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Degree of Convergence of Functions of Several Variables in Generalized Hölder Spaces

H. K. Nigam

abstract: In this paper, degree of convergence of a function of double conjugate Fourier series in two
dimensional generalized Hölder spaces using double Hausdorff means is obtained. The degree of convergence
of a function of N -multiple conjugate Fourier series in N -dimensional generalized Hölder spaces using N-
dimensional Hausdorff means is also obtained. Some important corollaries are also deduced form our main
results.
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1. Introduction

Degree of approximation of a function of one dimensional variable in Lipschitz, Besov, Hölder, gen-
eralized Hölder spaces has been studied by the authors [4,5,11,12,16,13,17,14] etc. using different single
and product summability means of conjugate Fourier series.
Different double summability means of double conjugate Fourier series has been investigated by the au-
thors [9] and [15].
The double Hausdorff matrices of double sequences was first studied by [7]. Later, [10] and [18] have
also studied double Hausdorff matrices of double sequences.
Degree of approximation of a function of two variables has been studied by [8] using rectangular partial
sums of double conjugate Fourier series.
Since the degree of approximation of a function of conjugate Fourier series in above mentioned spaces
only gives the degree of the polynomials with respect to the function but the degree of convergence of a
function of conjugate Fourier series gives the convergence of the polynomial with respect to the function.
In this paper, we study the degree of convergence of a function of two dimensional variable in generalized
Hölder space by double Hausdorff matrices of double conjugate Fourier series. We also study the degree
of convergence of a function of N -dimensional variable in generalized Hölder space by N -dimensional
Hausdorff matrices of N -multiple conjugate Fourier series (N ≥ 3).
The organization of the paper is as follows: In section 1, we give definitions and notations related to the
present work of the paper. In section 2, we propose our main result for obtaining best approximation of
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conjugate of a function g̃(x, y) of two dimensional variable in generalized Hölder spaces (H
(ξ1,ξ2)
r ; r ≥ 1)

using double Hausdorff matrices of double conjugate Fourier series. In subsection 2.1, we prove five
lemmas which are used in obtaining our main result. In subsection 2.2, we establish our main result and
in subsection 2.3, four corollaries are deduced from our main result. In section 3, we propose another
result to obtain the best approximation of conjugate of a function g̃(x1, x2, · · · , xN ) of N -dimensional

variable in generalized Hölder spaces (H
(ξ1,ξ2,··· ,ξN )
r ; r ≥ 1) using N -dimensional Hausdorff matrices of N -

multiple conjugate Fourier series and in subsection 3.1, two corollaries are deduced from our second result.

The Fourier series of a periodic function g ∈ L1(T),T = [−π, π] is given by∑
m∈Z

g̃(m)eimx. (1.1)

The conjugate series of (1) is defined by∑
m∈Z

(−i sign m)g̃(m)eimx, (1.2)

where

sign m :=


1 if m > 0,

0 if m = 0,

−1 if m < 0.

and

Z := {· · · − 2,−1, 0, 1, 2, · · · }.

Series (2) is said to be conjugate Fourier series. It is known that the corresponding conjugate function
of (2) is defined as

g̃(x) = − 1

π

∫ π

0

g(x+ l)− g(x− l)

2 tan( l
2 )

dl.

Consider g(x, y) be measurable and bounded function on the two dimensional torus T2. Given a function
g ∈ L1(T2), 2π-periodic in each variable. The double Fourier series of a function g(x, y) is given by∑∑

(n,m)∈Z2

cn,m(g)ei(nx+my), (1.3)

where

cn,m(g) :=
1

4π2

∫∫
T2

g(u, v)e−i(nx+my)dudv.

One can associate three conjugate series to the double Fourier series (3) in the following ways:∑∑
(n,m)∈Z2

(−i sign n)cn,m(g)ei(nx+my) (1.4)

(conjugate taken in first variable),∑∑
(n,m)∈Z2

(−i sign m)cn,m(g)ei(nx+my) (1.5)

(conjugate taken in second variable) and∑∑
(n,m)∈Z2

(−i sign n)(−i sign m)cn,m(g)ei(nx+my) (1.6)
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(conjugate taken in both the variables).
The corresponding conjugate functions are defined as follows:

g̃10(x, y) = lim
h→0

g̃10(h;x, y),

(conjugate taken in the first variable), where

g̃10(x, y) =
1

π

∫ π

h

ψx(g(·, y); s)
2 tan( s2 )

ds, h > 0 (1.7)

or

g̃10(x, y) = − 1

π

∫ π

0

g(x+ s, y)− g(x− s, y)

2 tan( s2 )
ds. (1.8)

Similarly,

g̃01(x, y) = − 1

π

∫ π

0

g(x, y + l)− g(x, y − l)

2 tan( l
2 )

dl, (1.9)

(conjugate taken in the second variable) and

g̃11(x, y)

=
1

π2

∫ π

0

∫ π

0

g(x+ s, y + l)− g(x− s, y + l)− g(x+ s, y − l) + g(x− s, y − l)

2 tan( s2 ) · 2 tan(
l
2 )

dsdl (1.10)

(conjugate taken in both the variables).
The integrals (8),(9) and (10) are taken in the sense of the “Cauchy principal value” at the points x = 0,
or y = 0, or x = y = 0, respectively.
In this paper, we shall consider the symmetric square partial sums of series (10).
The double Hausdorff matrix H has the entries

hn,p;m,q =

{(
n
p

)(
m
q

)
∆n−p∆m−qµp,q 0 ≤ p ≤ n, 0 ≤ q ≤ m;

0 p > n, q > m,
(1.11)

where {µp,q} is any real or complex sequence and for any sequence µp,q, the forward difference operator
∆ is defined by

∆∆µp,q = µp,q − µp+1,q − µp,q+1 + µp+1,q+1

and

∆n−p∆m−qµp,q =

n−p∑
u=0

m−q∑
v=0

(−1)p+q

(
n− p

u

)(
m− q

v

)
µp+u,q+v.

The necessary and sufficient condition for double Hausdorff matrix (H) to be conservative is the existence
of a mass function χ(u, v) ∈ BV [0, 1]× [0, 1] such that∫ 1

0

∫ 1

0

|dχ(u, v)| <∞

and

µn,m =

∫ 1

0

∫ 1

0

unvmdχ(u, v).

Without loss of generality, we may assume that χ(0, 0) = 0. In addition, if we have χ(1, 1) = 1, and the
continuity conditions

χ(u,+0) = χ(u, 0), χ(u,+0) = lim
v→0

χ(u, v),

χ(+0, v) = χ(0, v), χ(+0, v) = lim
u→0

χ(u, v)
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are satisfied, then µ0,0 = 1.
We say that µn,m is a regular moment constant ( [7,18]).
Now, re-writing double Hausdorff matrix defined in (11), as

hn,p;m,q

=

{(
n
p

)(
m
q

) ∫ 1

0

∫ 1

0
up(1− u)n−pvq(1− v)m−qdχ(u, v), p = 0, 1, 2, · · · , n; q = 0, 1, · · · ,m;

0, p > n, q > m,
(1.12)

where single Hausdorff matrix hn,p or hm,q is given by

hn,p =

{(
n
p

) ∫ 1

0
up(1− u)n−pdχ(u), p = 0, 1, 2, · · · , n;

0, p > n.

Let
∑∞

n=0

∑∞
m=0 dn,m be a double conjugate Fourier series with s̃n,m =

∑n
p=0

∑m
q=0 dp,q as its (n,m)th

partial sums.
The double Hausdorff means t̃Hn,m is given by

t̃Hn,m =

n∑
p=0

m∑
q=0

hn,p;m,q s̃p,q.

If t̃Hn,m → c as n,m → ∞, then the double conjugate Fourier series
∑∞

n=0

∑∞
m=0 dn,m with the sequence

of (n,m)th partial sums (s̃n,m) is summable to some finite value c by the H method.

Remark: 1. A double Hausdorff matrix method reduces to

(i) double Cesàro means (C, λ, σ) if mass function χ(u, v) = λσ
∫ u

0

∫ v

0
(1− u)λ−1(1− v)σ−1dudv.

(ii) double Euler’s means (E, ρn, ρm) if mass function

χ(u, v) =

{
0, if u ∈ [0, a] and v ∈ [0, b],

1, if u ∈ [a, 1] and v ∈ [b, 1]

where a = 1
1+ρn

, ρn > 0 and b = 1
1+ρm

, ρm > 0.

Note: 1.

