(3s.) **v. 2025 (43)** : 1–5. ISSN-0037-8712 doi:10.5269/bspm.70198

Even perfect numbers in Narayana's sequence

Prasanta Kumar Ray and Kisan Bhoi*

ABSTRACT: In this note we prove that 6 and 28 are the only perfect numbers present in Narayana's sequence.

Key Words: Narayana's sequence, perfect numbers, linear forms in logarithms, reduction method.

Contents

1	Introduction	1
2	Preliminaries	2
	2.1 Some Properties of Narayana's sequence	2
	2.2 Lower bound for linear forms in logarithms	2
	2.3 Baker-Davenort reduction method	3
0		•
3	Proof of Theorem 1.1	č

1. Introduction

We know that a perfect number is a positive integer that equals the sum of its positive divisors excluding the number itself. Euclid proved that $2^{p-1}(2^p-1)$ is an even perfect number whenever 2^p-1 is prime. After Euclid, Euler proved that the formula $2^{p-1}(2^p-1)$ yields all even perfect numbers. Thus, Euclid-Euler theorem states that an even positive integer is perfect if and only if it has the form $2^{p-1}(2^p-1)$ where 2^p-1 is a prime.

Searching of perfect numbers in different binary recurrent sequences has been a source of attraction for many researchers. For instance, F. Luca [6] showed that there are no perfect Fibonacci or Lucas numbers. Panda and Davala [8] found that 6 is the only perfect number in balancing sequence. Perfect Pell and Pell-Lucas numbers were studied in [2]. Facó and Marques [5] extended the work of Luca by taking the k-generalized Fibonacci sequence $(F_n^{(k)})_{n\geq -(k-2)}$ and they presented that there are no even perfect numbers in $(F_n^{(k)})$ when $k\not\equiv 3(\mod 4)$. In 2021, Bravo and J. L. Herrera [1] proved that no perfect numbers are present in the generalized Pell sequence.

Inspired by the above works, we try to search a similar problem in a ternary recurrent sequence, namely Narayana's sequence. Narayana's sequence, $\{N_n\}_{n\geq 0}$ is recursively defined as $N_{n+3}=N_{n+2}+N_n$ where N_n denotes the n-th Narayana number with initial terms $N_0=0, N_1=1, N_2=1$. The first few terms of this sequence are $0,1,1,1,2,3,4,6,9,13,19,28,41,\cdots$. In this study, we show that 6 and 28 are the only perfect numbers in the Narayana's sequence. In order to prove this, we use lower bounds for linear forms in logarithms and Baker-Davenport reduction procedure and solve the Diophantine equation $N_n=2^{p-1}(2^p-1)$.

Our main result is the following.

Theorem 1.1 The only even perfect Narayana numbers are 6 and 28.

^{*} Corresponding author. 2010 Mathematics Subject Classification: 11B39, 11J86, 11D61. Submitted November 03, 2023. Published September 17, 2025

2. Preliminaries

2.1. Some Properties of Narayana's sequence

Before proceeding the proof, we recall some properties of Narayana sequence which will be used in the next section.

The characteristic polynomial of $\{N_n\}_{n\geq 0}$ is given by $f(x)=x^3-x^2-1$ and the characteristic roots are:

$$\alpha = \frac{1}{3} + \left(\frac{29}{54} + \sqrt{\frac{31}{108}}\right)^{\frac{1}{3}} + \left(\frac{29}{54} - \sqrt{\frac{31}{108}}\right)^{\frac{1}{3}},$$

$$\beta = \frac{1}{3} + w\left(\frac{29}{54} + \sqrt{\frac{31}{108}}\right)^{\frac{1}{3}} + w^2\left(\frac{29}{54} - \sqrt{\frac{31}{108}}\right)^{\frac{1}{3}},$$

$$\gamma = \bar{\beta} = \frac{1}{3} + w\left(\frac{29}{54} - \sqrt{\frac{31}{108}}\right)^{\frac{1}{3}} + w^2\left(\frac{29}{54} + \sqrt{\frac{31}{108}}\right)^{\frac{1}{3}},$$

