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Degree of Convergence of Functions of Several Variables in Generalized Ho6lder Spaces

H. K. Nigam

ABSTRACT: In this paper, degree of convergence of a function of double conjugate Fourier series in two
dimensional generalized Holder spaces using double Hausdorff means is obtained. The degree of convergence
of a function of N-multiple conjugate Fourier series in N-dimensional generalized Holder spaces using N-
dimensional Hausdorff means is also obtained. Some important corollaries are also deduced form our main
results.
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1. Introduction

Degree of approximation of a function of one dimensional variable in Lipschitz, Besov, Holder, gen-
eralized Holder spaces has been studied by the authors [4,5,11,12,16,13,17,14] etc. using different single
and product summability means of conjugate Fourier series.

Different double summability means of double conjugate Fourier series has been investigated by the au-
thors [9] and [15].

The double Hausdorff matrices of double sequences was first studied by [7]. Later, [10] and [18] have
also studied double Hausdorff matrices of double sequences.

Degree of approximation of a function of two variables has been studied by [8] using rectangular partial
sums of double conjugate Fourier series.

Since the degree of approximation of a function of conjugate Fourier series in above mentioned spaces
only gives the degree of the polynomials with respect to the function but the degree of convergence of a
function of conjugate Fourier series gives the convergence of the polynomial with respect to the function.
In this paper, we study the degree of convergence of a function of two dimensional variable in generalized
Holder space by double Hausdorff matrices of double conjugate Fourier series. We also study the degree
of convergence of a function of N-dimensional variable in generalized Holder space by N-dimensional
Hausdorft matrices of N-multiple conjugate Fourier series (N > 3).

The organization of the paper is as follows: In section 1, we give definitions and notations related to the
present work of the paper. In section 2, we propose our main result for obtaining best approximation of
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conjugate of a function g(z,y) of two dimensional variable in generalized Holder spaces (Hr(gl’&); r>1)
using double Hausdorff matrices of double conjugate Fourier series. In subsection 2.1, we prove five
lemmas which are used in obtaining our main result. In subsection 2.2, we establish our main result and
in subsection 2.3, four corollaries are deduced from our main result. In section 3, we propose another
result to obtain the best approximation of conjugate of a function §(x1,xs2, -+ ,zn) of N-dimensional

variable in generalized Holder spaces (Hr(gl’fz"” AN ); r > 1) using N-dimensional Hausdorff matrices of N-
multiple conjugate Fourier series and in subsection 3.1, two corollaries are deduced from our second result.

The Fourier series of a periodic function g € L*(T), T = [—, 7] is given by

Z g(m)e'™=. (1.1)

meZ

The conjugate series of (1) is defined by

Z(fi sign m)g(m)e'™, (1.2)

MmEZL
where
1 if m>0,
signm:=.0 if m=0,
-1 if m<O.
and

Z:={--2-1,01,2--}

Series (2) is said to be conjugate Fourier series. It is known that the corresponding conjugate function

of (2) is defined as
- 1 (Tgle+l)—glz—1
sy =L [ Doy
T Jo 2tan(3)

Consider g(,y) be measurable and bounded function on the two dimensional torus T2. Given a function
g € L*(T?), 2r-periodic in each variable. The double Fourier series of a function g(z,y) is given by

Z Z cn m z(anrmy) (13)

(n,m)€z?

Cnm(9) == o= // (u,v) _Z(m"’my)dudv

One can associate three conjugate series to the double Fourier series (3) in the following ways:

> (i sign n)enm(g)e ) (1.4)

(n,m)ez?

where

(conjugate taken in first variable),

Z Z —i sign m)cp,m(g)e! ™) (1.5)

(n,m)€Z?