(i) Putting λ = σ = 1 in Remark 1(i), (C, λ, σ) means reduces to (C, 1, 1) means.

(ii) Putting ρn = 1 ∀ n and ρm = 1 ∀ m in Remark 1(ii), (E, ρn, ρm) means reduces to (E, 1, 1) means.

The Hölder class for continuous periodic function g(x, y) of period 2π in each variables x and y is defined
as

H(α,β) =
{
g : |g(x, y; s, l)| := |g(x+ s, y + l)− g(x, y)| ≤ C1(|s|α + |l|β)

}
for some 0 < α, β ≤ 1 and for all x, y, s, l, where C1 is a positive constant may depend on f, but not
on x, y, s, l. This class of functions is also known as Lipschitz class and denoted by Lip(α, β). It can be
easily varified that H(α,β) is a Banach space with respect to the norm ∥ · ∥(α,β) is defined by

∥g∥α,β = ∥g∥C + sup
x̸=s,y ̸=l

∆α,βg(x, y; s, l),

where

∆α,βg(x, y; s, l) =
|g(x+ s, y + l)− g(x, y)|

|x− s|α + |y − l|β
(x ̸= s, y ̸= l).
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By convention ∆0,0g(x, y; s, l) = 0 and

∥g∥C = sup
(x,y)∈T2

|g(x, y)|.

The function space Lr[[0, 2π]× [0, 2π]] is given by

Lr[[0, 2π]× [0, 2π]]

=

{
g : [[0, 2π]× [0, 2π]] → R× R :

∫ 2π

0

∫ 2π

0

|g(x, y)|rdxdy <∞, r ≥ 1

}
. (1.13)

The norm of (13) is defined by

∥f∥r :=


{

1
4π2

∫ 2π

0

∫ 2π

0
|g(x, y)|r dxdy

} 1
r

, r ∈ [1,∞);

ess supx,y∈[0,2π] |g(x, y)| , r = ∞.

Let ξ1, ξ2 : [−π, π;−π, π] → R × R be a real valued arbitrary function. The class of function H
(ξ1,ξ2)
r is

defined by

H(ξ1,ξ2)
r =

{
g ∈ Lr[[0, 2π]× [0, 2π]] : sup

s̸=0,l ̸=0

∥g(x+ s, y + l)− g(x, y)∥r
ξ1(s) + ξ2(l)

}
,

where ξ1 and ξ2 are the moduli of continuity that is ξ1 and ξ2 are positive non-decreasing continuous
function with the properties:

lim
s→0+

ξ1(s) = ξ1(0) = 0; lim
l→0+

ξ2(l) = ξ2(0) = 0

and

ξ1(s1 + s2) ≤ ξ1(s1) + ξ1(s2); ξ2(l1 + l2) ≤ ξ2(l1) + ξ2(l2).

We define

∥g∥(ξ1,ξ2)r = ∥g∥r + sup
s̸=0,l ̸=0

∥g(x+ s, y + l)− g(x, y)∥r
ξ1(s) + ξ2(l)

.

Clearly, ∥·∥(ξ1,ξ2)r is a norm on H
(ξ1,ξ2)
r .

It can be varified that the completeness of the space Lr[[0, 2π]× [0, 2π]] implies the completeness of the

space H
(ξ1,ξ2)
r .

Let
(

ξ1(s)
η1(s)

)
and

(
ξ2(l)
η2(l)

)
both be non-decreasing and positive. Then

∥g∥(η1,η2)
r ≤ max

(
1,
ξ1(2π)

η1(2π)
,
ξ2(2π)

η2(2π)

)
∥g∥(ξ1,ξ2)r <∞.

Thus,

H(ξ1,ξ2)
r ⊆ H(η1,η2)

r ⊆ Lr[[0, 2π]× [0, 2π]].

Note: 2. If ξ1(s) = |s|α, ξ2(l) = |l|β and r → ∞, then H
(ξ1,ξ2)
r class reduces to Hα,β class.

The degree of convergence of a summation method to a given function g : R× R → R is a measure that
how fast tn,m converges to g, which is given by

∥g − tn,m∥ = O

(
1

νn,m

)
( [2]),
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where νn,m → ∞ as n,m→ ∞.
We write

Ψ(s, l) = ψ(x, s; y, l)

=
1

4
[g(x+ s, y + l)− g(x+ s, y − l)− g(x− s, y + l) + g(x− s, y − l)] ;

Ψ(x, y) =

∫ x

0

∫ y

0

|ψ(u, v)|dudv;

K̃n,m(s, l) =
1

4π2

n∑
p=0

hn,p
cos(p+ 1

2 )s

sin( s2 )
·

m∑
q=0

hm,q

cos(q + 1
2 )l

sin( l
2 )

. (1.14)

2. Degree of Convergence of a Function of Two Dimensional Variable of Double
Conjugate Fourier Series

Degree of convergence of a function of two dimensional variable in generalized Hölder space of two
dimensional Hausdorff matrices of double conjugate Fourier series is obtained in the following theorem:

2.1. Main Theorem

Theorem 2.1 Let g̃(x, y) be a function, conjugate to a function g(x, y)(periodic with period 2π in both
x and y), Lebesgue integrable on T(−π, π;−π, π). Then, the error estimation of g̃(x, y) in the space

(H
(ξ1,ξ2)
r , r ≥ 1) using double Hausdorff matrix (H), is given by

∥∥t̃Hn,m(x, y)− g̃(x, y)
∥∥(η)
r

= O

[
4

(
1

(n+ 1)(m+ 1)

)(
2 log(n+ 1) log(m+ 1)

+ log(n+ 1)(m+ 1) + 2

)
·

(∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)]
, (2.1)

where ξ1(s) + ξ2(l) and η1(s) + η2(l) denote the moduli of continuity such that ξ1(s)+ξ2(l)
η1(s)+η2(l)

is positive and

non-decreasing.

2.2. Lemmas

Following Lemmas are required for the proof of our main result:

Lemma 2.1 K̃n,m(s, l) = O
(
1
sl

)
for 0 < s ≤ 1

n+1 and 0 < l ≤ 1
m+1 .

Proof: For 0 < s ≤ 1
n+1 , sin(

s
2 ) ≥

s
π , | cosns| ≤ 1 and for 0 < l ≤ 1

m+1 , sin(
l
2 ) ≥

l
π , | cosml| ≤ 1.∣∣∣K̃n,m(s, l)

∣∣∣
=

1

4π2

∣∣∣∣∣
n∑

p=0

hn,p
cos(p+ 1

2 )s

sin( s2 )
·

m∑
q=0

hm,q

cos(q + 1
2 )l

sin( l
2 )

∣∣∣∣∣
=

1

4π2

{
n∑

p=0

hn,p

∣∣cos(p+ 1
2 )s
∣∣∣∣sin( s2 )∣∣
}

·

{
m∑
q=0

hm,q

∣∣cos(q + 1
2 )l
∣∣∣∣sin( l

2 )
∣∣
}

≤ 1

4π2

{
n∑

p=0

hn,p ·
1
s
π

}
·

{
m∑
q=0

hm,q ·
1
l
π

}

≤ π2

4π2sl

n∑
p=0

hn,p ·
m∑
q=0

hm,q.
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We have
∑n

p=0 hn,p = 1 and
∑m

q=0 hm,q = 1 ( [3, p.397]), then∣∣∣K̃n,m(s, l)
∣∣∣ = O

(
1

sl

)
.

2

Lemma 2.2 K̃n,m(s, l) = O
(

1
(m+1)sl2

)
for 0 < s ≤ 1

n+1 and 1
m+1 < l ≤ π.

