
®(z,t,w", Vw") VT (r") — o, VTi(r) weakly in L*(Qr), as n — 0, (4.74)
with

o = (2, t,w, VW), <., almost everywhere in Qr. (4.75)
Proof: Observe that

' = by(z,w") — g" and quunx{m‘sk} = (VTk(r") + (9" — Vzb(z,w”))x{w,‘sk}) a.e. in Qr
and consider k where x(|n|<x} converges a.e. to xyjr<x} (see [14, Lemma 3.2]).

We note that w” converges to w almost everywhere in Qr, and Ty (r") converges weakly to Tx(r) in
LP (0,T; Wol’p(z)(Q)), (2, t,w", Vw")x{jn|<ky converges weakly to oy in (L") (Qr))N. According to
(4.69), (4.72) and due to

by (z,w")

55 [@(z,t,w", Vwx{r<k}) — (2, t,w, VwX{\TISk}} [anXﬂrmgk} — VwX{\TISk}} converges to 0,

strongly in L*(Qr) as n tends to 0.
Combining the results of the convergence results given previously and the application of the usual Minty
argument, we can affirm that (4.74) and (4.75) are true.
b 7
Observe that Vw” = (%
s
gin LP (0,T; Wol’p(z)(Q)), and according to (4.74)-(4.75), we get

—1
) (VI (r") — V.by(z,w") + ¢g7) ae. in Qy, ¢" converges strongly to

)\ —1
/Q @ (=, (PE ) T (1) by o) + ")) (VTG — Vb2, 0) + )

= /T <I><z, t,w, (ab(;;w))il(VTk(r) — V.b(z,w) + g)) (VTi(r) — V,b(z,w) + g)dzdt + £(n).
(4.76)

—1
Hence, <I’(z, t,w", (W) (VT(r") — V.by(z,w") + g"))(VTk(r”) — V.by(z,w") + g") converges

-1
strongly to <I>(z, t,w, (%) (VT (r) — V3b(z,w) +g)) (VTk(r) — V.b(z,w) + g) in L' (Qr), then by

coercivity argument

_ p(2)
min {(Z)7 75 ) VTG + (g7 = Viby (2 07)
by (2, w7)

<ozt ( D I107) — Vb () + 7))

S

almost everywhere in Qr, since g" converges strongly to g in L? (0,7} WO1 P (z)(Q)) and using Vitali’s
theorem, we conclude that

Ty (r") — Tx(r) strongly in LP~ (0,T; W, ") ().
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This implies the proof of Theorem 4.2. O
Step 6: Assume that k be a positive real number and let S be a function in W?%°(R) where S’ has

compact support such that supp(S’) C [—k, k] and ¢ € C°(Qr).
Let w satisfies (3.10), (3.13), (3.11) and (3.12), if we take S’(r")¢ as test function in (P,), we get

T
/ <<pt,S(r")>dt+ S'(rM®(z,t,w", Vw")Vodzdt + S"(rM®(z,t,w", Vw")Vrlodzdt (4.77)
0

Qr Qr
:/ F18' (rMpdzdt + o F18' (r"Vpdzdt + . S (rM F'Nr pdzdt + , S (r")pd |
- S'(r"Med\,
Qr

with 77 = b(z,w") — g". Due to Theorem 4.2, we can pass to the limit in all terms of (4.77), when n — 0
except the last two terms which pose some complications, we can write according to the arguments of
[39] that

SMedN, = [ SEmputan + [ S M- vy, (4.78)
Qr Qr Qr

Note that 1/13“ is defined the same way as in Lemma 4.1, then we get

[ semea—spav]<c [ a-vhing = nd).

Qr

by taking S'(r")pyy in (P,), we obtain

S’(r")gow;'d)\z =— 18 (" dzdt — F1S' (rMV (o )dzdt
Qr Qr Qr

7/ FWS”(TW)VTUQO’L/);_dZdt+/ S (rMypyF dAT — S (pyf ) ydzdt
T Qr Qr

+ S (rM@(z,t,w", Vw")V (o )dzdt + S (rM@(z,t,w", Vw") Vrypd odzdt.
Qr Qr

Thanks to (4.2)-(4.3) and properties of 13, we get
F18' (rMpyf dzdt = £(n,8), [ F1S'(r")V (g )dzdt = £(n, ).
Qr Qr
By Lemma 4.1, we have

S MputaNt| <o [ uraNt =i,

‘ Qr Qr

as S(r) € L¥ (0,T; Wy " () N L®(Qr), we obtain [, S(r")(@)e )idzdt = ((n, ).

According to Theorem 4.2 and Lemma 4.1, we infer S (rM®(z,t,w", Vw")V(z/;;'ga) dzdt = ((n,9),
Qr
and fQT S (rM)®(z, t,w", Vw)Vriypd o dzdt = £(n,d).