(conjugate taken in second variable) and

Z Z —i sign n)(—i sign m)cpy m(g)et ™) (1.6)

(n,m)€ez?
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(conjugate taken in both the variables).
The corresponding conjugate functions are defined as follows:

Gz, y) = Jim 3%z, y),
—0

(conjugate taken in the first variable), where

~10 7/%( (7 )7 )
g (x,y) = == Qtan(g) ds, h >0 (1.7)
" (¢ +5,y) — gz — 5,1)
_ 1 [Tg(z+s,y)—glx—sy
10 _ 4
g (x,y) = 71_/0 2tan(3) ds. (1.8)
Similarly,
. L [Mglz,y+1) —glz,y—1)
01 y) = —— dl, 1.9
g (z,y) 7T/0 Qtan(é) ( )

(conjugate taken in the second variable) and

3" (z,y)
_ i/ﬂ/ﬂg(az+s,y+l)*g(w*s Y+ — (l’+5ay*l)+9(x*$’y*l)dsdl
2tan($) - 2tan(L)

(1.10)

(conjugate taken in both the variables).

The integrals (8),(9) and (10) are taken in the sense of the “Cauchy principal value” at the points z = 0,
ory =0, or x =y = 0, respectively.

In this paper, we shall consider the symmetric square partial sums of series (10).

The double Hausdorff matrix H has the entries

- {(;”) (M)ATPAT Y, 0<p<n,0<q<m 111)

0 p>n,qg>m,

where {11, 4} is any real or complex sequence and for any sequence iy, 4, the forward difference operator
A is defined by

AApp,q = Hp,g = Ip+1,qg — Hp,g+1 + Mp+1,g+1
and
AMTPA™ Ty, ‘I*ZZ p+q< )( ; )up+u,q+v.
u=0 v=0

The necessary and sufficient condition for double Hausdorff matrix (H) to be conservative is the existence
of a mass function x(u,v) € BV[0,1] x [0,1] such that

/Olfolldx(%v)l <o
unmf// oy (u, 0).

Without loss of generality, we may assume that x(0,0) = 0. In addition, if we have x(1,1) = 1, and the
continuity conditions

and

x(u; +0) = x(u, 0), x(u, +0) = lim x(u, v),

X(-I—O,’U) = X(Ovv)a X(+0,U) = }}E}% X(U,”U)
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are satisfied, then poo = 1.
We say that p, ., is a regular moment constant ([7,18]).
Now, re-writing double Hausdorff matrix defined in (11), as

P pim.q
_ (Z) (Zl) fol fol uP (1 —u)"Poi(1 —v)" dx(u,v), p=0,1,2,--- n; ¢q=0,1,-- ,m; (112)
0, p>n,qg>m,

where single Hausdorff matrix A, , or h,, 4 is given by

h = (z) fol up(l_u)n_de(u)’ p:O71a27"' , 15
" 07 p>n.

Let 307 o > p—g dn.m be a double conjugate Fourier series with &, ., = Y27 ( >1" dp g as its (n,m)""

partial sums.
The double Hausdorff means ¢ is given by

n,m
n m
Ho _
lrm = E E o psm,gSp.q-

p=0 ¢=0
If fﬁm — c as n,m — 0o, then the double conjugate Fourier series ZZOZO ij:o dp,m with the sequence

of (n,m)*" partial sums (,_,,) is summable to some finite value ¢ by the H method.

Remark: 1. A double Hausdorff matrix method reduces to
(i) double Cesaro means (C,\, o) if mass function x(u,v) = Ao [ [/ (1 — w)*~1(1 — v)7 " dudv.

(ii) double Euler’s means (E, p,, p) if mass function

(1, ) = 0, if wel0,a] and v € 0,b],
XY=V, if wela 1] andve b, 1]

>0and b= —+—, p, > 0.

_ 1
where a = oy Pn oo

Note: 1.
(i) Putting A = 0 =1 in Remark 1(i), (C, A\, o) means reduces to (C,1,1) means.
(ii) Putting p, =1V n and p,,, = 1V m in Remark 1(ii), (E, pn, pm) means reduces to (F,1,1) means.

The Holder class for continuous periodic function g(z,y) of period 27 in each variables x and y is defined
as

H(a,ﬁ) = {g : |g(9(:,y, Sal)‘ = |g($+8,y+l> _g(ZC,y)‘ < Cl(|8|a + mﬁ)}

for some 0 < «, 8 < 1 and for all x,y,s,l, where C is a positive constant may depend on f, but not
on z,y,s,l. This class of functions is also known as Lipschitz class and denoted by Lip(a, ). It can be
easily varified that H, gy is a Banach space with respect to the norm || - ||(4,5) is defined by

lgllas = llgllc + sup A%Fg(z,y;s,1),

T#£s,y#l

where
g(x+s,y+1) —g(z,y)]

AP Ly 8,1 :‘

(a # 5,y #1).
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By convention A%Cg(x,y;s,1) = 0 and

lgllc = sup |g(z, ).
(z,y)ET?

