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Almost periodic solutions for a class of neutral integro-differential equations ∗
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abstract: In this paper, we investigate the existence and uniqueness of almost periodic mild solutions for
a class of neutral integro-differential equations in Banach spaces. We essentially apply the results from the
fixed point theory. At the end of paper, we present some illustrative examples to show the effectiveness of the
obtained findings.
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1. Introduction and preliminaries

The initial analysis of the class of almost periodic functions can be traced back to H. Bohr (1924–1926).
For comprehensive insights into almost periodic functions and their applications, the readers are directed
to the research monographs such as [2], [5], [9], [14]– [16], [17] and [31]. The significance of almost
periodic functions is paramount in the qualitative analysis of solutions to (nonlinear) integro-differential
equations within the domain of Banach spaces.

Functional differential equations, specifically referred to as neutral differential equations, are encoun-
tered in a variety of phenomena, particularly in the analysis of oscillatory systems and the modeling of
various physical problems. For further details and in-depth exploration, interested readers are encouraged
to refer to [12], [22], and the references provided therein. The problem of existence and uniqueness of
almost periodic solutions of integro-differential equations and neutral integro-differential equations is very
popular since they play a crucial role in modeling dynamic systems with delayed interactions, reflecting
scenarios encountered in various scientific and engineering areas.

The exploration of generalized periodicity in the solutions of diverse classes of neutral differential
equations was initially prompted by considerations of periodic behavior in their solutions. Key contri-
butions to this line of inquiry can be found in works such as [4], [13], [19], [20], [21], [23], [24], [28],
and [29]. Researchers E. Ait Dads and K. Ezzinbi [8], as well as A. Fink and J. Gatica [11], extended
this exploration by examining almost periodic solutions for specific classes of nonlinear neutral integral
equations. Subsequent investigations by S. Abbas and D. Bahuguna [1] and X. Chen and F. Lin [6]
further expanded the scope, examining almost periodicity in more general neutral functional differential
equations within Banach spaces. Notably, the pursuit of almost periodic solutions for a class of nonlin-
ear integro-differential equations with neutral delay is presented in [32]. Additionally, in a related but
distinct conceptualization of almost periodicity, studies on positive pseudo almost periodicity [7], [10],
and investigations into (µ, ν)-pseudo S-asymptotic ω-periodicity [27] for solutions of various classes of
neutral differential equations have been conducted.

In the work by M. Ayachi [3], a set of sufficient conditions is established to ensure the existence
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and global exponential stability of measure-pseudo almost periodic solutions within a specific class of
bi-directional associative memory neural networks. Similarly, in the study conducted by T. Liang, Y.
Q. Yang, Y. Liu and L. Li, [18], specific sufficient conditions are provided for the existence and global
exponential stability of almost periodic solutions in Cohen–Grossberg neural networks on time scales.
These references, along with the cited references therein, underscore the broader significance of almost
periodic solutions, transcending theoretical considerations and finding practical applications in diverse
fields such as neuroscience, physics, biology, and engineering. The inclusion of illustrative examples in the
paper serves to accentuate the practical relevance of almost periodic solutions in addressing real-world
problems. Moreover, the paper motivates further exploration of these mathematical concepts within the
scientific community, building upon recent results in [3], [18], and [26].

This paper presents a novel contribution by delineating inherently natural conditions under which
the specified class of neutral integro-differential equations, defined in a Banach space, exhibits (unique)
almost periodic mild solutions. The versatile nature of the considered class, coupled with tailored accom-
modations and constraints, renders it applicable to modeling scenarios across diverse scientific domains.
From applications in neuroscience and dynamical systems to addressing classical engineering problems,
this class of equations emerges as a valuable and broadly applicable tool, amplifying its significance in
various scientific contexts.

The paper is structured as follows. Following a concise overview of recent literature, we delve into the
presentation of results and the underlying motivation driving this research. Subsequently, we expound
upon basic notation and auxiliary results pertaining to almost periodic functions and neutral integro-
differential equations within the context of Banach spaces. The second section of the paper houses the
main contributions, encompassing the articulation of necessary conditions for the uniqueness of almost
periodic mild solutions within the considered class of neutral integro-differential equations. Additionally,
we delineate the necessary conditions for the existence of almost periodic solutions. The section con-
cludes with illustrative examples, underscoring the significance of the results and extending previously
established findings. The paper ends with a conclusion that underscores the attained results and outlines
future directions for investigation.

