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abstract: In this work, we consider hyperbolic and parabolic evolution problems on the Feynman-Dyson
Hilbert space, FD2

⊗. We use the possible opportunities given in FD2
⊗ to find solutions for both homogeneous

and non-homogeneous cases. Therefore, we first focus the structure of the Feynman-Dyson Hilbert space from
a mathematical perspective in terms of the construction of this space and the lifting of operator theory to this
time-ordered setting. We then observe that FD2

⊗ allows operators acting at different times to commute, while
maintain their relative position on paper. We also deal with a time-ordered version of the Hille-Yosida theorem
for semigroups of operators. This approach has the added advantage of requiring the weakest known domain
and continuity conditions. We show these advantages for the generic classes of time-dependent homogeneous
hyperbolic and parabolic problems. We also see that the theory has advantages for operators with no time
dependence.
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1. Introduction

This paper is devoted to study evolution equations using Feynman’s time-ordered operator calculus,
( [1,2]), as developed by Gill and Zachary (see [3,4]). Feynman’s basic idea was to first imagine that
physical reality is a three-dimension motion picture in which time directs motion from the past to the
present and to the future.

Using a fixed Hilbert space H as their base, Gill and Zachary took Feynman literally and first con-
structed a film (Feynman-Dyson Hilbert space, FD2

⊗). This film allowed operators acting at different
times to commute while still maintaining their position on paper as required mathematically (time-
ordering). This approach also allowed them to lift all of operator theory to this setting and to prove
a time-ordered version of the Hille-Yosida Theorem for semigroups of operators. The original purpose
of their work was to prove the last two remaining conjectures of Dyson concerning the foundations for
quantum electrodynamics (see [5]).

Mathematical research on the Feynman calculus can be traced from the early works of Fujiwara [6],
Miranker and Weiss [7], Nelson [8], Araki [9], Maslov [10] and Johnson and Lapidus [11]. References to
all contributions can be found in the book of Gill and Zachary, [4]. A more recent study using Feynman’s
operator calculus was done by Gill and Parga, [12]. In connection with our work, we study hyperbolic
and parabolic evolution problems on Feynman-Dyson space. Hyperbolic and parabolic equations have
been studied in many works previously, for example, [13], [14], [15], [16], [17], [18], [19], [20] and [21].
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The purpose of this paper is to study the hyperbolic and parabolic evolution equations by applying
the basic ideas and foundations for the general study of evolution equations on Feynman-Dyson space
based on a separable Hilbert space H. This paper is organized as follows. In the first section we would
like to explain the mathematical film given in the works of Gill and Zachary, [3] , [4] and [22], which
is a fiber bundle over a fixed time-interval I = [a, b] and each fiber is a Hilbert space attached to a
fixed time point in I. In the second section, we construct hyperbolic evolution equations on FD2

⊗, study
their homogeneous and inhomogeneous cases and give solutions for both cases, respectively. In the third
section, we study parabolic evolution equations on FD2

⊗ in the sense of Fattorini’s theorem, [23] and [4].

2. On the Feynman-Dyson Hilbert Space

In this section, we review briefly the construction of Feynman-Dyson Hilbert space based on a sep-
arable Hilbert space H. The results, along with additional details and history, can be found in [3], [4]
and [22].

We first need to give the definition of infinite products of uncountably many complex numbers and,
in order to avoid trivialities, here it is assumed that all terms in any product are nonzero.

Definition 2.1. If {zν} is a sequence of complex numbers indexed by ν ∈ I,

1. We say that the product
∏
ν∈I zν is convergent with limit z if, for every ε > 0, there is a finite set

J(ε) such that for all finite sets J ⊂ I with J(ε) ⊂ J , we have |
∏
ν∈J zν − z| < ε.

2. We say that the product
∏
ν∈I zν is quasi-convergent if

∏
ν∈I |zν | is convergent.

If the product is quasi-convergent, but not convergent, we assign it the value zero. Since I is uncountable
and 0 < |

∏
ν∈I zν | < ∞ if and only if

∑
ν∈I |1 − zν | < ∞ , it follows that convergence implies that at

most a countable number of the zν ̸= 1.

Let H be a infinite-dimensional separable Hilbert space, and I = [0, T ], 0 < T ≤ ∞. For each ν ∈ I,
let Hν = H and for {φν} ∈

∏
ν∈I Hν let

∆I = {{φν} :
∑
ν∈I

| ||φν ||ν − 1 | < ∞}.

Define a functional on ∆I by

Φ(ψ) =
n∑
k=1

∏
ν∈I

⟨φkν , ψν⟩ν ,

where ψ = {ψν}, {φkν} ∈ ∆I , for 1 ≤ k ≤ n. This functional is linear in each component. Let us denote
Φ by

Φ =
n∑
k=1

⊗ν∈Iφ
k
ν ,

and define the algebraic tensor product, ⊗ν∈IHν , by

⊗ν∈IHν = {
n∑
k=1

⊗ν∈Iφ
k
ν : {φkν} ∈ ∆I , 1 ≤ k ≤ n, n ∈ N}.

Lemma 2.1. The following is a well-defined linear functional on ⊗ν∈IHν :

(
n∑
k=1

⊗ν∈Iφ
k
ν ,

m∑
l=1

⊗ν∈Iψ
l
ν)⊗ =

m∑
l=1

n∑
k=1

∏
ν∈I

⟨φkν , ψ
l
ν⟩ν .
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For the construction of FD2
⊗, we need to understand the structure of ⊗ν∈IHν .

Definition 2.2. Let ϕ = ⊗ν∈Iϕν and ψ = ⊗ν∈Iψν be in ⊗ν∈IHν .

1. The vector ϕ is said to be strongly equivalent to ψ (i.e; ϕ ≡s ψ) if and only if∑
ν∈I

|1 − ⟨ϕν , ψν⟩ν | < ∞.

2. The vector ϕ is said to be weakly equivalent to ψ (i.e; ϕ ≡w ψ) if and only if

∑
ν∈I

|1 − |⟨ϕν , ψν⟩ν | | < ∞.