where $w = \frac{-1+i\sqrt{3}}{2}$. The Binet's formula is given by

$$N_n = X\alpha^n + Y\beta^n + Z\gamma^n$$
 for all $n \ge 0$,

with

$$X = \frac{\alpha}{(\alpha - \beta)(\alpha - \gamma)}, Y = \frac{\beta}{(\beta - \alpha)(\beta - \gamma)}, Z = \frac{\gamma}{(\gamma - \alpha)(\gamma - \beta)}.$$

Another way to write this is as $N_n = C_{\alpha}\alpha^{n+2} + C_{\beta}\beta^{n+2} + C_{\gamma}\gamma^{n+2}$ for all $n \geq 0$ where $C_x = \frac{1}{x^3+2}$ for $x \in \{\alpha, \beta, \gamma\}$. The minimal polynomial of C_{α} is $31x^3 - 31x^2 + 10x - 1$ and all of its zeros are contained within the unit circle. The following can be approximated:

$$\alpha \approx 1.46557$$
; $|\beta| = |\gamma| \approx 0.826031$; $|C_{\beta}\beta^{n+2} + C_{\gamma}\gamma^{n+2}| < 1/2$ for all $n \ge 1$.

It is easy to establish through induction that

$$\alpha^{n-2} \le N_n \le \alpha^{n-1}$$
 holds for all $n \ge 1$. (2.1)

2.2. Lower bound for linear forms in logarithms

Baker's theory acts as a vital role in reducing the bounds concerning linear forms in logarithms of algebraic numbers. Let η be an algebraic number with minimal primitive polynomial

$$f(X) = a_0 x^d + a_1 x^{d-1} + \dots + a_d = a_0 \prod_{i=1}^d (X - \eta^{(i)}) \in \mathbb{Z}[X],$$

where the leading coefficient $a_0 > 0$, and $\eta^{(i)}$'s are conjugates of η . Then, the logarithmic height of η is given by

$$h(\eta) = \frac{1}{d} \left(\log a_0 + \sum_{j=1}^d \max\{0, \log |\eta^{(j)}|\} \right).$$

The height function has the following properties which we will need later in our proof.

$$h(\eta + \gamma) \le h(\eta) + h(\gamma) + \log 2,$$

$$h(\eta \gamma^{\pm 1}) \le h(\eta) + h(\gamma),$$

$$h(\eta^k) = |k|h(\eta), \quad k \in \mathbb{Z}.$$

We state the following theorem of Matveev (see [7] or [3, Theorem 9.4]), which provides a large upper bound for the subscript n in our main equation.

Theorem 2.1 Let $\eta_1, \eta_2, \ldots, \eta_l$ be positive real algebraic integers in a real algebraic number field \mathbb{L} of degree $d_{\mathbb{L}}$ and b_1, b_2, \ldots, b_l be non zero integers. If $\Gamma = \prod_{i=1}^{l} \eta_i^{b_i} - 1$ is not zero, then

$$\log |\Gamma| > -1.4 \cdot 30^{l+3} l^{4.5} d_{\mathbb{L}}^2 (1 + \log d_{\mathbb{L}}) (1 + \log D) A_1 A_2 \dots A_l,$$

where $D = max\{|b_1|, |b_2|, \dots, |b_l|\}$ and A_1, A_2, \dots, A_l are positive real numbers such that

$$A_{i} \geq \max\{d_{\mathbb{L}}h(\eta_{i}), |\log \eta_{i}|, 0.16\} \text{ for } j = 1, \dots, l.$$

2.3. Baker-Davenort reduction method

The following is the result of Baker and Davenport due to Dujella and Pethő [4, Lemma 5], which provides a reduced bound for the subscript n.