The function space L"[[0, 27] x [0, 27]] is given by

L"[[0,27] x [0, 27]]
= {g :[[0,27] x [0,27]] > R x R: /0 7T/0 ! lg(z,y)|"dzdy < oo, 1 > 1}. (1.13)

The norm of (13) is defined by
om (2 l-
11l = {ﬁ o Jo la(zy)l" dwdy}7 , e l,00);
€ss Supx,yE[O,Qﬂ] |g($, y)| ’ T = 00.

Let &,& : [—m,m; —m, 7] = R X R be a real valued arbitrary function. The class of function HEE) g
defined by

(€1,62) — r . ||g(x+s,y+l)fg(x,y)||r
H {g € L[]0, 2x] x [0,27]] : S:&};O AOETA0) ;

where £ and & are the moduli of continuity that is & and &> are positive non-decreasing continuous
function with the properties:

lim & (s) =£1(0) = 0; lim &(l) = &(0) =0
s—0F -0t
and
§1(s1 +82) < &i(s1) +&1(s2); &l +12) < &a(l) + &a(l).

We define

l - n
1g1€E — gll. + sup 18@ESYHD = 9@ ),

570,10 §i(s) +&2(0)

Clearly, ||~||7(Fl’52) is a norm on H ),

It can be varified that the completeness of the space L[]0, 27] x [0, 27]] implies the completeness of the

space H£§1 §2) )

Let (28) and (fﬁig) both be non-decreasing and positive. Then

, &H(2m) &(2n )
||g||5771 772) S max <1’ 1( ), 2( ) ||gH£§1 52) < 0.
n1(2m) " na(2m)

Thus,
H{E ) € gmm) C L]0, 2x] x [0, 27]].

Note: 2. If &,(s) = |s]®, & (1) = |I|® and r — oo, then H%2) class reduces to H, g class.
The degree of convergence of a summation method to a given function g : R x R — R is a measure that
how fast ¢, ,,, converges to g, which is given by

lo = tumll =0 (=) (2D,

Un,m
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where vy, — 00 as n,m — oo.
We write

(s, 1) =Y(x,s59,1)

1
:1[g(x+s,y+l)*g(x+s,y*l)*g(x*s,y+l)+g(f17*s,y*l)];

U(z,y) //|1/)uv|dudv

- cosp—|— )8 — cos(q + 3)!
Kpm(s,1) = 47T2Z thqi. (1.14)

I3
sin( e sin(3)

2. Degree of Convergence of a Function of Two Dimensional Variable of Double
Conjugate Fourier Series

Degree of convergence of a function of two dimensional variable in generalized Holder space of two
dimensional Hausdorff matrices of double conjugate Fourier series is obtained in the following theorem:

2.1. Main Theorem

Theorem 2.1 Let §(x,y) be a function, conjugate to a function g(x,y)(periodic with period 2w in both
x and y), Lebesgue integrable on T(—m,7;—m, 7). Then, the error estimation of g(x,y) in the space

(H,Egl’&), r > 1) using double Hausdorff matriz (H), is given by

TH ~ (m 1
th,m(x7y) - g(x,y)HT =0 [4 (MM> <210g(n +1)log(m +1)

+log(n+1)(m+1) +2> (/ / z Ii((ll)) ( le)dsdzﬂ (2.1)

where &1(s) 4+ &2(1) and n1(s) + n2(l) denote the moduli of continuity such that % is positive and
non-decreasing.

2.2. Lemmas

Following Lemmas are required for the proof of our main result:

Lemma 2.1 K, ,(s,]) = O () for0<s< +1 and 0 <1< m+1

Proof: For 0 < s < sin(3) > 2,|cosns| <1 and for 0 <1 < +1,s1n(é) L |cosml\ <1.

n+1’

]f*{n,m(s,Z)‘

Il
1

N | =
S
—N
[]=
S

bS]

o
_ | ©
u | &
=N ks
— +
= ol

=
——
—N—
3

)

o
| ©
Z| 2
RIS
G| +
= o=

=
——

p=0 i % q=0
1 n 1 m 1
p=0 a0 q=0 ™
2 n m
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We have 327 hnp =1 and 0" b g = 1 ([3, p.397]), then

|Bom(s,)| = 0 (;) .