Theorem 2.2. The relations of strong and weak are equivalence relations on ⊗ν∈IHν , which decompose
⊗ν∈IHν into disjoint (orthogonal) equivalence classes.

Lemma 2.3. We have ϕ ≡ω ψ if and only if there exist zν , |zν | = 1, such that ⊗ν∈Izνϕν ≡s ⊗ν∈Iψν .

Lemma 2.4. Let ⊗ν∈Iφν be in ⊗ν∈IHν . Then:

(1) The product
∏
ν∈I ∥φν∥ν converges if and only if

∏
ν∈I ∥φν∥2

ν converges.

(2) If
∏
ν∈I ∥φν∥ν and

∏
ν∈I ∥ψν∥ν converge, then

∏
ν∈I⟨φν , ψν⟩ν is quasi-convergent.

(3) If
∏
ν∈I⟨φν , ψν⟩ν is quasi-convergent, then there exist complex numbers {zν}, |zν | = 1, such that∏

ν∈I⟨zνφν , ψν⟩ν converges.

Definition 2.3. For φ = ⊗ν∈Iφν ∈ ⊗ν∈IHν , H2
⊗(φ)s is defined to be the closed subspace generated by

the span of all ψ ≡s φ and it is called the strong partial tensor product space generated by the
vector φ. Likewise, H2

⊗(φ)ω is defined to be the closed subspace generated by the span of all ψ ≡ω φ and
it is called the weak partial tensor product space generated by the vector φ.

Theorem 2.5. For the partial tensor product spaces, we have the following:

(1) If ψν ̸= φν occurs for at most a finite number of ν then

ψ = ⊗ν∈Iψν ≡s φ = ⊗ν∈Iφν .

(2) The space H2
⊗(φ) is the closure of the linear span of ψ = ⊗ν∈Iψν such that ψν ̸= φν occurs for

at most a finite number of ν.

(3) If Φ = ⊗ν∈Iψν and Ψ = ⊗ν∈Iψν are in different equivalence classes of ⊗ν∈IHν , then

(Φ,Ψ)⊗ =
∏
ν∈I

⟨φν , ψν⟩ν = 0.

(4) H2
⊗(φ)ω =

⊕
ψ≡ωϕ[H2

⊗(φ)s].

Definition 2.4. Denote by H2
⊗ = ⊗̂ν∈IHν , the completion of the linear space ⊗ν∈IHν relative to the

inner product (·, ·)⊗.

The final tool to understand the construction of the mathematical film, is the orthonormal basis for
each strong partial tensor product space H2

⊗(φ), where 0 ̸= φ = ⊗ν∈Iφν . Anticipating the possibility
that, in the general case, a different (but equivalent) norm on each Hν may be needed, the assumption
that all Hν are identical is dropped.
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Let N be the natural numbers, and let {eνn, n ∈ N = N ∪ {0}} be a complete orthonormal basis for
Hν , for each ν. Let eν0 be a fixed unit vector in Hν and set E = ⊗ν∈Ie

ν
0 . Let F be the set of all functions

f : I → N such that f(ν) = 0 for all but a finite number of ν. Let F (f) be the image of f ∈ F (i.e.,
F (f) = {f(ν), ν ∈ I}), and set EF (f) = ⊗ν∈Ieν,f(ν), where f(ν) = 0 implies that eν,0 = eν0 and f(ν) = n
implies eν,n = eνn.

Theorem 2.6. The set {EF (f), f ∈ F} is a complete orthonormal basis for H2
⊗(E).

Let {eiν : i ∈ N} be a complete orthonormal basis for Hν . Replacing ν by t, for each i ∈ N and t ∈ I ,
and set Ei = ⊗t∈Ie

i
t. We define FDi

2 = H2
⊗(Ei) to be the strong partial tensor product space generated

by the vector Ei. The Feynman-Dyson space FD2
⊗, is defined by:

FD2
⊗ = ⊕∞

i=1FD
i
2 ⊂ H2

⊗.

This space provides the mathematical film over the interval [0, T ]. Since I is uncountable, FD2
⊗ is not

separable. However, each time slice (fiber over t) is isometrically isomorphic to Ht.

If H2
⊗ = ⊗̂t∈IH(t), let L(H2

⊗) be the set of bounded linear operators on H2
⊗ and let {A(t), t ∈ I} ⊂ L(H).

Define L(H(t)) ⊂ L(H2
⊗) by:

L(H(t)) =
{

A(t) = ( ⊗̂
b⩾s>t

Is) ⊗A(t) ⊗ ( ⊗
t>s⩾a

Is),∀A(t) ∈ L(H)
}
, (2.1)

where Is is the identity operator. Let L#(H2
⊗) be the uniform closure of the algebra generated by

{L(H(t)), t ∈ I}. For the family {A(t), t ∈ I} ⊂ L(H), the the family {A(t), t ∈ I} ⊂ L#(H2
⊗) commute

when acting at different times:
A(t)A(τ) = A(τ)A(t) for t ̸= τ .

Let
Az(t) =zA(t)R(z,A(t)),

where R(z,A(t)) is the resolvent of A(t). By Fundamental Theorem for Time-Ordered Integrals in [4],
Az(t) generates a uniformly bounded semigroup and lim

z→∞
Az(t)ϕ=A(t)ϕ for ϕ ∈ D(A(t)).

Theorem 2.7. The time ordered Yosida approximator Az(t) is a bounded linear operator and for each
Φ ∈ D, A(t)Az(t)Φ = Az(t)A(t)Φ. In addition:

1. Az(t) generates a uniformly bounded contraction semigroup on FD2
⊗ for each t, with lim

z→∞
Az(t)Φ =

A(t)Φ, for Φ ∈ D.

2. For each n, each set τ1, · · · , τn ∈ I and each set a1, · · · , an, ai ⩾ 0;
∑n
i=1 aiA(τ i) generates a

C0-semigroup on FD2
⊗.