1.1. Preliminaries

Let X be a complex Banach space, equipped with the norm ∥ · ∥ and I = [0,∞). If f : R → X is a
continuous function and ϵ > 0, then a number τ > 0 is said to be an ϵ-period for f(·) if

∥f(t+ τ)− f(t)∥ ≤ ϵ, t ∈ R.

The set consisting of all ϵ-periods for f(·) will be denoted by ϑ(f, ϵ). It is said that f(·) is almost periodic
if for each ϵ > 0 the set ϑ(f, ϵ) is relatively dense in [0,∞) meaning that there exists l > 0 such that
any subinterval of [0,∞) of length l meets ϑ(f, ϵ). By AP (R : X) will be denoted the Banach space of all
almost periodic functions f : R → X. Then AP (R : X) is a Banach space equipped with the supremum
norm given by

∥u∥AP (R:X) := sup
t∈R

∥u(t)∥.

A continuous function f : R × X → X is said to be almost periodic in t uniformly for u ∈ X if for
each ε > 0 and for each compact subset K of X, the set of all real numbers τ such that

∥f(t+ τ, u)− f(t, u)∥ ≤ ϵ, t ∈ R, u ∈ K

is relatively dense in [0,∞). If a continuous function f : R×X × Y → X is given, then the number τ is
said to be ϵ-period for f(·, ·, ·) if

∥f(t+ τ, u, v)− f(t, u, v)∥ ≤ ϵ, t ∈ R, u ∈ X, v ∈ Y.

The set consisting of all ϵ-periods for f(·, ·, ·) will be denoted by ϑX,Y (f, ϵ). The continuous function
f : R×X × Y → X is said to be almost periodic in t uniformly for (u, v) ∈ X × Y if for each ε > 0 and
for each compact subset E of X × Y such that the set ϑX,Y (f, ϵ) is relatively dense in [0,∞).
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Here we are going to investigate the existence and uniqueness of almost periodic solutions of neutral
integro-differential equation

u′(t) = Au(t) + f
(
t, ut, Fu(t)

)
, t ∈ R, (1.1)

and the integral equation

Fu(t) =

t∫
−∞

k(t− s)g
(
s, us

)
ds,

where A is linear operator on the Banach space X, f : R× C → X and g : R× C ×X → X are bounded
functions on bounded sets, k ∈ L1(I, I) is continuous, nonincreasing function and ur(t) = u(t + r), for
r ∈ [−m, 0], m ≥ 0 is a fixed constant, where C is the space of continuous functions from [−m, 0] to X
equipped with the supremum norm.

In this paper, we will consider the case when the operator A is the infinitesimal generator of a strongly
continuous semigroup (C0-semigroup) on X:

(A) A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous semigroup (T (t))t≥0,
such that there exists constant C, σ > 0 such that ∥T (t)∥ ≤ Ceσt, for t ∈ [0,∞).

Additionally, in certain statements, we will going to consider the following assumptions:

(C1) The function k(t) ∈ L1(R : C) is continuous and nonincreasing;

(C2) g ∈ AP (R× C : X);

(C3) f ∈ AP (R× C ×X : X);

(C4) There exists a positive constant Lg such that ∥g(t, ϕ)− g(t, ψ)∥ ≤ Lg∥ϕ− ψ∥C ;

(C5) There exists a positive constant Lf such that ∥f(t, ϕ1, ψ1)− f(t, ϕ2, ψ2)∥ ≤ Lf

(
∥ϕ1 −ϕ2∥C + ∥ψ1 −

ψ2∥
)
;

(C6) There exists a continuous and nondecreasing function Lg : R → R such that for each ν > 0, and
ϕ, ψ ∈ C such that ∥ϕ∥C ≤ ν and ∥ψ∥C ≤ ν, we have

∥g(t, ϕ)− g(t, ψ)∥ ≤ Lg(ν)∥ϕ− ψ∥C ,

t ∈ R, where Lg(0) = 0;

(C7) There exists a continuous and nondecreasing function Lf : R → R such that for each ν > 0, and
ϕi ∈ C, ψi ∈ X such that ∥ϕi∥C ≤ ν and ∥ψi∥ ≤ ν, i = 1, 2 we have