Lemma 2.2 K, (sl):O(m)f0r0<s< g and g <1<

Proof: For 0 <

N 2
1, supg<,<1 [X'(v)]

5
(o)
N R
g [ (o
31, (D)oo g
S Qa-arraw} 5 [ (oo
S o S5 [ (e o4 1)
" [/01 {(Z)m SN () [ R (A Pt P
e 32 (7) () e
<5 (/ (=) -1 R Z/ (") (2 )ld]

IN

M m
481‘(/0 1du) (I1-v)"Re

M
4sl

SR

'

IN
—~
—
<
~
3
ay)
9]

IN

[ i 1 . .

4%51 Re _e% /0 { <73> (I—v)™+ (T)ve”(l —v)m g (Z) (vey™(1 — v)o} dv]
- '

4%81 _6% /0 1-v+ ve”)mdv}
- . -

S%Sl Re _6121/0 {1+ —1)} dv]

Now, solving integration

IN
=
)

/ {1+’ —1)}" dv

WA GICORGIC R GICONT

7

< Lo sin($) > £,[cos(ns)| < 1 and for m7+1 <l < msin(4) > L |sin(m +1)I| <
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Put
{1+v(e"—1)} =t
(e —1)dv = dt
dt
(e = 1)

1 tm B 1 ) eil_ mal ! B ei(m-l—l)l_l
|, @t e e - 0) L‘[(mlxeﬂ—n}

M [ il ei(m+1)l -1
Reler ——————
4sl i (m+1)(e* —1)

M [ 6i(m%»l)l -1 ‘| |

dv =

IN
|

IN
|

Re . .
4sl _(m+1)(e% —e_Lzl)

IN

Re —cos(m + Dl +isin(m+ 1)l -1
4sl (m +1)2isin(%)

2
M sin(m + 1)1
4sl [\ 2(m +1)sin(L)
8sl  (m+ 1)l

IN

IN
|

Hence,

untv0] =0 ()

Lemma 2.3 K’n,m(s,l) =0 ((n+l)52l) for =5 <s<m and 0<I< m+1

Proof For % <s < osin(3) > I, |sm(n—|— D)s| < 1, supgcy<; [X'(w)| = F and for 0 < 1 <

sin (4) > L, |cos(ml)| < 1.

el
| Kon(5,)|
1 Z cos(p+ 1)s cos(q + 3)!
4m2 = P sin(35) = 4 5111(%)
1 | 1<n) _ cos(p + 3)s
= — 'U,p 1 —u n pd 2
w2y \p) O IO
m 1 ll
[ () - omean 2N

—oJo \4d |sin(3)]

1 | [Y/n cos(p+3)s ~w= [ /m 1
— P(1 — )P 2/, —p)ma —
wz 2 [ (0w =i IS [ (M- ot

p=0 ™ q=0 ™

1|~ M n 1

< - P(] — )" P Z
< 5 Z/o (p)u (I —u)""Pdx(u) cos (p—l— )s
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(1 —u)"Re

IN

IN
&)™
()=
O\H
VRS
=3
N——— N———
N 7N
—
||
<

% (1 —u)"Re z":/l <Z

IA
&=
_

I
£

3

=

ey

ey

wls
\,_.
AR
VR
< 3

IN

S [50)
oo LG 0 () () () o

IN
ok
=
(9]
| — |
[

S
O\>~
—N
Y

(@)
~_
—
|
=
+
N
= 3
~__
=

®N~
=
—
<
N—
3
|
—
+
+
N
S 3
~__
—
<
a
o
N—
E]
—
—
|
<
N—
=)
H/_/
QU
<
—_

F is ! 5

< ] Re 67/0 (1- u+ue”)”du]
F [ is ! ; n

< ] Re _62/0 {14+ u(e”®—-1)} du}

I i(n+1)s _

< Dlre| L
4sl _(n—i—l)(e? —e"2)

< r Re cos(n+1)s+zs‘1n.(n4v—1)s— 1
4sl i (n+1)2isin(3)

< B | sin(n+1)s

= 4sl|2(n 4+ 1)sin(3)
F 0

< - .-

~8sl (n+1)s

Hence,

[Bom(s, D] =0 (W) .