Assume that A(t), t ∈ I is a closed, weakly continuous and that D(A(t)) = D(t) is dense in H. It
follows that this family has a weak HK-integral Q[a, b] =

∫ b
a
A(t)dt ∈ C(H) (the closed densely defined

linear operators on H). Furthermore, it is not difficult to see that Az(t), t ∈ I, is also weakly continuous
and hence the family {Az(t) | t ∈ I } ⊂ L(H) has a weak HK-integral Qz[b, a] =

∫ b
a
Az(t)dt ∈ L(H).

The family {Az(t) | t ∈ I } has a strong integral Qz[t, a] =
∫ t
a
Az(s)ds and the linear operator Qz[t, a]

generates a uniformly continuous C0 semigroup, by Fundamental Theorem for Time-Ordered Integrals,
[4].

The results up to this point only used the assumption that the family A(t), t ∈ I, is weakly continuous.
From now on it is assumed that, for each t, Q[t, a] and Q∗[t, a] are dissipative. This is equivalent to the
statement that Q[t, a] generates a C0-contraction semigroup of bounded linear operators on H, but in
practice this is easier to check. (These conditions do not imply that Q[t, a] solves the initial-value theorem
on H.)

This assumption is weaker than that of the family {A(t)} having a common dense domain. In all
counter examples, the family {A(t)} is assumed to be strongly continuous, or the conditions imposed
implies so (see Fattorini [23], pg. 408).
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Theorem 2.8. With the above assumptions,

1. For Φ ∈ D0, lim
z→∞

Qz[t, s]Φ = Q[t, s]Φ,

2. Q[t, s] generates a C0-contraction semigroup on FD2
⊗,

3. Q[t, r]Φ + Q[r, s]Φ = Q[t, s]Φ (a.s.c.),

4. lim
h→0

[(Q[t+ h, s] − Q[t, s])/h] Φ = A(t)Φ (a.s.c.),

5. lim
h→0

[(Q[t+ h, s] − Q[t, s])/h] Φ = −A(s)Φ (a.s.c.), and

6. lim
h→0

exp {τQ[t+ h, t]} Φ = Φ (a.s.c.),τ ⩾ 0.

The next result is the time-ordered version of the Hille-Yosida Theorem (see Pazy [17], pg. 8). It is
assumed that the family A(t), t ∈ I, is closed and densely defined.

Theorem 2.9. The family A(t), t ∈ I, has a strong HK-integral, Q[t, a], which generates a C0-contraction
semigroup on FD2

⊗ if and only if ρ(A(t)) ⊃ (0,∞), ∥R (λ,A(t))∥ < 1/λ for λ > 0, A(t), t ∈ I, satisfies
the inequality (7.3) in [4] and has a m-dissipative, closed, densely defined weak HK-integral Q[t, a] on H.

3. Hyperbolic Evolution Equations on FD2
⊗

Let B(t), t ∈ I be a family of generators of C0-semigroups Tt(τ) satisfying:

∥Tt(τ)∥H ⩽M(t)e−τω(t).

Definition 3.1. We say the family B(t), t ∈ I is stable, if for each t, the constants M(t) and ω(t)
(stability constants), are such that:

1. ρ (B(t)) ⊃ (ω(t),∞), for each t ∈ I.

2. For λj > ω(tj), 1 ≤ j ≤ k,∥∥∥∥∏k

j=1
R (λj , B(tj))

∥∥∥∥
H

⩽
∏k

j=1
M(tj)(λj − ω(tj))−1

.

We note for later that the terms on the left above do not commute.

We assume that:

1. There exist a constant M = sup {M(t1),M(t2) · · ·M(tk)} < ∞, where the supremum is taken over
all finite subsets of I.

2. The family ω(t), t ∈ I has a HK-integral ω =
∫
I
ω(τ)dτ.

If for each t ∈ I, we let A(t) = B(t)−ω(t)I, the family A(t), t ∈ I are generators of C0 semigroups which
satisfy:

∥St(τ)∥H ⩽M.

Remark 3.1. Following Pazy [17] (in the proof of Theorem 5.2), for each t ∈ I we can re-norm H

(equivalently) in our definition of H2
⊗ so that in the Ht norm ∥St(τ)∥H ⩽ 1, making it a contraction

semigroup (at each t). This means that the time-ordered family A(t), t ∈ I defined on FD2
⊗ will be

generators of C0 contraction semigroups with stability constants 1 and 0.
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Thus without loss in generality, for the hyperbolic problem we can assume the following as in [4]:

1. For each t ∈ I, A(t) generates a C0-contraction semigroup.

2. For each t ∈ I, A(t) is stable with constants 1, 0.

3. The resolvent set ρ(A(t)) ⊃ (0,∞), t ∈ I, and for every τ ∈ I and each finite family {t1, t2 . . . , tk} ⊂
I we have: ∥∥∥∥∥∥

k∏
j=1

exp{τA(tj)}

∥∥∥∥∥∥ ⩽ 1.

4. There exists a Hilbert space Y densely and continuously embedded in H such that, for each t ∈ I,
D(A(t)) ⊃ Y and A(t) ∈ L[Y,H] (i.e., A(t) is bounded as a mapping from Y → H), and the function
g(t) = ∥A(t)∥Y→H is continuous.

5. The space Y is an invariant subspace for each semigroup St(τ) = exp{τA(t)} and St(τ) is a stable
C0-semigroup on Y with the same stability constants.

The following lemma shows that condition (4) implies that A(t) is strongly continuous, hence, in [4], the
equation (7.3) of the Fundamental Theorem for Time-Ordered Integrals is satisfied.

Lemma 3.1. [4] Suppose conditions (3) and (4) above are satisfied with ∥φ∥H ⩽ ∥φ∥Y. Then the family
A(t), t ∈ I, is strongly continuous on I.

We now consider the hyperbolic problem in the time-ordered setting on FD2
⊗:

du(t)
dt

= A(t)u(t) + f(t), 0 ≤ a ≤ s < t ≤ b,

u(a) = Φ.
(3.1)

Our approach is to first solve the problem for Az(t) and then obtain the solution to (3.1) as a limit.
This makes it possible to by-pass the common dense domain implied by use of the subspace Y in H (i.e,
conditions (4) and (5)). In this case, we have:

duz(t)
dt

= Az(t)uz(t) + f(t), 0 ≤ a ≤ s < t ≤ b,

uz(a) = Φ.
(3.2)

We know that by the Fundamental Theorem for Time-Ordered Integrals, [4] Qz[t, a] =
∫ t
a
Az(τ)dτ

generates a uniformly continuous contraction semigroup on FD2
⊗.