Proof: For 0 < s ≤ 1
n+1 , sin(

s
2 ) ≥ s

π , | cos(ns)| ≤ 1 and for 1
m+1 < l ≤ π, sin( l

2 ) ≥ l
π , | sin(m + 1)l| ≤

1, sup0≤v≤1 |χ′(v)| =M.∣∣∣K̃n,m(s, l)
∣∣∣

=
1

4π2

∣∣∣∣∣
n∑

p=0

hn,p
cos(p+ 1

2 )s

sin( s2 )
·

m∑
q=0

hm,q

cos(q + 1
2 )l

sin( l
2 )

∣∣∣∣∣
=

1

4π2

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u)

| cos
(
p+ 1

2

)
s|

| sin( s2 )|

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v)

cos
(
q + 1

2

)
l

| sin( l
2 )|

∣∣∣∣∣
≤ 1

4π2

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u)

1
s
π

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v)

cos
(
q + 1

2

)
l

l
π

∣∣∣∣∣
≤ 1

4sl

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u) ·

m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v) cos

(
q +

1

2

)
l

∣∣∣∣∣
≤ M

4sl

∣∣∣∣∣
[∫ 1

0

{(
n

0

)
u0(1− u)n +

(
n

1

)
u(1− u)n−1 + · · ·+

(
n

n

)
un(1− u)n−n

}
du

]

· (1− v)mRe

[
m∑
q=0

∫ 1

0

(
m

q

)(
v

1− v

)q

ei(q+
1
2 )ldv

]∣∣∣∣∣
≤ M

4sl

∣∣∣∣∣
(∫ 1

0

(1− u+ u)ndu

)
· (1− v)mRe

[
m∑
q=0

∫ 1

0

(
m

q

)(
v

1− v

)q

eiqle
il
2 dv

]∣∣∣∣∣
≤ M

4sl

∣∣∣∣∣
(∫ 1

0

1du

)
· (1− v)mRe

[
e

il
2

m∑
q=0

∫ 1

0

(
m

q

)(
veil

1− v

)q

dv

]∣∣∣∣∣
≤ M

4sl

∣∣∣∣∣(1− v)mRe

[
e

il
2

∫ 1

0

{(
m

0

)(
veit

1− v

)0

+

(
m

1

)(
veil

1− v

)1

+ · · ·+
(
m

m

)(
veil

1− v

)m
}
dv

]∣∣∣∣∣
≤ M

4sl

∣∣∣∣Re [e il
2

∫ 1

0

{(
m

0

)
(1− v)m +

(
m

1

)
veil(1− v)m−1 + · · ·+

(
m

m

)
(veil)m(1− v)0

}
dv

]∣∣∣∣
≤ M

4sl

∣∣∣∣Re [e il
2

∫ 1

0

(1− v + veil)mdv

]∣∣∣∣
≤ M

4sl

∣∣∣∣Re [e il
2

∫ 1

0

{
1 + v(eil − 1)

}m
dv

]∣∣∣∣
Now, solving integration ∫ 1

0

{
1 + v(eil − 1)

}m
dv
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Put {
1 + v(eil − 1)

}
= t

(eil − 1)dv = dt

dv =
dt

(eil − 1)

∫ 1

0

tm

(eil − 1)
dt =

1

(eil − 1)(m+ 1)

[{
1 + v(eil − 1)

}m+1

]1
0

=

[
ei(m+1)l − 1

(m+ 1)(eil − 1)

]

≤ M

4sl

∣∣∣∣Re [e il
2 · ei(m+1)l − 1

(m+ 1)(eil − 1)

]∣∣∣∣
≤ M

4sl

∣∣∣∣∣Re
[

ei(m+1)l − 1

(m+ 1)(e
il
2 − e−

il
2 )

]∣∣∣∣∣
≤ M

4sl

∣∣∣∣∣Re
[
cos(m+ 1)l + i sin(m+ 1)l − 1

(m+ 1)2i sin( l
2 )

]∣∣∣∣∣
≤ M

4sl

∣∣∣∣∣
(

sin(m+ 1)l

2(m+ 1) sin( l
2 )

)∣∣∣∣∣
≤ M

8sl
· π

(m+ 1)l
.

Hence, ∣∣∣K̃n,m(s, l)
∣∣∣ = O

(
1

(m+ 1)sl2

)
.

2

Lemma 2.3 K̃n,m(s, l) = O
(

1
(n+1)s2l

)
for 1

n+1 < s ≤ π and 0 < l ≤ 1
m+1 .

Proof: For 1
n+1 < s ≤ π, sin( s2 ) ≥ s

π , | sin(n + 1)s| ≤ 1, sup0≤u≤1 |χ′(u)| = F and for 0 < l ≤
1

m+1 , sin
(
l
2

)
≥ l

π , | cos(ml)| ≤ 1.∣∣∣K̃n,m(s, l)
∣∣∣

=
1

4π2

∣∣∣∣∣
n∑

p=0

hn,p
cos(p+ 1

2 )s

sin( s2 )
·

m∑
q=0

hm,q

cos(q + 1
2 )l

sin( l
2 )

∣∣∣∣∣
=

1

4π2

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u)

cos(p+ 1
2 )s

| sin( s2 )|

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v)

| cos(q + 1
2 )l|

| sin( l
2 )|

∣∣∣∣∣
≤ 1

4π2

∣∣∣∣∣
p∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u)

cos(p+ 1
2 )s

s
π

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v)

1
l
π

∣∣∣∣∣
≤ 1

4sl

∣∣∣∣∣
p∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u) cos

(
p+

1

2

)
s

·

[∫ 1

0

{(
m

0

)
v0(1− v)m +

(
m

1

)
v(1− v)m−1 + · · ·+

(
m

m

)
vm(1− v)m−m

}
dχ(v)

]∣∣∣∣∣
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≤ F

4sl

∣∣∣∣∣(1− u)nRe

[
n∑

p=0

∫ 1

0

(
n

p

)(
u

1− u

)p

ei(p+
1
2 )sdu

]
·

[∫ 1

0

(1− v + v)mdv

]∣∣∣∣∣
≤ F

4sl

∣∣∣∣∣(1− u)nRe

[
n∑

p=0

∫ 1

0

(
n

p

)(
u

1− u

)p

eipse
is
2 du

]∣∣∣∣∣
≤ F

4sl

∣∣∣∣∣(1− u)nRe

[
e

is
2

∫ 1

0

n∑
p=0

(
n

p

)(
ueis

1− u

)p

du

]∣∣∣∣∣
≤ F

4sl

∣∣∣∣∣(1− u)nRe

[
e

is
2

∫ 1

0

{(
n

p

)(
ueis

1− u

)0

+

(
n

1

)(
ueis

1− u

)
+ · · ·+

(
n

n

)(
ueis

1− u

)n
}
du

]∣∣∣∣∣
≤ F

4sl

∣∣∣∣∣Re
[
e

is
2

∫ 1

0

{(
n

0

)
(1− u)n +

(
n

1

)
(ueis)(1− u)n−1 + · · ·+

(
n

n

)
(ueis)n(1− u)0

}
du

]∣∣∣∣∣
≤ F

4sl

∣∣∣∣Re [e is
2

∫ 1

0

(1− u+ ueis)ndu

]∣∣∣∣
≤ F

4sl

∣∣∣∣Re [e is
2

∫ 1

0

{
1 + u(eis − 1)

}n
du

]∣∣∣∣
≤ F

4sl

∣∣∣∣∣Re
[

ei(n+1)s − 1

(n+ 1)(e
is
2 − e−

is
2 )

]∣∣∣∣∣
≤ F

4sl

∣∣∣∣Re [cos(n+ 1)s+ i sin(n+ 1)s− 1

(n+ 1)2i sin( s2 )

]∣∣∣∣
≤ F

4sl

∣∣∣∣ sin(n+ 1)s

2(n+ 1) sin( s2 )

∣∣∣∣
≤ F

8sl
· π

(n+ 1)s

Hence,

∣∣∣K̃n,m(s, l)
∣∣∣ = O

(
1

(n+ 1)s2l

)
.

2

Lemma 2.4
∣∣∣K̃n,m(s, l)

∣∣∣ = O
(

1
(n+1)(m+1)s2l2

)
for 1

n+1 < s ≤ π and 1
m+1 < l ≤ π.