1

Lemma 2.4 ‘K—n7m(8,l)’ =0 (W) fO’f' %“rl <s S T and m+l

<l<m.

Proof: For %ﬂ < s < osin(3) > 2, [sin(n + 1)s| < 1, supgc,< X' (w)] = F and for 0 < [ <

s sin(z) > £, [sin(m+ 1)1 <1, supge,<p [X'(v)] = M.
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FM [cos(n + 1) +isin(n+ 1) — 1] e | coS(m +1) +isin(m 1 1) - 1]
~ 4sl (n 4 1)2isin(3) (m + 1)2isin($)

FM ( sin(n + 1)s ) . ( sin(m + 1)1 >|
~ 4sl |\ 2(n+1)sin(5) 2(m + 1) sin(4)

FM T T
ST6sl 4 1)s (m+ 1)

< FMn?
~ 16(n+1)(m + 1)s212

Hence,

‘EQWA&”’:()(OL+D0i+1”%2).

Lemma 2.5 Let g(z,y) € Hﬁél’&)(r >1). Then for0 < s <mand 0 <l <,
(1) [0(, 55+ Dllr = O{&1(s) + &2(D) };
(i) For positive, non-decreasing 11 and 1z; and for all possible s # 0 and | # 0, we obtain

‘W("*‘U’S%"Fval)_d’(a l)HT

O ((m(s) +m(0) (S720)) for s < |ul,l < |v];
o (nluh) +ne) (2 )) for s> |ul,l < Jul;
0 (tns) +ma(lo)) (22D for s < |ul,1> |o];

O ((m(lul) +m(loD) (SELB)) for s> ful,t > Jol.

Proof: (i)
0590 = 113G+ 8,5+ =G+ 5,y =) = 3 — s,y + 1)+ — 5,5 1]
<i|§(:v+s y+l)—glz+s,y—0)—glz—s,y+1)+3glx+s,y+1)
+29(z,y) — 29(z, y)|
< 108G+ 5,y +0) ~ )| + 13 + 5,y — 1)~ 2,9)
(552D, < ~

r=

+ gz — s,y +1) = g(z,y)ll- + lg(z — s,y = 1) — g(z,y

= O{&1(s) + &)} + O{&i(s) + &)} + O{&i (s) + &)}
+ O{&(s) + &)}
(8-, Dl = O{&(s) + &0}

Zllg+sy+10) =g )l +19(z + 5,9 = 1) = gz, y)|»
9(z,y)|]

11
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(”) (@ +u, sy +0,1) = (x,s79,1)]
[|{g(x+u+sy+v+l) Jrxtu+s,y+tv—1I1)—glz+u—sy+v+l)

+g(x+u—s,y+v—l)} {glz+s,y+1)—glxa+s,y—1)—glz—s,y+1)

+g(x = s,y — D}]

< 315+ ut s,y v+ e+ s,y + D]+ g ut sy o 1) — e+ s,y 1)
Flge+ru—sytv+l) =gz —sy+ D +]g(z+u—sy+v-1)-glz—sy—1)

Applying generalized Minkowski’s inequality, we have

||¢( +u, 85+ U7Z) - ¢(’37 al)”r
1
§1[|\§(-+u+s,~+v+l) G+s-+D-+19¢+u+s,-+v—=0)—=g(-+s,-—

+ g +u—s,-+v+1)—g(-—s-+ D+ [g-+u—s-+v—=10)—=3g(-—s,- =]
= [0{&(s) + &(D)} + O{&(s) + &)} + O{&i(s) + (D)} + O{&i(s) + &2(1)}]
= O{&(s) + &)}

Since n1 and n2 are non-decreasing and positive, s < |ul,l < |v|, then using (16), we get
||1/)( + u, 85 + v, l) - ¢(7 S3 7l)||'r' = O[gl (S) + 62(1)]