Note that Qz[t, a] is bounded whereas Q[t, a] is unbounded.

Theorem 3.2. For each t ∈ I, let Qz[t, a] be the infinitesimal generator of a C0-contraction semigroup.
The family of generators {Qz[t, a]}t∈I is stable iff there are constants 0 and 1 such that

ρ(Qz[t, a]) ⊃ (0,∞), for t ∈ I,

and the following condition is satisfied for τ j ≥ 0, finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T and for
fixed tj

||
k∏
j=1

exp{τ jQz[tj , a]}|| ≤ 1.
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Proof: By the definition of stability, it is sufficient to prove that for a family {Qz[t, a]}t∈I of
infinitesimal generators for which ρ(Qz[t, a]) ⊃ (0,∞), for t ∈ I,

||
k∏
j=1

exp{τ jQz[tj , a]}|| ≤ 1,

is equavialent to

||
k∏
j=1

R(λj : Qz[tj , a])|| ≤
k∏
j=1

1
λj
,

for λj > 0 and every finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T , k = 1, 2, . . . .

It is known that

R(λj : Qz[tj , a])Φ =
∫ ∞

0
e−λjseτjQz [tj ,a]Φds,

and iterating this a finite number of times we have

k∏
j=1

R(λj : Qz[tj , a])Φ =
∫ ∞

0
· · ·

∫ ∞

0
exp{−

k∑
j=1

λjsj}

.

k∏
j=1

exp{τ jQz[tj , a]}Φds1 . . . dsk.

Estimation of the last expression gives

||
k∏
j=1

R(λj : Qz[tj , a])Φ|| ≤ ||Φ||
k∏
j=1

∫ ∞

0
e−λjsjdsj = ||Φ||

k∏
j=1

1
λj
,

and this completes the proof.

3.1. Solution of the Homogeneous Hyperbolic Problem on FD2
⊗.

In this section we consider the following homogeneous hyperbolic evolution equation and study its
solution:

duz(t)
dt

= Az(t)uz(t), 0 ≤ a ≤ s < t ≤ b,

uz(a) = Φ,
(3.3)

where Φ ∈ FD2
⊗.

For this aim, we first deal with the conditions that the family of operator coefficients has to satisfy.
In [17], the author considers homogeneous hyperbolic evolution equation on a Banach space, where the
family of operator coefficients satisfies three conditions. In our case, these conditions given in [17] for a
Banach space are reduced to the following single condition when considering the time-ordered hyperbolic
evolution equations on Feynman-Dyson space FD2

⊗ based on Hilbert space:

(FD − H) For each t ∈ I, Qz[t, a] is stable with constants 0 and 1 and the resolvent set

ρ(Qz[t, a]) ⊃ (0,∞), t ∈ I,
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such that for τ j ≥ 0 and finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T

||
k∏
j=1

exp{τ jQz[tj , a]}|| ≤ 1.

In fact, the family {Qz[t, a]}t∈[0,T ] is stable, since any family of infinitesimal generators of C0-
semigroups of contractions is stable, [17].

By the fact that {Qz[t, a]}t∈[0,T ] is defined on all FD2
⊗, we do not need any additional conditions. This

will greatly simplify our approach to the existence and uniqueness for the solution of the homogeneous
hyperbolic initial value problem.

Lemma 3.3. Let us consider the homogeneous hyperbolic evolution equation given in (3.3). Then,
Uz[t, a] = eQz [t,a] is an evolution system,
where Qz[t, a] =

∫ t
a
Az(τ)dτ .

Proof:

It is obvious that Uz[s, s] = eQz [s,s] = I. Second property

Uz[t, s]Uz[s, a] = Uz[t, a],

is followed by

Uz[t, s]Uz[s, a] = eQz [t,s]eQz [s,a].

The mapping (t, a) → Uz[t, a] is strongly continuous for 0 ≤ a ≤ s < t ≤ b.

Theorem 3.4. , [4] If a < t < b,

(1) limz→∞Uz[t, a]Φ = U[t, a]Φ = eQ[t,a]Φ, Φ ∈ FD2
⊗,

(2) ∂
∂tUz[t, a]Φ = Az(t)Uz[t, a]Φ = Uz[t, a]Az(t)Φ, Φ ∈ FD2

⊗,

and

(3) ∂
∂tU[t, a]Φ = A(t)U[t, a]Φ = U[t, a]A(t)Φ, and Φ ∈ D(Qz[b, a]) ⊃ D0.

This theorem allows us to extend the solution of (3.3) which is the solution of the homogeneous part
of the hyperbolic evolution equation given by (3.2). Now, we have the following result.

Theorem 3.5. Let Qz[t, a] , 0 ≤ a ≤ t ≤ b, be the infinitesimal generator of a C0-contraction semigroup
St(s) , s ≥ 0, on FD2

⊗. If we consider the family {Qz[t, a]}t∈[a,b], then there exists a unique evolution
system Uz[t, a], 0 ≤ a ≤ s ≤ t ≤ b, in FD2

⊗ satisfying

(1) ||Uz[t, a]|| ≤ 1, for 0 ≤ a ≤ s < t ≤ b,

(2) ∂
∂sUz[t, s]Φ = −Az(s)Uz[t, s]Φ, for Φ ∈ FD2

⊗, a ≤ s < t ≤ b,

where derivatives are in the strong sense in FD2
⊗.
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Proof:

(1) For each t ∈ I, Qz[t, a] is stable with constants 0 and 1, and

ρ(Qz[t, a]) ⊃ (0,∞), t ∈ I,

such that for τ j ≥ 0 and finite sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T,

||
k∏
j=1

exp{τ jQz[tj , a]}|| ≤ 1.

It follows that

||Uz[t, a]|| ≤ 1, for 0 ≤ a ≤ s < t ≤ b.