Next, using (4) we conclude

A S'(rMe dXT = £(n). (4.79)
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In the same way, we can also show that

S'(r"Mp dA" = 4(n). (4.80)
Qr
Due to the convergence findings given previously, one can pass to the limit as 1 tends to zero in (4.77)
and to deduced that w satisfies (3.10). It is now necessary to show that S(r) satisfies (3.13). In the
beginning, it is crucial to remember that because we have S(b,(z,w") — g") = S(b(z,w) — g) a.e. in Qr,
and

S(by(z,w") — g") is bounded in L? (0,T, WP (Q) N L®(Qr), (4.81)
secondly, we consider the convergence of the terms of (4.77), we deduce that

95(by (2, w") — g")
ot

Thanks to (4.81)-(4.82), and by Aubin’s type lemma we conclude (see e.g.,[41,44], the proof of this
Corollary is identical to the corresponding result in the case of a constant exponent p) that S(b,(z, w") —
g") is in a compact set of C([0,7]; L'(£2)). On the one hand, we have S(b,(z, w") — g")(t = 0) converges
to S(b(z,w) —g)(t = 0) in L*(2). On the other side, the smoothness of S give that S(b,(z, w") — ¢g")(t =
0) = S((by(z,w)) converges strongly to S(b(z,wp)) in LY(Qr) for all ¢ < 400, according to (4.8), we
deduced that (3.13) is true.

Now, we consider ,,(r") as test function in (P,) where ¢ € C°(Qr), we obtain

is bounded in L'(Qr) + L™ (0,7, W1 (2)(Q)). (4.82)

’ 7 1
_/ (003 Bt | B (0", V) Vipdzdtt— / B(z,t,w", Vu')Vrlpdzdt
0 QT M J{m<rn<2m}
T
= f"ﬁm(r")godzdt—/ <div(F’7) ; Bm(rn)<p>dzdt
Qr 0
+ [ B dNL — [ Bu(r")pdAT.  (4.83)
Qr Qr

We reason as before, in particular as in the proof of Lemma 4.2 to obtain
T —
| s Butmyat=tom). [ Bt w0, S Tdzds = tin,m)
0 Qr
and
T
[ 8y pdzde = tn.m), [ (div () (s Y dzdt = e m).
T 0

In light of the Theorem 4.2 we get

1 1
—/ D(z,t,w", VwT)Vrlpdzdt = —/ O(z,t, w, Vw)Vredzr +  £(n).
m {m<rn<2m} m {m<r<2m}

We now examine the last two terms on the right side of (4.83), for this we have

B (r)ipdNT. = /Q oMV + [ gt

T

Qr

where ¢, (s) = Hp,(s1). By construction of A, we have

/ @dAZ:/ wd\T + £(n).
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Adopting the same reasoning as in (4.77) -(4.78) by considering ¢, (r") = S’(r") we get

Dm (rM)pd\] = £(n).

QT
If we can show that
B (M) dAT = £(n), (4.84)
Qr
thus, we get for each ¢ € C°(Qr)
1
lim — D(z,t,w", Vw)Vredzdt = / wd\T. (4.85)
m=00 M J{m<r<2m} T

Therefore, we have

B (r)pdN". = /Q T A M IR e

Qr

thanks to Lemma 4.1, we get
B (rM)e(l =5 ) dA” = £(, 0).
Using S (r")py5 as test function in the formulation of w”, we obtain

T
B (rM) s dN :/O <(<pwg)t;ﬁm(rn)>dt— B (1)@ (2, t,w", Vw)V (ptb5 )i )dzdt

Qr Qr
1
- — O (z, t,w", Vw)Vrlpypy dzdt + T Bm (r") by dzdt
M J{m<rn<2m} Qr
1
+ / F B (r"M)V (ptpy )¢ )dzdt + — / F'Nr s dzdt + B (r")pips dNT.
T M J {m<rn<2m} Qr

By (4.20)-(4.21), Lemmas 4.1, 4.2 and the famous Lebesgue’s convergence Theorem lead to (4.84). Hence,
we have (4.85) for each ¢ € C°(Qr).
If p € C*°(Qr), we can separate

1 1
—/ D(z,t,w", Vw)Vrodzdt = —/ ®(z,t,w", V") Vrops dedt (4.86)
m J{m<r<2m} m J{m<r<2m}

1
+ — / ®(z,t,w", V") Vre(l — i)dzdt,
m J{m<r<2m}

from (4.85), we obtain
1
lim — @(z,t,w",Vw")Vr<p¢;dzdt :/ wdut +0(9),

Mm=00 M J{m<r<2m} T

using Lemma 4.2, we obtain
1
—/ ®(z,t,w", V") Vrlp(l — ) dzdt = £(n,m, ).
mM J{m<rn<2m}
Due to Theorem 4.2, we conclude that
1
— / ®(z,t,w", V") Vre(l — i)dzdt = £(m,§).
m J{m<r<2m}

By taking all of the previous factors into account, we have (3.11) for all

¢ € C®(Qr) and using a density argument (3.11) holds for all ¢ € C(Qr). To obtain (3.12) we can
proceed as before using 1/13' instead of 5 and the other way around, which completes the proof of
Theorem 4.1.
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