∥f(t, ϕ1, ψ1)− f(t, ϕ2, ψ2)∥ ≤ Lf (ν)
(
∥ϕ1 − ϕ2∥C + ∥ψ1 − ψ2∥

)
,

t ∈ R, where Lf (0) = 0;

(C8) Let f ∈ C(R×C ×X : X). There exist a bounded measurable function af : R → X and a constant
bf such that ∥f(t, u, v)∥ ≤ ∥af (t)∥+ bf (∥u∥C + ∥v∥), and supt∈R ∥af (t)∥ = a∗f ;

(C9) Let g ∈ C(R × C : X). There exist a bounded measurable function ag : R → X and a constant bg
such that ∥g(t, u)∥ ≤ ∥ag(t)∥+ bg∥u∥C , and supt∈R ∥ag(t)∥ = a∗g.

A mild solution of (1.1) is given by

u(t) =

t∫
−∞

T (t− s)f
(
s, us, Fu(s)

)
ds,

for t ∈ R.
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2. Existence and uniqueness of almost periodic mild solutions

In this section, we will elucidate the conditions that guarantee the existence of unique almost periodic
mild solutions for the problem under consideration described by (1.1).

At the beginning, note that if u ∈ AP (R : X) and g ∈ AP (R × C : X) then ut ∈ AP (R : X) and
h(·) = g(·, u) ∈ AP (R : X).

We start with the following auxiliary results.

Lemma 2.1 Let (C1)–(C2) and (C4) hold. If u ∈ AP (R : X), then Fu ∈ AP (R : X).

Proof: Since (C2) holds, it is clear that j(·) = g(·, u) ∈ AP (R : X) and ∥j∥∞ ≤ ∞. Then for each
ε1 ∈ ϑX(ϕ, ·) and each compact subset K of X holds

∥j(t− s+ ω)− j(t− s)∥ ≤ ε1.

Now,

∥Fu∥ ≤
t∫

−∞

k(t− s)∥j∥ ds ≤ ∥k∥L1 · ∥j∥∞,

so Fu is continuous. Next,

∥Fu(t+ ω)− Fu(t)∥ =

∥∥∥∥∥
t+ω∫

−∞

k(t+ ω − s)g(s, us) ds−
t∫

−∞

k(t− s)g(s, us) ds

∥∥∥∥∥
≤

+∞∫
0

k(s)∥j(t+ ω − s)− j(t− s)∥ ds ≤ ∥k∥L1ε1 ≤ ε.

Hence, Fu ∈ AP (R : X). 2

Lemma 2.2 Let (A), (C1)–(C3) and (C5) hold. If u ∈ AP (R : X), then

(Su)(t) =
t∫

−∞

T (t− s)f(s, us, Fu(s)) ds ∈ AP (R : X).

Proof: Let u ∈ AP (R : X). By Lemma 2.1, Fu ∈ AP (R : X), ϕ(·) = f(·, u, Fu(·)) ∈ AP (R : X). Then
for each ε1 ∈ ϑX,Y (ϕ, ·) and each compact subset E of X × Y we have

∥ϕ(t− s+ ω)− ϕ(t− s)∥ ≤ ε1.

Now, we have

∥Su(t+ ω)− Su(t)∥X =

∥∥∥∥∥
+∞∫
0

T (s)
(
ϕ(t− s+ ω)− ϕ(t− s)

)
ds

∥∥∥∥∥
≤

+∞∫
0

Ce−σs∥ϕ(t− s+ ω)− ϕ(t− s)∥X ds ≤ ε1

+∞∫
0

Ce−σs ds =
Cε1
σ

≤ ε.

Hence, Su ∈ AP (R : X). 2

Theorem 2.1 Let (A) and (C1)–(C5) hold. If ρ < 1, where ρ =
CLf

σ (1 + ∥k∥L1Lg), then (1.1) has a
unique almost periodic mild solution.
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Proof: We define the operator S : AP (R : X) → AP (R : X) by

(Su)(t) :=
t∫

−∞

T (t− s)f
(
s, us, Fu(s)

)
ds, t ∈ R.