Proof: For 1
n+1 < s ≤ π, sin( s2 ) ≥ s

π , | sin(n + 1)s| ≤ 1, sup0≤u≤1 |χ′(u)| = F and for 0 < l ≤
1

m+1 , sin( l
2 ) ≥

l
π , | sin(m+ 1)l| ≤ 1, sup0≤v≤1 |χ′(v)| =M .
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∣∣∣K̃n,m(s, l)
∣∣∣

=
1

4π2

∣∣∣∣∣
n∑

p=0

hn,p
cos(p+ 1

2 )s

sin( s2 )
·

m∑
q=0

hm,q

cos(q + 1
2 )l

sin( l
2 )

∣∣∣∣∣
=

1

4π2

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u)

cos(p+ 1
2 )s

| sin( s2 )|

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v)

cos(q + 1
2 )l

| sin( l
2 )|

∣∣∣∣∣
≤ 1

4π2

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u)

cos(p+ 1
2 )s

s
π

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v)

cos(q + 1
2 )l

l
π

∣∣∣∣∣
≤ 1

4sl

∣∣∣∣∣
n∑

p=0

∫ 1

0

(
n

p

)
up(1− u)n−pdχ(u) cos

(
p+

1

2

)
s

·
m∑
q=0

∫ 1

0

(
m

q

)
vq(1− v)m−qdχ(v) cos

(
q +

1

2

)
l

∣∣∣∣∣
≤ FM

4sl

∣∣∣∣∣(1− u)nRe

[
n∑

p=0

∫ 1

0

(
n

p

)(
u

1− u

)p

ei(p+
1
2 )sdu

]

· (1− v)mRe

[
m∑
q=0

∫ 1

0

(
m

q

)(
v

1− v

)q

ei(q+
1
2 )ldv

]∣∣∣∣∣
≤ FM

4sl

∣∣∣∣∣(1− u)nRe

[
e

is
2

∫ 1

0

{
n∑

p=0

(
n

p

)(
ueis

1− u

)p
}
du

]

· (1− v)mRe

[
e

il
2

∫ 1

0

{
m∑
q=0

(
m

q

)(
veil

1− v

)q
}
dv

]∣∣∣∣∣
≤ FM

4sl

∣∣∣∣∣(1− u)nRe

[
e

is
2

∫ 1

0

{(
n

0

)(
ueis

1− u

)0

+

(
n

1

)(
ueis

1− u

)
+ · · ·+

(
n

n

)(
ueis

1− u

)n
}
du

]

· (1− v)mRe

[
e

il
2

∫ 1

0

{(
m

0

)(
veil

1− v

)0

+

(
m

1

)(
veil

1− v

)
+ · · ·+

(
m

m

)(
veil

1− v

)m
}
dv

]∣∣∣∣∣
≤ FM

4sl

∣∣∣∣∣Re
[
e

is
2

∫ 1

0

{(
n

0

)
(1− u)n +

(
n

1

)
(ueis)(1− u)n−1 + · · ·+

(
n

n

)
(ueis)n(1− u)0

}
du

]

·Re
[
e

il
2

∫ 1

0

{(
m

0

)
(1− v)m +

(
m

1

)
(veil)(1− v)m−1 + · · ·+

(
m

m

)
(veil)m(1− v)0

}
dv

]∣∣∣∣∣
≤ FM

4sl

∣∣∣∣Re [e is
2

∫ 1

0

(1− u+ ueis)ndu

]
·Re

[
e

il
2

∫ 1

0

(1− v + veil)mdv

]∣∣∣∣
≤ FM

4sl

∣∣∣∣∣Re
[

ei(n+1)s − 1

(n+ 1)(e
is
2 − e−

is
2 )

]
·Re

[
ei(m+1)l − 1

(m+ 1)(e
il
2 − e−

il
2 )

]∣∣∣∣∣
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≤ FM

4sl

∣∣∣∣∣Re
[
cos(n+ 1) + i sin(n+ 1)− 1

(n+ 1)2i sin( s2 )

]
·Re

[
cos(m+ 1) + i sin(m+ 1)− 1

(m+ 1)2i sin( l
2 )

]∣∣∣∣∣
≤ FM

4sl

∣∣∣∣∣
(

sin(n+ 1)s

2(n+ 1) sin( s2 )

)
·

(
sin(m+ 1)l

2(m+ 1) sin( l
2 )

)∣∣∣∣∣
≤ FM

16sl
· π

(n+ 1)s
· π

(m+ 1)l

≤ FMπ2

16(n+ 1)(m+ 1)s2l2

Hence, ∣∣∣K̃n,m(s, l)
∣∣∣ = O

(
1

(n+ 1)(m+ 1)s2l2

)
.

2

Lemma 2.5 Let g̃(x, y) ∈ H
(ξ1,ξ2)
r (r ≥ 1). Then for 0 < s ≤ π and 0 < l ≤ π,

(i) ∥ψ(·, s; ·, l)∥r = O{ξ1(s) + ξ2(l)};

(ii) For positive, non-decreasing η1 and η2; and for all possible s ̸= 0 and l ̸= 0, we obtain

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r

=



O
(
(η1(s) + η2(l))

(
ξ1(s)+ξ2(l)
η1(s)+η2(l)

))
for s < |u|, l < |v|;

O
(
(η1(|u|) + η2(l))

(
ξ1(s)+ξ2(l)
η1(s)+η2(l)

))
for s > |u|, l < |v|;

O
(
(η1(s) + η2(|v|))

(
ξ1(s)+ξ2(l)
η1(s)+η2(l)

))
for s < |u|, l > |v|;

O
(
(η1(|u|) + η2(|v|))

(
ξ1(s)+ξ2(l)
η1(s)+η2(l)

))
for s > |u|, l > |v|.

Proof: (i)

|ψ(x, s; y, l)| = 1

4
| [g̃(x+ s, y + l)− g̃(x+ s, y − l)− g̃(x− s, y + l) + g̃(x− s, y − l)] |

≤ 1

4
|g̃(x+ s, y + l)− g̃(x+ s, y − l)− g̃(x− s, y + l) + g̃(x+ s, y + l)

+ 2g̃(x, y)− 2g̃(x, y)|

≤ 1

4
[|g̃(x+ s, y + l)− g̃(x, y)|+ |g̃(x+ s, y − l)− g̃(x, y)|

+ |g̃(x− s, y + l)− g̃(x, y)|+ |g̃(x− s, y − l)− g̃(x, y)|]

∥ψ(·, s; ·, l)∥r ≤ 1

4
[∥g̃(x+ s, y + l)− g̃(x, y)∥r + ∥g̃(x+ s, y − l)− g̃(x, y)∥r

+ ∥g̃(x− s, y + l)− g̃(x, y)∥r + ∥g̃(x− s, y − l)− g̃(x, y)∥r]
= O{ξ1(s) + ξ2(l)}+O{ξ1(s) + ξ2(l)}+O{ξ1(s) + ξ2(l)}

+O{ξ1(s) + ξ2(l)}
∥ψ(·, s; ·, l)∥r = O {ξ1(s) + ξ2(l)} .
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(ii) |ψ(x+ u, s; y + v, l)− ψ(x, s; y, l)|

=
1

4
[|{g̃(x+ u+ s, y + v + l)− g̃(x+ u+ s, y + v − l)− g̃(x+ u− s, y + v + l)

+ g̃(x+ u− s, y + v − l)} − {g̃(x+ s, y + l)− g̃(x+ s, y − l)− g̃(x− s, y + l)

+ g̃(x− s, y − l)}|]

≤ 1

4
[|g̃(x+ u+ s, y + v + l)− g̃(x+ s, y + l)|+ |g̃(x+ u+ s, y + v − l)− g̃(x+ s, y − l)|

+ |g̃(x+ u− s, y + v + l)− g̃(x− s, y + l)|+ |g̃(x+ u− s, y + v − l)− g̃(x− s, y − l)|]

Applying generalized Minkowski’s inequality, we have

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r

≤ 1

4
[∥g̃(·+ u+ s, ·+ v + l)− g̃(·+ s, ·+ l)∥r + ∥g̃(·+ u+ s, ·+ v − l)− g̃(·+ s, · − l)∥r

+ ∥g̃(·+ u− s, ·+ v + l)− g̃(· − s; ·+ l)∥r + ∥g̃(·+ u− s, ·+ v − l)− g̃(· − s, · − l)∥r]
= [O{ξ1(s) + ξ2(l)}+O{ξ1(s) + ξ2(l)}+O{ξ1(s) + ξ2(l)}+O{ξ1(s) + ξ2(l)}]
= O{ξ1(s) + ξ2(l)}. (2.2)

Since η1 and η2 are non-decreasing and positive, s < |u|, l < |v|, then using (16), we get

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r = O[ξ1(s) + ξ2(l)]

= O

[
(η1(s) + η2(l)) ·

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)]

Similarly,

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r

≤ 1

4
[∥g̃(·+ s+ u, ·+ v + l)− g̃(·+ s, ·+ l)∥r + ∥g̃(·+ s+ u, ·+ v − l)− g̃(·+ s, · − l)∥r

+ ∥g̃(·+ s− u, ·+ v + l)− g̃(· − s, ·+ l)∥r + ∥g̃(·+ s− u, ·+ v − l)− g̃(· − s, · − l)∥r]
= [O{ξ1(|u|) + ξ2(l)}+O{ξ1(|u|) + ξ2(l)}+O{ξ1(|u|) + ξ2(l)}+O{ξ1(|u|) + ξ2(l)}]
= O{ξ1(|u|) + ξ2(l)}. (2.3)

Since ξ1(s)+ξ2(l)
η1(s)+η2(l)

is non-decreasing and positive, s > |u|, l < |v|, then ξ1(s)+ξ2(l)
η1(s)+η2(l)

≥ ξ1(|u|)+ξ2(l)
η1(|u|)+η2(l)

. Thus,

using (17), we get

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r = O[ξ1(|u|) + ξ2(l)]

= O

[
(η1(|u|) + η2(l)) ·

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)]
.