Lemma 2.1 Let M be a positive integer and p/q be a convergent of the continued fraction of the irrational number τ such that q > 6M. Let A, B, μ be some real numbers with A > 0 and B > 1. Let $\varepsilon := \|\mu q\| - M\|\tau q\|$, where $\|.\|$ denotes the distance from the nearest integer. If $\varepsilon > 0$, then there exists no solution to the inequality

$$0 < |u\tau - v + \mu| < AB^{-w}$$
,

in positive integers u, v, w with

$$u \le M \text{ and } w \ge \frac{\log(Aq/\varepsilon)}{\log B}.$$

3. Proof of Theorem 1.1

Consider the equation

$$N_n = 2^{p-1}(2^p - 1). (3.1)$$

From (2.1) and (3.1) we have

$$2^{2(p-1)} < 2^{p-1}(2^p - 1) = N_n \le \alpha^{n-1} < 2^{n-1}$$

and

$$\alpha^{n-2} \le N_n = 2^{p-1}(2^p - 1) < 2^{2p-1}.$$

Thus

$$2p < n+1 \text{ and } n < (2p-1)\frac{\log 2}{\log \alpha} + 2 < 4p.$$

Substituting the Binet's formula of N_n in (3.1), we have

$$C_{\alpha}\alpha^{n+2} + C_{\beta}\beta^{n+2} + C_{\gamma}\gamma^{n+2} = 2^{p-1}(2^p - 1),$$

which implies

$$C_{\alpha}\alpha^{n+2} - 2^{2p-1} = -(C_{\beta}\beta^{n+2} + C_{\gamma}\gamma^{n+2}) - 2^{p-1}.$$
(3.2)

Taking absolute values and dividing on either sides of (3.2) by 2^{2p-1} , we get

$$\left| C_{\alpha} \alpha^{n+2} 2^{-(2p-1)} - 1 \right| < \frac{2}{2^p}.$$
 (3.3)

Observe that, the left-hand side of the above inequality is in the form of $|\Gamma|$ as in Theorem 2.1. It is clear that $\Gamma = C_{\alpha} \alpha^{n+2} 2^{-(2p-1)} - 1$ is nonzero. If $\Gamma = 0$, then

$$C_{\alpha}\alpha^{n+2} = 2^{2p-1}. (3.4)$$

Let σ be the automorphism of the Galois group of the splitting field of f(x) over \mathbb{Q} defined by $\sigma(\alpha) = \beta$, where $f(x) = x^3 - x^2 - 1$ is the minimal polynomial of α . The action of σ on both sides of (3.4) gives

$$|C_{\beta}\beta^{n+2}| = 2^{2p-1},$$

which is impossible since $|C_{\beta}\beta^{n+2}| < |C_{\beta}| \approx 0.407506... < 1$, whereas $2^{2p-1} > 1$. Let

$$\eta_1 = C_{\alpha}, \ \eta_2 = \alpha, \ \eta_3 = 2, \ b_1 = 1, \ b_2 = n+2, \ b_3 = -(2p-1), \ l = 3,$$

with $d_{\mathbb{L}} = [\mathbb{Q}(\alpha) : \mathbb{Q}] = 3$. Since 2p < n+1, $D = \max\{2p-1, n+2\} = n+2$. We compute the heights of η_1, η_2, η_3 as follows:

$$h(\eta_1) = h(C_\alpha) = \frac{\log 31}{3}, \ h(\eta_2) = h(\alpha) = \frac{\log \alpha}{3}, \ h(\eta_3) = h(2) = \log 2.$$

Thus, we take

$$A_1 = \log 31$$
, $A_2 = \log \alpha$, $A_3 = 3 \log 2$.

By virtue of Theorem 2.1, we have

$$\log |\Gamma| > -1.4 \cdot 30^6 3^{4.5} 3^2 (1 + \log 3) (1 + \log(n+2)) (\log 31) (\log \alpha) (3 \log 2)$$

> -7.38 \cdot 10^{12} \log(1 + \log(n+2)).