By Lemma 2.2, the operator S is well-defined. Now, let u, v ∈ AP (R : X). Then we obtain

∥Su− Sv∥X ≤
t∫

−∞

∥T (t− s)(f(s, us, Fu(s))− f(s, vs, Fv(s)))∥ ds

≤ C

t∫
−∞

e−σ(t−s)∥f(s, us, Fu(s))− f(s, vs, Fv(s))∥ ds

≤ CLf

t∫
−∞

e−σ(t−s)
(
∥us − vs∥C + ∥Fu(s)− Fv(s)∥

)
ds

≤ CLf

t∫
−∞

e−σ(t−s)
(
∥us − vs∥C +

t∫
−∞

k(t− s)∥g(s, us)− g(s, vs)∥
)
ds

≤ CLf

t∫
−∞

e−σ(t−s)
(
∥u− v∥∞

(
1 + ∥k∥L1Lg

))
ds

≤ CLf

σ

(
1 + ∥k∥L1Lg

)
∥u− v∥∞.

Hence, by the Banach contraction mapping principle, S has a unique fixed point in AP (R : X), so (1.1)
has a unique mild solution in AP (R : X). 2

Theorem 2.2 Let (A), (C1)–(C3) and (C6)–(C7) hold. If there is ν > 0 such that ρ < 1, where

ρ =
C

σ

(
Lf (ν)

(
1 + Lg(ν)∥k∥L1

)
+

1

ν
Lf (ν)∥k∥L1 · sup

t∈R
∥g(t, 0)∥+ 1

ν
sup
t∈R

∥f(t, 0, 0)∥
)
,

then (1.1) has a unique almost periodic mild solution, with ∥u∥∞ ≤ λ.

Proof: Note that f is bounded, so f(·, 0) is also a bounded function in R. We define the operator
R : AP (R : X) → AP (R : X) by

(Ru)(t) :=
t∫

−∞

T (t− s)f
(
s, us, Fu(s)

)
ds, t ∈ R.

Put Bν := {u ∈ AP (R : X) : ∥u∥∞ ≤ ν}. For u ∈ Bν , we have

∥Ru(t)∥ ≤ C

t∫
−∞

e−σ(t−s)
(
∥f(s, us, Fu(s))− f(s, 0, 0) + f(s, 0, 0)∥

)
ds

≤ C

t∫
−∞

e−σ(t−s)Lf (ν)
(
∥us∥C + ∥Fu(s)∥

)
ds+ C

t∫
−∞

e−σ(t−s)∥f(s, 0, 0)∥ ds

≤ CνLf (ν)

σ

(
1 + Lg(ν)∥k∥L1

)
+
CLf (ν)

σ
∥k∥L1 · sup

t∈R
∥g(t, 0)∥

+
C

σ
sup
t∈R

∥f(t, 0, 0)∥ ≤ ν,
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so Ru ∈ Bν .
For u, v ∈ Bν , we obtain

∥Ru−Rv∥ ≤ CLf (ν)

t∫
−∞

e−σ(t−s)
(
∥us − vs∥C + ∥Fu(s)− Fv(s)∥

)
ds

≤ CLf (ν)

σ

(
1 + Lg(ν)∥k∥L1

)
∥u− v∥∞.

Hence,

∥Ru−Rv∥∞ ≤ CLf (ν)

σ

(
1 + Lg(ν)∥k∥L1

)
∥u− v∥∞.

By the condition ρ < 1, using Banach contraction mapping principle, the equation (1.1) has a unique
mild almost periodic solution. 2

Theorem 2.3 Let (A), (C1)–(C3) and (C8)–(C9) hold. Then the equation (1.1) has at least one solution.

Proof: We define the closed ball Br as

Br = {u ∈ AP (R : X) : ∥u∥∞ < r},

where r ≥ C(a∗
f+bf∥k∥L1a

∗
g)

1−C(bf+∥k∥L1bg)
.

Let the operator G : AP (R : X) → AP (R : X) be defined by

(Gu)(t) :=
t∫

−∞

T (t− s)f
(
s, us, Fu(s)

)
ds, t ∈ R.