(2) For the proof we use the following approach:

Uz[t, s+ h] − Uz[t, s] = e

∫ t

s+h
Az(ξ)dξ − e

∫ t

s
Az(ξ)dξ

= e
(
∫ t

s
Az(ξ)dξ−

∫ s+h

s
Az(ξ)dξ) − e

∫ t

s
Az(ξ)dξ

= e

∫ t

s
Az(ξ)dξ[e−

∫ s+h

s
Az(ξ)dξ − I⊗]

= Uz[t, s][e−
∫ s+h

s
Az(ξ)dξ − I⊗].

Now we consider the series expansion, [4],

ewQz [t,a]Φ =
{
I⊗ +

n∑
k=1

(wQz[t, a])k

k! + 1
n!

∫ w

0
(w − ξ)n(Qz[t, a])n+1Uξ

z[t, a]dξ
}

Φ,

and use it for the expression {e−
∫ s+h

s
Az(ξ)dξ − I⊗}Φ, where Φ ∈ FD2

⊗, w = 1 and n = 1. Hence, we have

e
−

∫ s+h

s
Az(ξ)dξΦ = e−Qz [s+h,s]Φ

= {I⊗ − Qz[s+ h, s] −
∫ 1

0
(1 − ξ)Qz[s+ h, s]2e−

∫ s+h

s
Az(τ)dτ

dξ}Φ,

⇒ {e−
∫ s+h

s
Az(ξ)dξ − I⊗}Φ = {−Qz[s+ h, s]Φ

−
∫ 1

0
(1 − ξ)Qz[s+ h, s]2e−

∫ s+h

s
Az(τ)dτ

dξ}Φ,

⇒ {e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
}Φ = Qz[s+ h, s]

h
Φ

+
∫ 1

0
(1 − ξ)Qz[s+ h, s]2

h
e

−
∫ s+h

s
Az(τ)dτ

dξΦ.
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Since

lim
h→0

Qz[s+ h, s]
h

= Az(s) and lim
h→0

Qz[s+ h, s]2

h
= 0,

we have:

e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ + Az(s)Φ

= Az(s)Φ − Qz[s+ h, s]
h

Φ −
∫ 1

0
(1 − ξ)Qz[s+ h, s]e−

∫ s+h

s
Az(τ)dτ Qz[s+ h, s]

h
dξΦ.

Taking limit, we get:

lim
h→0

e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ + Az(s)Φ = 0.

This gives

lim
h→0

Uz[t, s+ h] − Uz[t, s]
h

Φ = Uz[t, s] lim
h→0

e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ

= −Uz[t, s]Az(s)Φ.
Indeed,

||e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ + Az(s)Φ|| ≤ ||(−Qz[s+ h, s]

h
Φ + Az(s))Φ||

+||
∫ 1

0
(1 − ξ)Qz[s+ h, s]Qz[s+ h, s]

h
e

−
∫ s+h

s
Az(τ)dτ

dξΦ||.

Hence,

⇒ lim
h→0

||e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ + Az(s)Φ|| ≤

≤ lim
h→0

||(−Qz[s+ h, s]
h

)Φ + Az(s)Φ||

+ lim
h→0

||
∫ 1

0
(1 − ξ)(−Qz[s+ h, s])−Qz[s+ h, s]

h
e

−
∫ s+h

s
Az(τ)dτ

dξΦ||,

which means

0 ≤ lim
h→0

||e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ + Az(s)Φ|| ≤ 0.

Thus, we have:

lim
h→0

e
−

∫ s+h

s
Az(ξ)dξ − I⊗

h
Φ = −Az(s)Φ.

On the other hand, since Qz[t, a] , 0 ≤ a ≤ t ≤ b, is an infinitesimal generator of a C0-contraction
semigroup St(s) ( s ≥ 0 ) on FD2

⊗, the evolution system Uz[t, a] is unique. This completes the proof.
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Corollary 3.6. If u(a) ∈ FD2
⊗, then

1. uz(t) = Uz[t, a]u(a) and
∂uz(t)
∂t

= Az(t)uz(t), uz(a) = u(a).

2. u(t) = lim
z→∞

uz(t) exists, u(t) ∈ D0 and

∂u(t)
∂t

= A(t)u(t), uz(a) = u(a).

3.2. The Time-Ordered Inhomogeneous Hyperbolic Evolution Equations on FD.

We now consider the inhomogeneous hyperbolic problem:

du(t)
dt

= A(t)u(t) + f(t), 0 ≤ a ≤ s ≤ t ≤ b,

u(a) = Φ.

Theorem 3.7. Let Qz[t, a] , 0 ≤ a < t < b, be the infinitesimal generator of the C0-contraction semi-
group St(s) , s ≥ 0, on FD2

⊗ and let f ∈ C1([t, a] : FD2
⊗), then for every Φ ∈ FD2

⊗, the approximate
inhomogeneous initial value problem has a unique solution of the form:

uz(t) = Uz[t, a]Φ +
∫ t

a

Uz[t, r]f(r)dr,

and the exact inhomogeneous problem has the unique solution:

u(t) = lim
z→∞

uz(t) = U[t, a]Φ +
∫ t

a

U[t, r]f(r)dr.

Proof:

We first show that uz(t) satisfies the evolution equation. In fact,

d

dt
uz(t) = d

dt
(Uz[t, a]Φ) + d

dt
(
∫ t

a

Uz[t, r]f(r)dr)

= Az(t)Uz[t, a]Φ +
∫ t

a

∂

∂t
(Uz[t, r]f(r))dr + Uz[t, t]f(t) − 0

= Az(t){Uz[t, a]Φ +
∫ t

a

Uz[t, r]f(r)dr} + f(t) = Az(t)uz(t) + f(t).

To prove uniqueness, we assume that there is also a vz(t) solution and we need to prove

∂

∂r
(Uz[t, r]vz(r)) = Uz[t, r]f(r).