From (3.3), we get

$$p \log 2 - \log 2 < 7.38 \cdot 10^{12} (1 + \log(n+2)),$$

which reduces to

$$p < 1.1 \cdot 10^{13} (1 + \log(n+2)).$$

Since n < 4p, we have

$$n < 4p < 4.4 \cdot 10^{13} (1 + \log(n+2)),$$

which implies

$$n < 1.58 \cdot 10^{15}$$
.

To reduce the bound, put

$$\Lambda = (n+2)\log\alpha - (2p-1)\log 2 + \log C_{\alpha}.$$

Then, (3.3) can be written as

$$|e^{\Lambda} - 1| < \frac{2}{2p} < \frac{1}{2}.$$

Note that $\Lambda \neq 0$ as $\Gamma \neq 0$. Since $|e^z - 1| < y < \frac{1}{2}$ for real values of z and y, implies |z| < 2y, we obtain

$$0<|\Lambda|<\frac{4}{2^p},$$

which implies that

$$|(n+2)\log \alpha - (2p-1)\log 2 + \log C_{\alpha}| < \frac{4}{2^p}.$$

Dividing both sides by log 2 gives

$$\left| n \left(\frac{\log \alpha}{\log 2} \right) - (2p - 1) + \left(\frac{\log(\alpha^2 C_\alpha)}{\log 2} \right) \right| < 5.78 \cdot 2^{-p}. \tag{3.5}$$

Now, with the notations of Lemma 2.1, let

$$u = n, \ \tau = \left(\frac{\log \alpha}{\log 2}\right), \ v = (2p - 1), \ \mu = \left(\frac{\log(\alpha^2 C_\alpha)}{\log 2}\right), \ A = 5.78, \ B = 2, \ w = p.$$

See that $\frac{\log \alpha}{\log 2}$ is irrational otherwise we would get $2^s = \alpha^t$ for some coprime positive integers s and t. Then, applying the automorphism σ previously defined, we get $1 < 2^s = |\beta^t| < 1$, a contradiction. Chose $M = 1.58 \cdot 10^{15}$. We find that the convergent q_{41} exceeds 6M with $\varepsilon := ||\mu q_{41}|| - M||\tau q_{41}|| = 0.143622$. Now, Lemma 2.1 says that there exists no solution to the inequality (3.5) if

$$p \ge \frac{\log((5.78q_{41})/0.143622)}{\log 2} \ge 62.$$

Thus, we must have p < 62 and hence n < 248. Lastly, we execute a *Mathematica* program in the above range and obtain all the solutions mentioned in Theorem 1.1. This completes the proof of Theorem 1.1.

Acknowledgments

The authors thank the anonymous referees for their valuable suggestions and comments.

References

- 1. Bravo, J.J. and Herrera, J. L., Even perfect numbers in generalized Pell sequences, Lith. Math. J. 61(1), 1-12, (2021).
- 2. Bravo, J.J. and Luca, F., Perfect Pell and Pell-Lucas numbers, Stud. Sci. Math. Hung. 56(4), 381-387, (2019).
- Bugeaud, Y., Mignotte, M. and Siksek, S., Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. Math. (2) 163, 969-1018, (2006).
- 4. Dujella, A. and Pethő, A., A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. 49, 291-306, (1988).
- Facó, V. and Marques, D., Even perfect numbers among generalized Fibonacci sequences, Rend. Circ. Mat. Palermo 63, 363-370, (2014).
- 6. Luca, F., Perfect Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 49, 313-318, (2000).
- 7. Matveev, E.M., An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64, 125-180, (2000). Translation in Izv. Math. 64, 1217-1269, (2000).
- 8. Panda, G. K. and Davala, R. K., Perfect balancing numbers, Fibonacci Quart. 63(3), 261-264, (2015).

Prasanta Kumar Ray,
Department of Mathematics,
Sambalpur University, Jyoti Vihar,
India.

E-mail address: prasantamath@suniv.ac.in

and

Kisan Bhoi.

Department of Mathematics GITAM (deemed to be) University,

Hyderabad India.

 $E ext{-}mail\ address:$ kbhoi@gitam.edu