Similarly,

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r

≤ 1

4
[∥g̃(·+ u+ s, ·+ l + v)− g̃(·+ s, ·+ l)∥r + ∥g̃(·+ u+ s, ·+ l − v)− g̃(·+ s, · − l)∥r

+ ∥g̃(·+ u− s, ·+ l + v)− g̃(· − s, ·+ l)∥r + ∥g̃(·+ u− s, ·+ l − v)− g̃(· − s, · − l)∥r]
= [O{ξ1(s) + ξ2(|v|)}+O{ξ1(s) + ξ2(|v|)}+O{ξ1(s) + ξ2(|v|)}+O{ξ1(s) + ξ2(|v|)}]
= O{ξ1(s) + ξ2(|v|)}. (2.4)
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Since ξ1(s)+ξ2(l)
η1(s)+η2(l)

is non-decreasing and positive, s < |u|, l > |v|, then ξ1(s)+ξ2(l)
η1(s)+η2(l)

≥ ξ1(s)+ξ2(|v|)
η1(s)+η2(|v|) . Thus,

using (18), we get

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r = O[ξ1(s) + ξ2(|v|)]

= O

[
(η1(s) + η2(|v|)) ·

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)]
.

Similarly,

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r

≤ 1

4
[∥g̃(·+ s+ u, ·+ l + v)− g̃(·+ s, ·+ l)∥r + ∥g̃(·+ s+ u, ·+ l − v)− g̃(·+ s, · − l)∥r

+ ∥g̃(·+ s− u, ·+ l + v)− g̃(· − s, ·+ l)∥r + ∥g̃(·+ s− u, ·+ l − v)− g̃(· − s, · − l)∥r]
= [O{ξ1(|u|) + ξ2(|v|)}+O{ξ1(|u|) + ξ2(|v|)}+O{ξ1(|u|) + ξ2(|v|)}+O{ξ1(|u|) + ξ2(|v|)}]
= O{ξ1(|u|) + ξ2(|v|)}. (2.5)

Since ξ1(s)+ξ2(l)
η1(s)+η2(l)

is non-decreasing and positive, s > |u|, l > |v|, then ξ1(s)+ξ2(l)
η1(s)+η2(l)

≥ ξ1(|u|)+ξ2(|v|)
η1(|u|)+η2(|v|) . Thus,

using (19), we get

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥r = O[ξ1(|u|) + ξ2(|v|)]

= O

[
(η1(|u|) + η2(|v|)) ·

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)]
.

2

2.3. Proof of the main Theorem 2.1

Proof: The (p, q)th partial sums s̃p,q(x, y) of the series (10) is given by

s̃p,q(x, y)− g̃(x, y) =
1

π2

∫ π

0

∫ π

0

ψ(x, s; y, l)
cos(p+ 1

2 )s

2 sin( s2 )
·
cos(q + 1

2 )l

2 sin( l
2 )

dsdl

=
1

4π2

∫ π

0

∫ π

0

ψ(x, s; y, l)
cos(p+ 1

2 )s

sin( s2 )
·
cos(q + 1

2 )l

sin( l
2 )

dsdl. (2.6)

The t̃Hn,m(x, y) is double Hausdorff matrix mean of s̃n,m(x, y) and taking in view (20), we write

t̃Hn,m(x, y)− g̃(x, y) =

n∑
p=0

m∑
q=0

hn,p;m,q {s̃p,q(x, y)− g̃(x, y)}

=
1

π2

∫ π

0

∫ π

0

ψ(x, s; y, l)

n∑
p=0

m∑
q=0

hn,p;m,q

cos(p+ 1
2 )s

2 sin( s2 )

cos(q + 1
2 )l

2 sin( l
2 )

dsdl

=

∫ π

0

∫ π

0

ψ(x, s; y, l)K̃n,m(s, l)dsdl.

Let

l̃n,m(x, y) = t̃Hn,m(x, y)− g̃(x, y)

=

∫ π

0

∫ π

0

ψ(x, s; y, l)K̃n,m(s, l)dsdl. (2.7)
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Let us estimate the following:

∥l̃n,m(·, ·)∥(η)r = ∥l̃n,m(x, y)∥r + sup
s̸=0,l ̸=0

∥l̃n,m(x+ s, y + l)− l̃n,m(x, y)∥r
η1(s) + η2(l)

= ∥l̃n,m(x, y)∥r + sup
u̸=0,v ̸=0

∥l̃n,m(x+ u, y + v)− l̃n,m(x, y)∥r
η1(|u|) + η2(|v|)

+ sup
s̸=0,v ̸=0

∥l̃n,m(x+ s, y + v)− l̃n,m(x, y)∥r
η1(s) + η2(|v|)

+ sup
u̸=0,l ̸=0

∥l̃n,m(x+ u, y + l)− l̃n,m(x, y)∥r
η1(|u|) + η2(l)

. (2.8)

From (21), we write

l̃n,m(x+ u, y + v)− l̃n,m(x, y)

=

∫ π

0

∫ π

0

(ψ(x+ u, s; y + v, l)− ψ(x, s; y, l)) K̃n,m(s, l)dsdl.

Using generalized Minkowski’s inequality ( [6]), we have

∥∥∥l̃n,m(·+ u, ·+ v)− l̃n,m(·, ·)
∥∥∥
r

≤
∫ π

0

∫ π

0

∥ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥rK̃n,m(s, l)dsdl

=

(∫ 1
n+1

0

∫ 1
m+1

0

+

∫ 1
n+1

0

∫ π

1
m+1

+

∫ π

1
n+1

∫ 1
m+1

0

+

∫ π

1
n+1

∫ π

1
m+1

)
∥ψ(·+ u, s; ·+ v, l)

− ψ(·, s; ·, l)∥r · K̃n,m(s, l)dsdl

= A+B + C +D. (2.9)

Using Lemmas 2.2 and 2.6(ii), we get

A =

∫ 1
n+1

0

∫ 1
m+1

0

∥(ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l)∥rK̃n,m(s, l)dsdl

= O

(∫ 1
n+1

0

∫ 1
m+1

0

(η1(|u|) + η2(|v|))
ξ1(s) + ξ2(l)

η1(s) + η2(l)
·
(
1

sl

)
dsdl

)

= O

(η1(|u|) + η2(|v|))


∫ 1

m+1

0

ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

· 1
l
dl


∫ 1

n+1

0

1

s
ds


= O

log(n+ 1)(η1(|u|) + η2(|v|)) ·
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

) ∫ 1
m+1

0

1

l
dl


= O

log(n+ 1) · log(m+ 1)(η1(|u|) + η2(|v|)) ·
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
 . (2.10)
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Using Lemmas 2.3 and 2.6(ii), we get

B =

∫ 1
n+1

0

∫ π

1
m+1

∥(ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l))∥rK̃n,m(s, l)dsdl

= O

(∫ 1
n+1

0

∫ π

1
m+1

(η1(|u|) + η2(|v|))
ξ1(s) + ξ2(l)

η1(s) + η2(l)
· 1

(m+ 1)sl2
dsdl

)

= O

 1

(m+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

(
1

l2

)
dl

∫ 1
n+1

0

1

s
ds


= O

 log(n+ 1)

(m+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

(
1

l2

)
dl

 . (2.11)

Using Lemmas 2.4 and 2.6(ii), we get

C =

∫ π

1
n+1

∫ 1
m+1

0

∥(ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l))∥rK̃n,m(s, l)dsdl

= O

(∫ π

1
n+1

∫ 1
m+1

0

(η1(|u|) + η2(|v|)) ·
ξ1(s) + ξ2(l)

η1(s) + η2(l)
· 1

(n+ 1)s2l
dsdl

)

= O

 1

(n+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds

∫ 1
m+1

0

1

l
dl


= O

 log(m+ 1)

(n+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds

 . (2.12)

Using Lemmas 2.5 and 2.6(ii), we get

D =

∫ π

1
n+1

∫ π

1
n+1

∥(ψ(·+ u, s; ·+ v, l)− ψ(·, s; ·, l))∥rK̃n,m(s, l)dsdl

= O

(∫ π

1
n+1

∫ π

1
m+1

(η1(|u|) + η2(|v|)) ·
ξ1(s) + ξ2(l)

η1(s) + η2(l)
· 1

(n+ 1)(m+ 1)s2l2
dsdl

)

= O

(
1

(n+ 1)(m+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)
. (2.13)



16 H. K. Nigam

Combining (23)-(27), we have∥∥∥l̃n,m(x+ u, y + v)− l̃n,m(x, y)
∥∥∥
r

= O

log(n+ 1) · log(m+ 1)(η1(|u|) + η2(|v|)) ·
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)


+O

 log(n+ 1)

(m+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

(
1

l2

)
dl


+O

 log(m+ 1)

(n+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds


+O

(
1

(n+ 1)(m+ 1)
(η1(|u|) + η2(|v|))

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)
.