This implies

∂

∂r
Uz[t, r]vz(r) + Uz[t, r] ∂

∂r
vz(r)

= −Az(r)Uz[t, r]vz(r) + Uz[t, r][Az(r)vz(r) + f(r)]
= Uz[t, r]f(r).
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A simple calculation shows ∫ t

a

∂

∂r
(Uz[t, r]vz(r))dr =

∫ t

a

Uz[t, r]f(r)dr,

⇒ Uz[t, r]vz(r)|ta =
∫ t

a

Uz[t, r]f(r)dr,

⇒ Uz[t, r]vz(t) − Uz[t, a]vz(a) =
∫ t

a

Uz[t, r]f(r)dr,

⇒ vz(t) = Uz[t, a]Φ +
∫ t

a

Uz[t, r]f(r)dr,

giving uniqueness. Since Uz[t, s]Φ → U[t, a]Φ, it follows that uz(t) → u(t), completing our proof.

4. Parabolic Evolution Equations on FD2
⊗

In this section, we will deal with the solution of the initial value problem in the time-ordered setting,{
du(t)
dt + A(t)u(t) = f(t), 0 ≤ s < t ≤ T,

u(s) = Φ, (4.1)

which we call the parabolic equation, by taking the term A(t)u(t) to the left side of the equation, to
avoid some of the notational difficulties associated with using fractional powers of A(t).

Our approach is to first solve the problem for Az(t) and then obtain the solution to (3.1) as a limit
as in the hyperbolic case. When we consider the homogeneous parabolic initial value problem,{

duz(t)
dt + Az(t)uz(t) = 0, 0 ≤ s < t ≤ T,

uz(s) = Φ, (4.2)

we say that the evolution system will be obtained by a different method than the evolution system ob-
tained in the hyperbolic case.

Suppose that −Az(t) is the infinitesimal generator of the C0 semigroup Qz[t, s] for every value of t
in the interval [0, T ] and Uz[t, s] is an evolutionary system of parabolic problem for s > 0 as follows:

Uz[t, s] = e−Qz[t−s,s] +
t∫
s

e−Qz[t−τ,τ ]R[τ , s]dτ, (4.3)

then Uz[t, s] should satisfy equation (4.2). So let us first take the derivative of Uz[t, s] with respect to t

∂Uz[t, s]
∂t

= −Az(t− s)e
−

t∫
s

Az(τ)dτ
+

[
−

t∫
s

Az(t− τ)e
−

t−τ∫
τ

Az(ℓ)dℓ
R(τ , s)dτ

]

+ e
−

0∫
t

Az(ℓ)dℓ
.

Now we consider equation (4.2) for Uz[t, s]
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∂Uz[t, s]
∂t

+ Az(t)Uz[t, s] = [−Az(t− s)]e−Qz[t−s,a] +

+
t∫
s

[−Az(t− τ)]e−Qz[t−τ,a]R(τ , s)dτ +

+ e
−

a∫
0

Az(ℓ)dℓ
R(t, s) + Az(t)

[
e−Qz[t−s,a] +

+
t∫
s

e−Qz[t−τ,a]R(τ , s)dτ
]

= 0,

⇒
[
Az(t) − Az(t− s)

]
e−Qz[t−s,a] +

+
t∫
s

[
Az(t) − Az(t− τ)

]
e−Qz[t−τ,a]R(τ , s)dτ +

+ e

a∫
0

Az(τ)dτ
R(t, s) = 0. (4.4)

If we denote the factor
[
Az(t) − Az(t − s)

]
e−Qz[t−s,a] in this last equation by R1(t, s) , then we write

the equation (4.4) as

−R1(t, s) −
t∫
s

R1(t, τ)R(τ , s)dτ +R(t, s)e

a∫
0

Az(τ)dτ
= 0, (4.5)

and from here we get

R(t, s) = R2(t, s) +
t∫
s

R2(t, τ)R(τ , s)dτ, (4.6)

where

R2(t, s) = R1(t, s)e−Qz[a,0] =
[
Az(t− s) − Az(t)

]
e

−
t−s∫
0

Az(τ)dτ
. (4.7)

Since Uz[t, s] is an evolution system of (4.2), it follows from (4.4), (4.5) and (4.7) that the integral
equation (4.6) giving R(t, s) must be satisfied. In order to express Uz[t, s] giving by (4.3), it is sufficient
to solve the integral equation denoting by R(t, s) . For this we will need the following assumptions:

1. For each t ∈ I, Az(t) is closed and densely defined, R(λ; Az(t)) exists in the sector ∆ satisfying

∥R (λ,Az(t))∥ ⩽ M
|λ|+1 for λ ∈ ∆, Re(λ) ≤ 0, t ∈ I.

2. The function A−1
z (t) is continuously differentiable on I.

3. There are constants C1 > 0 and ρ : 0 < ρ < 1, such that, for each λ ∈ ∆ and every t ∈ I, we have

∥DtR(λ; Az(t))∥ ≤ C1/|λ|1−ρ
.
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4. The function DA−1
z (t) is Holder continuous on H and there are positive constants C2, α such that∥∥DA−1

z (t) −DA−1
z (s)

∥∥ ≤ C2 |t− s|α , s, t ∈ I.

It is clear that the time ordered version of condition (4) will not be true if formulated as a direct
translation. For this we need:

Definition 4.1. [4] An exchange operator E[t, t′] on L#[FD2
⊗] is a linear map defined for pairs t, t′ such

that:

1. E[t, t′] : L[H(t)] → L[H(t′)], (isometric isomorphism),

2. E[s, t′]E[t, s] = E[t, t′],

3. E[t, t′]E[t′, t] = I,

4. for s ̸= t, t′, E[t, t′]Az(s) = Az(s), for all Az(s) ∈ L[Bz(s)].

The exchange operator acts to exchange the time positions of a pair of operators in a more complicated
expression.

Theorem 4.1. [4] (Existence) There exists an exchange operator for L#[FD2
⊗].

The time ordered version of Fattorini’s conditions become:
(P1) For each t ∈ I, A(t) is closed and densely defined, R(λ; A(t)) exists in the sector ∆ satisfying

∥R (λ,A(t))∥ ⩽ M
|λ|+1 for λ ∈ ∆, Re(λ) ≤ 0, t ∈ I.