Now, by applying (C8)–(C9), we obtain

∥(Gu)(t)∥ =

∥∥∥∥∥
t∫

−∞

T (t− s)f(s, us, Fu(s)) ds

∥∥∥∥∥
≤

t∫
−∞

∥T (t− s)∥ · ∥f(s, us, Fu(s))∥ ds

≤ C

t∫
−∞

e−σ(t−s)
(
∥af (t)∥+ bf

(
∥u∥∞ + ∥Fu(s)∥

))
ds

= C

t∫
−∞

e−σ(t−s)

(
a∗f + bf

(
∥u∥∞ +

t∫
−∞

k(t− θ)∥g(θ, uθ)∥ dθ
))

ds

≤ C

t∫
−∞

e−σ(t−s)
(
a∗f + bf

(
∥u∥∞ + ∥k∥L1

(
∥ag(t)∥+ bg∥u∥∞

)))
ds

≤ C
(
a∗f + bf∥k∥L1a∗g +

(
bf + ∥k∥L1bg

)
∥u∥∞

)
≤ r,

so G : Br → Br and {Gu} is uniformly continuous.
Now, we are going to prove that G is continuous. Let (un) be a sequence in Br, such that un → u,

when n→ ∞. Then

(Gun)(t) =
t∫

−∞

T (t− s)f(s, (un)s, Fun(s)) ds,
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where (un)s(t) = un(t+ s).
Now, using Lebesgue dominated convergence theorem, and having on mind the continuity of the

function f and g, we obtain

lim
n→∞

(Gun)(t) = lim
n→∞

t∫
−∞

T (t− s)f(s, (un)s, Fun(s)) ds

=

t∫
−∞

T (t− s)f
(
s, lim

n→∞
(un)s, lim

n→∞
Fun(s)

)
ds

=

t∫
−∞

T (t− s)f(s, us, Fu(s)) ds = (Gu)(t).

Note that, in the upper equality, we used that

lim
n→∞

Fun(s) = lim
n→∞

t∫
−∞

k(t− s)g(s, (un)s) ds

=

t∫
−∞

k(t− s)g(s, lim
n→∞

(un)s) ds =

t∫
−∞

k(t− s)g(s, us) ds = Fu(s).

Next, we prove that {Gu} is equicontinuous and the operator G is relatively compact. Let u ∈ Br, and
t1, t2 ∈ R, t1 < t2 and |t1 − t2| < δ for some δ. We have

∥(Gu)(t2)− (Gu)(t1)∥ =

∥∥∥∥∥
t2∫

−∞

T (t2 − s)f(s, us, Fu(s)) ds

−
t1∫

−∞

T (t1 − s)f(s, us, Fu(s)) ds

∥∥∥∥∥ =

∥∥∥∥∥
t1∫

−∞

T (t2 − s)f(s, us, Fu(s)) ds

+

t2∫
t1

T (t2 − s)f(s, us, Fu(s)) ds−
t1∫

−∞

T (t1 − s)f(s, us, Fu(s)) ds

∥∥∥∥∥

=

∥∥∥∥∥
t1∫

−∞

(
T (t2 − s)− T (t1 − s)

)
f(s, us, Fu(s)) ds

∥∥∥∥∥+
∥∥∥∥∥

t2∫
t1

T (t2 − s)f(s, us, Fu(s)) ds

∥∥∥∥∥
≤

t1∫
−∞

∥T (t1 − s)
(
T (t2 − t1)− I

)
f(s, us, Fu(s))∥ ds

+

t2∫
t1

∥T (t2 − s)f(s, us, Fu(s))∥ ds.

Hence, ∥(Gu)(t2) − (Gu)(t1)∥ → 0, when t1 → t2. Now, by using Schauder’s fixed point theorem, we
obtain existence of at least one solution of (1.1). 2

The following example is a generalization of certain results in [18] (see also [3], [26] and [30]):
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Example 2.1 Let us consider the Cohen–Grossberg neural network with delays given by the system

u′i(t) = −aiui(t) +
n∑

j=1

bij(t)fj
(
uj(t)) +

n∑
j=1

cijgj
(
uj(t− τij)

)
(2.1)

+

n∑
j=1

dij

t∫
−∞

kij(t− s)vj
(
uj(s)

)
ds+ Ii(t),

for i = 1, 2, ..., n. In the context of this neural network model, n represents the number of units, ui(t)
signifies the state of the ith unit at time t, ai > 0 denotes the rate at which the ith unit resets its potential
to the resting state in isolation, when detached from both the network and external inputs. The parameter
bij(t) indicates the strength of influence from the jth unit on the ith unit at time t, while cij(t) represents
the strength of the jth unit in the ith unit at time t− τij, where τij corresponds to the transmission delay
along the axon from the jth unit to the ith unit at time t. The terms fj, gj, and vj refer to the measured
response or activation in response to incoming potentials for the jth unit, and Ii(t) characterizes the
varying external input signals directed to the ith unit at time t.