Thus,

sup
u̸=0,v ̸=0

∥∥∥l̃n,m(x+ u, y + v)− l̃n,m(x, y)
∥∥∥
r

(η1(|u|) + η2(|v|))

= O

log(n+ 1) · log(m+ 1)
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)


+O

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

m+1

)
+ ξ2(l)

η2

(
1

m+1

)
+ η2(l)

(
1

l2

)
dl


+O

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds


+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)
. (2.14)

Similarly, we can have

sup
s̸=0,v ̸=0

∥∥∥l̃n,m(x+ s, y + v)− l̃n,m(x, y)
∥∥∥
r

(η1(s) + η2(|v|))

= O

log(n+ 1) · log(m+ 1)
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)

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+O

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

m+1

)
+ ξ2(l)

η2

(
1

m+1

)
+ η2(l)

(
1

l2

)
dl


+O

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds


+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)
. (2.15)

Similarly, we can have

sup
u̸=0,l ̸=0

∥∥∥l̃n,m(x+ u, y + l)− l̃n,m(x, y)
∥∥∥
r

(η1(|u|) + η2(l))

= O

log(n+ 1) · log(m+ 1)
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)


+O

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

m+1

)
+ ξ2(l)

η2

(
1

m+1

)
+ η2(l)

(
1

l2

)
dl


+O

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds


+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)
. (2.16)

Now, we solve∥∥∥l̃n,m(x, y)
∥∥∥
r
=
∥∥(t̃Hn,m(x, y)− g̃(x, y)

)∥∥
r

=

(∫ π

0

∫ π

0

∥ψ(x, s; y, l)∥r K̃n,m(s, l)dsdl

)
≤

(∫ 1
n+1

0

∫ 1
m+1

0

+

∫ 1
n+1

0

∫ π

1
m+1

+

∫ π

1
n+1

∫ 1
m+1

0

+

∫ π

1
n+1

∫ π

1
m+1

)
· ∥ψ(x, s; y, l)∥r

·
∣∣∣K̃n,m(s, l)

∣∣∣ dsdl.
Using Lemmas 2.2 to 2.5 and 2.6(i), we have∥∥∥l̃n,m(x, y)

∥∥∥
r

= O

(∫ 1
n+1

0

∫ 1
m+1

0

ξ1(s) + ξ2(l)

sl
dsdl

)
+O

(
1

(m+ 1)

∫ 1
n+1

0

∫ π

1
m+1

ξ1(s) + ξ2(l)

sl2
dsdl

)

+O

(
1

(n+ 1)

∫ π

1
n+1

∫ π

0

ξ1(s) + ξ2(l)

s2l
dsdl

)

+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

s2l2
dsdl

)
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= O


∫ 1

m+1

0

ξ1

(
1

n+1

)
+ ξ2(l)

l
dl


∫ 1

n+1

0

1

s
ds


+O

 1

(m+ 1)


∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

l2
dl


∫ 1

n+1

0

1

s
ds


+O

 1

(n+ 1)


∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
s2

ds


∫ 1

m+1

0

1

l
dl


+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

s2l2
dsdl

)

= O

(
log(n+ 1) · log(m+ 1)

{
ξ1

(
1

n+ 1

)
+ ξ2

(
1

m+ 1

)})

+O

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

l2
dl


+O

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
s2

ds


+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

s2l2
dsdl

)
. (2.17)

Using (28)-(31) in (22), we get

∥l̃n,m(·, ·)∥(η)r = O

(
log(n+ 1) · log(m+ 1)

{
ξ1

(
1

n+ 1

)
+ ξ2

(
1

m+ 1

)})

+O

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

l2
dl


+O

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
s2

ds


+O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

s2l2
dsdl

)

+O

3
log(n+ 1) · log(m+ 1)

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)


+O

3
 log(n+ 1)

(m+ 1)

∫ π

1
m+1

 ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

( 1

l2

)
dl


+O

3
 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds


+O

[
3

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)]
. (2.18)
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Since ξ1(s) + ξ2(l) =
ξ1(s)+ξ2(l)
η1(s)+η2(l)

and (η1(s) + η2(l)) ≤ (η1(π) + η2(π))
ξ1(s)+ξ2(l)
η1(s)+η2(l)

, 0 < s ≤ π, 0 < l ≤ π, we
get

∥l̃n,m(·, ·)∥(η)r = O

4
log(n+ 1) log(m+ 1)

 ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)



+O

4
 log(n+ 1)

(m+ 1)

∫ π

1
m+1

 ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

( 1

l2

)
dl


+O

4
 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1(s) + ξ2

(
1

m+1

)
η1(s) + η2

(
1

m+1

) ( 1

s2

)
ds


+O

[
4

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)]
. (2.19)

Since ξ1(s) + ξ2(l) and η1(s) + η2(l) are moduli of continuity, ξ1(s)+ξ2(l)
η1(s)+η2(l)

is positive, non-decreasing and

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

(
1

l2

)
dl

 ≥ log(n+ 1)

(m+ 1)

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

) ∫ π

1
m+1

1

l2
dl

≥ log(n+ 1)

2
·
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
Then,

O

 log(n+ 1)

(m+ 1)

∫ π

1
m+1

ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

(
1

l2

)
dl

 = O

 log(n+ 1)

2

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
 . (2.20)

Since ξ1(s) + ξ2(l) and η1(s) + η2(l) are moduli of continuity, ξ1(s)+ξ2(l)
η1(s)+η2(l)

is positive, non-decreasing and

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

 ξ1

(
1

n+1

)
+ ξ2(l)

η1

(
1

n+1

)
+ η2(l)

( 1

s2

)
ds


≥

 log(m+ 1)

(n+ 1)

 ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
∫ π

1
n+1

(
1

s2

)
ds


≥

 log(m+ 1)

2

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
 .

Then,

O

 log(m+ 1)

(n+ 1)

∫ π

1
n+1

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

) ( 1

s2

)
ds

 = O

 log(m+ 1)

2

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
 .

(2.21)
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Since ξ1(s) + ξ2(l) and η1(s) + η2(l) are moduli of continuity, ξ1(s)+ξ2(l)
η1(s)+η2(l)

is positive, non-decreasing and

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)(
1

s2l2

)
dsdl

)

≥

 ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

) 1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

1

s2l2
dsdl


≥

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
4
(
η1

(
1

n+1

)
+ η2

(
1

m+1

)) ( (n+ 1)(m+ 1)

(n+ 1)(m+ 1)

)
.

Then,

O

 ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
 = O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)
. (2.22)

Combining (33)-(36), we get

∥l̃n,m(·, ·)∥(η)r

= O

[log(n+ 1) log(m+ 1)
ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
+

 log(n+ 1)

2

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)


+

 log(m+ 1)

2

ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
]

+O

[
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)(
1

s2l2

)
dsdl

]

= O

[(
log(n+ 1) · log(m+ 1) +

log(n+ 1)

2
+

log(m+ 1)

2

) ξ1

(
1

n+1

)
+ ξ2

(
1

m+1

)
η1

(
1

n+1

)
+ η2

(
1

m+1

)
]

+O

[
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

(
ξ1(s) + ξ2(l)

η1(s) + η2(l)

)(
1

s2l2

)
dsdl

]

= O

[(
log(n+ 1) · log(m+ 1) +

log(n+ 1)

2
+

log(m+ 1)

2

)

·O

(
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)]

+O

[
1

(n+ 1)(m+ 1)

∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

]

= O

[(
1

(n+ 1)(m+ 1)

)(
2 log(n+ 1) log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·

(∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

)]
.

2
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2.4. Corollaries

Following corollaries are deduced from Theorem 2.1.