(P2) The function A−1
z (t) is continuously differentiable on I.

(P3) There are constants C1 > 0 and ρ : 0 < ρ < 1, such that, for each λ ∈ ∆ and every t ∈ I, we have

∥DtR(λ; Az(t))∥ ≤ C1/|λ|1−ρ
.

(P4) The function DA−1
z (t) is Holder continuous on FD2

⊗ and there are positive constants C2, α such
that ∥∥E[τ , t]DA−1

z (t) − E[τ , s]DA−1
z (s)

∥∥ ≤ C2 |t− s|α , τ , s, t ∈ I.

It is easy to show that the first condition implies that Az generates an analytic contraction semigroup
for each t ∈ I.

The four conditions allow Fattorini to prove the following theorem.

Theorem 4.2. [4] (Fattorini) Let the family A(t), t ∈ I, have a common dense domain and satisfy
assumptions (1) − (4). Then the problem

∂u(t)
∂t

= A(t)u(t), u(a) = ua,

has a unique solution u(t) = V (t, s)ua, for t, s ∈ I. Furthermore,

1. V (t, s) is strongly continuous on I and continuously differentiable (in H norm) with respect to both
s and t ∈ I,

2. V (t, s)H ⊂ D(A(t)),

3. A(t)V (t, s) and V (t, s)A(s) are bounded,

4. DtV (t, s) = A(t)V (t, s), DsV (t, s) = −V (t, s)A(s), and

5. for t, s ∈ I,
∥DtV (t, s)∥ ≤ C/(t− s), ∥DsV (t, s)∥ ≤ C/(t− s).
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Fattorini requires seven pages plus five pages of preparatory work to prove this theorem (see [23], pg.
397). The proof of (essentially) the same theorem, requires seventeen pages in Pazy ( [17], pg. 149). The
following example shows the existence of solutions without a common dense domain (see Fattorini [23],
pg. 408).

Example 4.3. Let the family of operators A(t), t ∈ I = [0, 1], be defined on H = L2(0, 1) by

A(t)u(r) = − 1
(t− r)2u(r).

It is easy to see that each A(t) is selfadjoint and (A(t)u, u) ≤ − ∥u∥2
H for u ∈ D(A(t)). It follows that the

spectrum of A(t), σ(A(t)) ⊂ (−∞,−1], for t ∈ [0, 1]. The first condition is satisfied for any δ ∈ (0, π/2),
while the second condition is clear, and makes the fourth condition obvious. For λ /∈ (−∞,−1], we have

R(λ; A(t))u(r) = (t− r)2

λ(t− r)2 + 1u(r),

so that
∥R(λ; A(t))u(r)∥2

H =
∫ 1

0

(t− r)4

[λ(t− r)2 + 1]2u
2(r)dr ≤ 1

|λ|2
∥u∥2

H .

It is now clear that each A(t) generates a contraction semigroup and

DtR(λ; A(t))u(r) = 2(t− r)
[λ(t− r)2 + 1]2u(r).

From here, an easy estimation shows that for λ ∈ ∆ and α ∈ [0, 1],

2α
∣∣λα2 + 1

∣∣−2
⩽ C|λ|−1/2

,

for some constant C, so that
∥DtR(λ; A(t))∥H ≤ C

|λ|1/2 ,

so that the third condition follows. We now notice that

(A(t) −A(s))A(τ)−1 =
[

(τ − r)2

(s− r) + (τ − r)2

(t− r)

]
(s− t),

so that, for some constants C > 0, 0 < β ≤ 1, we have∥∥(A(t) −A(s))A(τ)−1∥∥ ⩽ C |t− s|β (a.s) for all t, s, τ ∈ [0, 1].

The above theorem would follow if the family had a common dense domain. It is easy to see that
D(A(t)) =

{
u(r) ∈ L2[0, 1] |r ̸= t

}
, for each t ∈ [0, 1], so that

⋂
t∈I D(A(t)) = {0}. Thus the restriction

to a common dense domain is an undesirable condition.

The time ordered version of Fattorini’s theorem becomes:

Theorem 4.4. Let the family A(t), t ∈ I satisfy assumptions (1) − (4). Then the corresponding time-
ordered family Az(t), t ∈ I has a HK-integral Qz[t, s] on FD2

⊗, which generates an analytic evolution
operator
Uz(t, s), for a ≤ s < t ≤ b and:

∂u(t)
∂t

= Az(t)u(t), lim
t,s→a

u(t) = ua,

has a unique solution u(t) = Uz(t, s)u(s), for t, s ∈ I. Furthermore,
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1. Uz(t, s) is strongly continuous on I and continuously differentiable with respect to both s and t ∈
(a, b),

2. Uz(t, s)FD2
⊗ ⊂ D(Az(t)).

3. Az(t)Uz(t, s) and Uz(t, s)Az(s) are bounded,

4. DtUz(t, s) = Az(t)Uz(t, s), DsUz(t, s) = −Uz(t, s)Az(s), and

5. for t, s ∈ I,
∥DtUz(t, s)∥ ≤ C/(t− s), ∥DsUz(t, s)∥ ≤ C/(t− s).

Proof. The proof of (1) and (2) follows from Theorem 2.8, Theorem 3.4 and Theorem 3.5. Proofs of
(3)-(5) are the same as in Fattorini. □

Some consequences of these assumptions are collected in the next lemma.

Lemma 4.5. Let (1)-(4) be satisfied then∥∥∥DQ−1
z [t, a] −DQ−1

z [s, a]
∥∥∥ ≤ K|t− s|α (4.8)

for s ∈ (0, T ], t1, t2 ∈ [0, T ],

∥∥∥Qz[τ , a]
[
e−Qz [s2,a] − e−Qz [s1,a]

]∥∥∥ ≤ C

s1s2
|s2 − s1| (4.9)

for 0 < s1, s2 ∈ (0, T ], t, τ ∈ [0, T ],

∥∥∥Qz[t, a]
[
e−Qz [τ1,a] − e−Qz [τ2,a]

]∥∥∥ ≤ C

a
|τ2 − τ1|α (4.10)

for s ∈ (0, T ], t, τ1, τ2 ∈ [0, T ].