Let bij(t), cij(t), dij(t), Ii(t) ∈ AP (R : R), kij(t) = e−t, i, j = 1, 2, ..., n. Additionally, let the following
holds: There exist positive constants Lfj , Lgj , Lvj such that

|fj(u)− fj(v)| ≤ Lfj |u− v|, |gj(u)− gj(v)| ≤ Lgj |u− v|,

|vj(u)− vj(v)| ≤ Lvj |u− v|,

for all u, v ∈ R.
Let A = diag(−a1,−a2, ...,−an) and X be the Banach space of bounded continuous functions from

R to Rn. The semigroup generated by A is given by T (t) = etA = diag(e−ta1 , e−ta2 , ..., e−tan) and
∥T (t)∥ ≤ Ce−σt, where C = 1 and σ = min1≤i≤n ai. Hence, (A) holds. Let

f(t, u(t− τ), Fu(t)) =

(
n∑

j=1

b1j(t)fj(uj(t)) +

n∑
j=1

c1j(t)gj(uj(t− τ1j))

+

n∑
j=1

d1j(t)

t∫
−∞

k1j(y − s)vj(uj(s)) ds+ I1(t), ...,

n∑
j=1

bnj(t)fj(uj(t)) +

n∑
j=1

cnj(t)gj(uj(t− τnj))

+

n∑
j=1

dnj(t)

t∫
−∞

knj(y − s)vj(uj(s)) ds+ In(t)

)T

.

Note that (C4)–(C5) are fulfilled. Hence, by using Theorem 2.1, for ρ = Lf (1 + Lg) < σ, where

Lf = max
t∈R

(
n∑

i=1

n∑
j=1

Lfj bij(t) +

n∑
i=1

n∑
j=1

Lgjcij(t)

)
+ 1,

Lg = max
t∈R

(
n∑

i=1

n∑
j=1

Lvjdij(t)

)
,

the Cohen–Grossberg neural network (2.1) has a unique almost periodic solution.
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Example 2.2 Let we consider the following neutral integro-differential equation

u′(t) = −au(t) + 1

2
sinu(t− τ) + cos

1

3

t∫
−∞

e−(t−s) cos(s− τ) ds, (2.2)

for a ∈ R. We put f(t, u, v) = 1
2 sinu + cos v, Fu =

∫ t

−∞ k(t − s)g(s, us) ds, k(t) = e−t and g(t, u) =
1
3 cosu. The semigroup generated by A is given by T (t) = e−at, so ∥T (t)∥ ≤ Ce−σt, where C = 1 and
σ = −a, so (A) is satisfied. Note that the functions f(t, u, v) and g(t, u) are almost periodic functions.
Hence, the conditions (C1)–(C3) are fulfilled. Moreover, we have

|f(t, u, v)| ≤ 1

2
+ (|u|+ |v|) and |g(t, u)| ≤ 1

3
+ |u|,

so a∗f = 1
2 , bf = 1, a∗g = 1

3 and bg = 1. We conclude that (C8)–(C9) hold.
Now, by using Theorem 2.3, the equation (2.2) has at least one almost periodic solution.

3. Conclusion

In the course of this investigation, we have established the criteria for the existence and uniqueness of
almost periodic mild solutions within a specified class of neutral integro-differential equations, formulated
within the framework of a Banach space. Our findings extend the current body of knowledge in the field of
almost periodic solutions for specific categories of neutral differential equations. The provided illustrative
examples underscore the significance of our results and their potential applicability in domains such as
neural networks and engineering.

For future research endeavors, our focus will center on delineating the prerequisites governing the
existence and uniqueness of almost periodic mild solutions in more general classes of neutral integro-
differential equations. This will encompass scenarios where the operator A in (1.1) possesses a non-dense
domain. Additionally, we aim to investigate the presence of almost periodic mild solutions in classes of
nonautonomous neutral integro-differential equations.
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