Corollary 2.1 Following Note 1(i), we obtain

∥∥∥t̃(C,1,1)
n,m − g̃

∥∥∥(η)
r

= O

[(
1

(n+ 1)(m+ 1)

)(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)
∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

]
,

where ξ1(s) + ξ2(l) and η1(s) + η2(l) denote the moduli of continuity such that ξ1(s)+ξ2(l)
η1(s)+η2(l)

is positive and

non-decreasing.

Corollary 2.2 Following Note 1(ii), we obtain

∥∥∥t̃(E,1,1)
n,m − g̃

∥∥∥(η)
r

= O

[(
1

(n+ 1)(m+ 1)

)(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)
∫ π

1
n+1

∫ π

1
m+1

ξ1(s) + ξ2(l)

η1(s) + η2(l)

(
1

s2l2

)
dsdl

]
,

where ξ1(s) + ξ2(l) and η1(s) + η2(l) denote the moduli of continuity such that ξ1(s)+ξ2(l)
η1(s)+η2(l)

is positive and

non-decreasing.

Corollary 2.3 Let g̃ ∈ H(α,β),r; r ≥ 1 and suppose ξ1(s) + ξ2(l) = (sl)α, η1(s) + η2(l) = (sl)β , 0 ≤ β <
α ≤ 1, then

∥∥t̃Hn,m(x, y)− g̃(x, y)
∥∥(η)
r

=



O

[(
2 log(n+ 1) log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·((n+ 1)(m+ 1))β−α

]
if 0 ≤ β < α < 1,

O

[(
2 log(n+1) log(m+1)+log(n+1)(m+1)+2

(n+1)(m+1)

)
log(n+ 1)π · log(m+ 1)π

]
if β = 0, α = 1.

Proof: Putting ξ1(s) + ξ2(l) = (sl)α, η1(s) + η2(l) = (sl)β , 0 ≤ β < α ≤ 1, in Theorem 2.1, we get

∥∥t̃Hn,m(x, y)− g̃(x, y)
∥∥(η)
r

= O

[(
1

(n+ 1)(m+ 1)

)(
2 log(n+ 1)

· log(m+ 1) + log(n+ 1)(m+ 1) + 2

)
·

(∫ π

1
n+1

∫ π

1
m+1

sα−β−2 · lα−β−2dlds

)]
,
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=⇒
∥∥t̃Hn,m(x, y)− g̃(x, y)

∥∥(η)
r

=



O

[(
2 log(n+ 1) log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·
∫ π

1
n+1

∫ π
1

m+1
(sl)α−β−2dlds

]
if 0 ≤ β < α < 1,

O

[(
1

(n+1)(m+1)

)(
2 log(n+ 1) log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·
∫ π

1
n+1

∫ π
1

m+1

1
sldlds

]
if β = 0, α = 1,

∴
∥∥t̃Hn,m(x, y)− g̃(x, y)

∥∥(η)
r

=



O

[(
2 log(n+ 1) log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·((n+ 1)(m+ 1))β−α

]
if 0 ≤ β < α < 1,

O

[(
1

(n+1)(m+1)

)(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·{log(n+ 1)π} · {log(m+ 1)π}

]
if β = 0, α = 1.

2

Corollary 2.4 Let g̃ ∈ H(α,β),r; r ≥ 1, a, b ∈ R and suppose ξ1(s)+ξ2(l) =
(sl)α

(log 1
s )

a·(log 1
l )

a , η1(s)+η2(l) =

(sl)β

(log 1
s )

b·(log 1
l )

b and 0 ≤ β < α ≤ 1, 0 < s, l ≤ π, then

∥∥t̃Hn,m(x, y)− g̃(x, y)
∥∥(η)
r

=



O

[(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·{log(n+ 1) log(m+ 1)}b−a

]
ifα = β, a− b > −1,

O

[(
2 log(n+ 1) log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

·{log(n+ 1) · log(m+ 1)}

]
ifα = β, a− b = −1.

Proof: Putting ξ1(s) + ξ2(l) =
(sl)α

(log 1
s )

a·(log 1
l )

a , η1(s) + η2(l) =
(sl)β

(log 1
s )

b·(log 1
l )

b and 0 ≤ β < α ≤ 1, 0 <

s, l ≤ π, in Theorem 2.1, we have

∥∥t̃Hn,m(x, y)− g̃(x, y)
∥∥(η)
r

= O

[(
1

(n+ 1)(m+ 1)

)(
2 log(n+ 1) · log(m+ 1)

+ log(n+ 1)(m+ 1) + 2

)(∫ π

1
n+1

∫ π

1
m+1

(sl)α−β−2 ·

(
log

1

s

)b−a

·

(
log

1

l

)b−a

dlds

)]
,
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=⇒
∥∥t̃Hn,m(x, y)− g̃(x, y)

∥∥(η)
r

=



O

[(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)
(∫ π

1
n+1

∫ π
1

m+1
(sl)α−β−2

(
log 1

s

)b−a

·

(
log 1

l

)b−a

dlds

)]
if α = β, a− b > −1,

O

[(
1

(n+1)(m+1)

)(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)
(∫ π

1
n+1

∫ π
1

m+1

1
(sl)2 (log

1
s )(log

1
l )dlds

)]
if α = β, a− b = −1.

∴
∥∥t̃Hn,m(x, y)− g̃(x, y)

∥∥(η)
r

=



O

[(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

{log(n+ 1) log(m+ 1)}b−a

]
ifα = β, a− b > −1,

O

[(
2 log(n+ 1) · log(m+ 1) + log(n+ 1)(m+ 1) + 2

)

{log(n+ 1) log(m+ 1)}

]
if α = β, a− b = −1.

2

3. Degree of Convergence of a Function of N-Dimensional Variable of N-Multiple
Conjugate Fourier Series (N ≥ 3)

Let g(x1, x2, · · · , xN ) is periodic integrable function of period 2π in each variable over N -dimensional
cube TN . The N -multiple Fourier series of g(x1, x2, · · · , xN ) can be written in the form

g(x1, x2, · · · , xN ) ∼
∑∑

· · ·
∑

(m1,m2,··· ,mN )∈ZN

cm1,m2,··· ,mN
(g)ei(m1x1+m2x2+···+mNxN ),

where cm1,m2,··· ,mN
(g) is the Fourier coefficient of g (see [1, p. 300]).

The N -multiple conjugate Fourier series of f(x1, · · · , xN ) can be written in the form

g̃(x1, x2, · · · , xN ) ∼
∑∑

· · ·
∑

(m1,m2,··· ,mN )∈ZN

(−i sign m1)(−i sign m2) · · · (−i sign mN )

· cm1,m2,··· ,mN
(g̃)ei(m1x1+m2x2+···+mNxN ).

The following representation of the symmetric square partial sum of above series is given by

s̃m1,··· ,mN
(x1, · · · , xN )

:=
1

πN

∫ π

−π

∫ π

−π

· · ·
∫ π

−π

ψx1x2···xN
(g; l1, l2, · · · , lN )

N∏
j=1

D̃mj
(lj)dl1dl2 · · · dlN ,

where D̃mj
(lj) are the conjugate Derichlet kernels for each j.

If H is a N -dimensional Hausdorff matrix then

hm1,q1;··· ;mN ,qN

=


(
m1

q1

)(
m2

q2

)
· · ·
(
mN

qN

) ∫ 1

0

∫ 1

0
· · ·
∫ 1

0
lq11 (1− l1)

m1−q1 lq22 (1− l2)
m2−q2 · · · lqNN (1− lN )mN−qN

·dχ(l1, l2, · · · , lN ), q1 = 0, 1, ...m1, q2 = 0, 1, · · ·m2, · · · , qN = 0, 1, ...mN ;

0, q1 > m1, q2 > m2, · · · , qN > mN .
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Let
∑∞

m1=0

∑∞
m2=0 · · ·

∑∞
mN=0 dm1,m2,··· ,mN

be a N -multiple conjugate Fourier series with

s̃m1,m2,··· ,mN
=
∑m1

q1=0

∑m2

q2=0 · · ·
∑mN

qN=0
dq1,q2,··· ,qN as its (m1,m2, · · · ,mN )th partial sums.

The N -dimensional Hausdorff means t̃Hm1,m2,··· ,mN
is given by

t̃Hm1,m2,··· ,mN
=

m1∑
q1=0

m2∑
q2=0

· · ·
mN∑
qN=0

hm1,q1;··· ;mN ,qN s̃q1,q2,··· ,qN .