Also, the operator Qz[t, a]e−Qz [s,a] is bounded on FD2
⊗, for s ∈ (0, T ], τ , t ∈ [0, T ] and in the uniform

operator topology, this operator is uniformly continuous for s ∈ (0, T ], τ , t ∈ [0, T ] ,for every ε > 0.

Proof: Let us prove the first inequality∥∥∥DQ−1
z [t, a] −DQ−1

z [s, a]
∥∥∥ ≤ K|t− s|α.

DQ−1
z [t, a] is as follows:

DQ−1
z [t, a] = Qz[t, a]Q−1

z [τ , a].

Then we get ∥∥∥[Qz[t1, a] − Qz[t2, a]]e−Qz [τ,s]
∥∥∥ =

=
∥∥∥[Qz[t1, a] − Qz[t2, a]]Q−1

z [τ , a]Qz[τ , a]e−Qz [τ,s]
∥∥∥

=
∥∥∥DQ−1

z [t1, a] −DQ−1
z [t2, a]

∥∥∥ ∥∥∥Qz[τ , a]e−Qz [τ,s]
∥∥∥

≤ c2|t1 − t2|αC
≤ K|t1 − t2|α.

Now to prove (4.9) let 0 < s1 ≤ s2 and Φ ∈ FD2
⊗. Since T (t)x − T (s)x =

t∫
s

T (τ)A(x)dx for any

semigroup, we can write the following equation for our semigroup
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e−Qz [s2,a]Φ − e−Qz [s1,a]Φ = −
s2∫
s1

Qz[τ , a]e−Qz [σ,a]Φdσ.

And then we get

Qz[τ , a][e−Qz [s2,a] − e−Qz [s1,a]]Φ = Qz[τ , a]
[
−

s2∫
s1

Qz[τ , a]e−Qz [σ,a]Φdσ
]

= −
s2∫
s1

[Qz[τ , a]]2e−Qz [σ,a]Φdσ

= −
s2∫
s1

[
Qz[τ , a]]e−Qz [ σ

2 ,a]
]2

Φdσ.

and ∥∥∥Qz[t, a][e−Qz [s2,a] − e−Qz [s1,a]]Φ
∥∥∥ ≤

∥∥∥Qz[t, a]Q−1
z [τ , a]

∥∥∥
×

∥∥∥Qz[τ , a][e−Qz [s2,a] − e−Qz [s1,a]]Φ
∥∥∥

≤
∥∥∥Qz[t, a]Q−1

z [τ , a]
∥∥∥

×
∥∥∥−

s2∫
s1

[
Qz[τ , a]]e−Qz( σ

2 ,a)
]2

Φdσ
∥∥∥

≤ C
∥∥∥Φ

∥∥∥ s2∫
s1

1
σ2 dσ

=
C

∥∥∥ϕ∥∥∥
s1s2

|s2 − s1|.

Thus, we obtain ∥∥∥Qz(τ , a)
[
e−Qz [s2,a] − e−Qz [s1,a]

]∥∥∥ ≤ C

s1s2
|s2 − s1|.

To prove (4.10) note that from (P1) it follows that∥∥∥R(λ; Qz[s, t− s]
∥∥∥ ≤ 1

|λ|
, λ ∈ Σ, t ∈ I,

and therefore we have ∥∥∥Qz[t, a]
[
R(λ; Qz[τ1, a]) −R(λ; Qz[τ2, a])

]∥∥∥ =

=
∥∥∥Qz[t, a]R(λ; Qz[τ1, a])

[
Qz[τ1, a] − Qz[τ2, a]

]
R(λ; Qz[τ2, a])

∥∥∥
≤

∥∥∥Qz[t, a]Q−1
z [τ1, a]

∥∥∥ ∥∥∥Qz[τ1, a]R(λ; Qz[τ1, a])
∥∥∥

×
∥∥∥[

Qz[τ1, a] − Qz[τ2, a]
]
Q−1
z [τ2, a]

∥∥∥ ∥∥∥Qz[τ2, a]R(λ; Qz[τ2, a])
∥∥∥

≤ K|τ1 − τ2|α.
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As a result, we get the desired inequality as follows, with Γ being a smooth path

Qz[t, a]e−Qz [τ1,a]Φ − Qz[t, a]e−Qz [τ2,a]Φ = 1
2πi

∫
Γ

e−λaQz[t, a]

×
[
R(λ; Qz[τ1, a]) −R(λ; Qz[τ2, a])

]
Φdλ,

=⇒
∥∥∥Qz[t, a]e−Qz [τ1,a]Φ − Qz[t, a]e−Qz [τ2,a]Φ

∥∥∥ ≤ K|τ1 − τ − 2|α
∥∥∥Φ

∥∥∥ ∫
Γ

e−λadλ

≤ K

a
|τ1 − τ2|α

∥∥∥Φ
∥∥∥,

=⇒
∥∥∥Qz[t, a]

[
e−Qz(τ1,a) − e−Qz(τ2,a)

]∥∥∥ ≤ C

a
|τ2 − τ1|α. □

We have not discussed classical, mild, strong or weak solutions; the inhomogeneous problem or the
question of asymptotic behavior of solutions, because these topics receive no additional benefit from
lifting them to the FD2

⊗ setting. However, lifting a problem to the FD2
⊗ setting can have benefit even if

the operators are not time dependent. For a detailed discussion, we refer Section 7.5 in [4].

5. Conclusion

In this paper, we have reviewed the Gill-Zachary implementation of Feynman’s time ordered operator
calculus and showed how it simplifies the study of the hyperbolic and parabolic evolution equations. In
closing, we highlight some of the advantages of extending operators to FD2

⊗ setting:

1. This allows operators acting at different times commute.

2. This lifts the restriction of a common dense domain.

3. This allows weaker continuity conditions on the time dependence.

4. The Yosida approximation can be used to reduce problems to the bounded case.

5. The HK-integral allows terms with non-absolutely convergent integrals.

6. Advantages are possible even if the operators are not explicitly time dependent (see [4]).
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