If t̃Hm1,m2,··· ,mN
→ c as m1,m2, · · · ,mN → ∞, then the N -dimensional conjugate Fourier series∑∞

m1=0

∑∞
m2=0 · · ·

∑∞
mN

dm1,m2,··· ,mN
with the sequence of (m1, · · · ,mN )th partial sums (s̃m1,m2,··· ,mN

)
is said to be summable to some finite value c by the H method.
Now, we give the concept of Hölder classes of functions on TN . The Hölder class for continuous periodic
function g(x1, x2, · · · , xN ) with period 2π in each variable is defined as

H(α1,α2,··· ,αN ) = {g : |g(x1, x2, · · · , xN ; l1, l2, · · · , lN )|
:= |g(x1 + l1, · · · , xN + lN )− g(x1, · · · , xN )| ≤ C1(|l1|α1 + |l2|α2 + · · ·+ |lN |αN )}

for some 0 < α1, · · · , αN ≤ 1 and for all x1, · · · , xN , l1, , · · · , lN , where C1 > 0 is a constant may depend
on f, but not on x1, · · · , xN , l1, , · · · , lN . This class of functions is also called Lipschitz class and denoted
by Lip(α1, · · · , αN ). It can be easily varified that H(α1,··· ,αN ) is a Banach space with respect to the norm
∥ · ∥(α1,··· ,αN ) defined by

∥g∥(α1,··· ,αN ) = ∥g∥C + sup
x1 ̸=l1,··· ,xN ̸=lN

∆α1,··· ,αN g(x1, · · · , xN ; l1, · · · , lN ),

where

∆α1,··· ,αN g(x1, · · · , xN ; l1, · · · , lN )

=
|g(x1 + l1, · · · , xN + lN )− g(x1, · · · , xN )|

|x1 − l1|α1 + · · ·+ |xN − lN |αN
(x1 ̸= l1, · · · , xN ̸= lN ).

By convention ∆0,··· ,0g(x1, · · · , xN ; l1, · · · , lN ) = 0 and

∥g∥C = sup
(x1,··· ,xN )∈TN

|g(x1, · · · , xN )|.

The function space Lr[[0, 2π]N ] is given by

Lr[[0, 2π]N ]

=

{
g : [[0, 2π]N ] → RN :

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0

|f(x1, · · · , xN )|rdx1 · · · dxN <∞, r ≥ 1

}
. (3.1)

The norm of (37) is defined by

∥g∥r :=


{

1
(2π)N

∫ 2π

0

∫ 2π

0
· · ·
∫ 2π

0
|g(x1, · · · , xN )|r dx1 · · · dxN

} 1
r

, r ∈ [1,∞);

ess sup(x1,··· ,xN )∈[0,2π]N |f(x1, · · · , xN )| , r = ∞.

Let ξ1, · · · , ξN : TN → RN be an arbitrary function. The class of function H
(ξ1,··· ,ξN )
r is defined by

H(ξ1,··· ,ξN )
r =

{
g ∈ Lr[[0, 2π]N ] : sup

l1 ̸=0,··· ,lN ̸=0

∥g(x1 + l1, · · · , xN + lN )− g(x1, · · · , xN )∥r
ξ1(l1) + · · ·+ ξN (lN )

}
,

where ξ1, ξ2, · · · , ξN are the moduli of continuity that is ξ1, ξ2, · · · , ξN are non-decreasing positive con-
tinuous function with the following properties:

lim
l1→0+

ξ1(l1) = ξ1(0) = 0, lim
l2→0+

ξ2(l2) = ξ2(0) = 0, · · · , lim
lN→0+

ξN (lN ) = ξN (0) = 0
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and

ξ1(l1,1 + · · ·+ l1,N ) ≤ ξ1(l1,1) + · · ·+ ξ1(l1,N ), · · · , ξN (lN,1 + · · ·+ lN,N ) ≤ ξN (lN,1) + · · ·+ ξN (lN,N ).

We define

∥g∥(ξ1,··· ,ξN )
r = ∥g∥r + sup

l1 ̸=0,··· ,lN ̸=0

∥g(x1 + l1, · · · , xN + lN )− g(x1, · · · , xN )∥r
ξ1(l1) + · · ·+ ξN (lN )

.

Clearly, ∥·∥(ξ1,··· ,ξN )
r is a norm on H

(ξ1,··· ,ξN )
r .

It can be varified that the completeness of the space Lr[[0, 2π]N ] implies the completeness of the space

H
(ξ1,··· ,ξN )
r .

We write

Ψ(l1, · · · , lN ) = ψ(x1, l1; · · · ;xN , lN ) =
1

(2)N

[
g(x1 + l1, · · · , xN + lN )

− g(x1 + l1, · · · , xN − lN )− · · ·+ g(x1 − l1, · · · , xN − lN )

]
;

Ψ(x1, · · · , xN ) =

∫ x1

0

∫ x2

0

· · ·
∫ xN

0

|ψ(v1, · · · , vN )|dv1dv2 · · · dvN ;

K̃m1,··· ,mN
(l1, · · · , lN )

=
1

(2π)N

m1∑
q1=0

hm1,q1

cos(q1 +
1
2 )l1

sin( l12 )
· · ·

mN∑
qN=0

hmN ,qN

cos(qN + 1
2 )lN

sin( lN2 )
. (3.2)

Now, we establish a following theorem:

3.1. Main Theorem

Theorem 3.1 Let g̃(x1, · · · , xN ) be a function, conjugate to a function g(x1, · · · , xN ) (periodic with
period 2π in each variable) Lebesgue integrable on TN . Then, the error estimation of g̃(x1, x2, · · · , xN )

in the space (H
(ξ1,··· ,ξN )
r ; r ≥ 1) using N -dimensional Hausdorff matrix H is given by

∥∥t̃m1m2···mN
− g̃
∥∥(η)
r

= O

[
N∏
i=1

1

(mi + 1)

(
2

N∏
i=1

log(mi + 1) + log

N∏
i=1

(mi + 1) + 2

)

·

(∫ π

1
m1+1

∫ π

1
m2+1

· · ·
∫ π

1
mN+1

ξ1(l1) + · · ·+ ξN (lN )

η1(l1) + · · ·+ ηN (lN )

1

(lN1 · · · lNN )
dl1 · · · dlN

)]
, (3.3)

where (ξ1 + · · · + ξN ) and (η1 + · · · + ηN ) denote the moduli of continuity such that ξ(l1,··· ,lN )
η(l1,··· ,lN ) is non-

decreasing and positive.

3.2. Proof of the Main Theorem 3.1

Proof: One can extend the Lemmas 2.2 to 2.6 in each variable from double to N -multiple. Further, the
proof goes along the same lines of the proof of Theorem 2.1. 2
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3.3. Corollaries

Following corollaries are deduced from Theorem 3.1.

Corollary 3.1 Following Note 1(i) for N -dimensional Cesàro means of order 1, we obtain

∥∥∥t̃(C,1,··· ,1)
m1m2···mN − g̃

∥∥∥(η)
r

= O

[
N∏
i=1

1

(mi + 1)

(
2

N∏
i=1

log(mi + 1) + log

N∏
i=1

(mi + 1) + 2

)
∫ π

1
m1+1

∫ π

1
m2+1

· · ·
∫ π

1
mN+1

ξ1(l1) + · · ·+ ξN (lN )

η1(l1) + · · ·+ ηN (lN )

1

(lN1 · · · lNN )
dl1 · · · dlN

]
,

where (ξ1+ · · ·+ ξN ) and (η1+ · · ·+ηN ) denotes the modulus of continuity such that ξ(l1,··· ,lN )
η(l1,··· ,lN ) is positive

and non-decreasing.

Corollary 3.2 Following Note 1(ii) for N -dimensional Euler’s means of order 1, we obtain

∥∥∥t̃(E,1,··· ,1)
m1m2···mN − g̃

∥∥∥(η)
r

= O

[
N∏
i=1

1

(mi + 1)

(
2

N∏
i=1

log(mi + 1) + log

N∏
i=1

(mi + 1) + 2

)
∫ π

1
m1+1

∫ π

1
m2+1

· · ·
∫ π

1
mN+1

ξ1(l1) + · · ·+ ξN (lN )

η1(l1) + · · ·+ ηN (lN )

1

(lN1 · · · lNN )
dl1 · · · dlN

]
,

where (ξ1+ · · ·+ ξN ) and (η1+ · · ·+ηN ) denotes the modulus of continuity such that ξ(l1,··· ,lN )
η(l1,··· ,lN ) is positive

and non-decreasing.
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