- oo+ (8240

mi(s) + n2(1)
Similarly,
||1/}( +u,s;-+v, l) - w(a S5 l)”r

1
< qUgC+s+u - +v+D) =gl + s+ Dl + 190+ s +u-+o =0 =gl +s,- =Dl

+ g +s—u,-+v+0)—g(- =5+ +lgC-+s—u,-+v—=1)—3g(-—s,- = 1)],]
= [0{& (|u]) + &)} + Of& (Ju]) + &)} + O{& (Jul) + &)} + O{& (Ju]) + &(1)}]

= O{&(Ju)) + &0}
. s 1 . . . s l l
Since f}igg;if]z((l)) is mon-decreasing and positive, s > |u|,l < |v], then f]ig ;if;((l)) > mEI B f;((l))

using (17), we get
V(4 u,s3-+v,0) = (-, 8,0, = Ol&(Ju]) + &(1)]
= Ol(m(Iu) (1)) - (W)]

Similarly,

N0( 4w, s5-+v,0) =, 8,0,
1[Hg( tut s, +1+v) = ge+ s, -+ D)+ +uts,-+1—v)—g(-+s,- =],
+||g( +u—s,- +l+v) ('_57'+l)||r+||§('+u—87'+l_v)_g('_s,'_Z)HT]

= [0{&(s) + &(|v])} + O{&(s) + & ([v]) } + O{&i(s) + & (o))} + O{&i(s) + &a([v])}]

= O{&(s) + &(|v])}-
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§1(8)+&(1)
M (s)+m2(1)
using (18), we get

||¢( +u, 8-+ v, l) - w(a S5 l)”r = 0[51(3) + 52(|’U|)]

Since then (8 JH&W) - &i(s)+Ea(lv]) Thus

is non-decreasing and positive, s < |u|,l > |v], A OEEN OISO TR

_ [ &ls) +&(0)
Similarly,
H ( +u,s;-+v,l) —’(/J(-,S;-,l)”r
1[Hg( +stu-+1+0) =g +s -+ + 190 +s+u, - +1-0v)=g(-+s,- =Dl
+g9C+s—u-+1+0) =g =5, + Dl +19( + s —u,- +1-0v) = g(- — s, = Dll+]
= [O0{&u(Jul) + & ()} + Of&u(ul) + &2(|v))} + O{&(Jul) + &2(v]) } + O{&(ful) + &2(Jv])}]
= O{&u(lul) + &2([v))}- (2.5)
Since % is non-decreasing and positive, s > |ul,l > |v]|, then gigzgif;((ll)) > 2185812({52\& Thus,

using (19), we get

19(+u, 53+ 0, 0) = ¢(, 85, D, = Ol6a(lul) + &(Jv])]

§1(s) + &(0)
=0 ul) +n2(v]) - | —F——= |-
O
2.3. Proof of the main Theorem 2.1
Proof: The (p, ¢)th partial sums §, 4(z, y) of the series (10) is given by
~ _ 1 /™ (" cos(p+3)s cos(q+ )l
_ = — sy, l . dsdl
Spyq(xay) g(xvy) 71_2 / / ¢($»S7y» ) 28111(;) 281n(2)
cos(p +1)s cos(q+ 3)!
. . 2.
el / / Pl 50) sin(3) sin(%) dsdl (2:6)

The ¢, (x,y) is double Hausdorff matrix mean of 3, ,,(z,y) and taking in view (20), we write

n m

Eg,m(xay)—g(fﬂay)_zzh pimaa {8p,q(@,y) — g(z,y)}
p=0q=
cos(p + 1)s cos(q + 3)!
Y(z, sy, R pimg dsdl
/ / L pZOqZO 2sin(3) 25111(2)

:/0 /0 D, 5y, ) Ky (5, D)dsdl.

_tH

Let

—g(z,y)

/ / (89, 1) Ky (5, 1)dsdl. (2.7)

Lo (2, 9)
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Let us estimate the following:

||l~n,m('v')||£n) = ”zn,m(ffvy)Hr + sup

From (21), we write

570,140
¥ HZNn m(x+uay+v)7l~n m(xvy)”T
= lln,m(z,y)|» + sup ; 7
0,070 m (lul) + m2(|v])
Hln,m(x +s,y+ U) - ln,m(my y)”r
+ sup
s#£0,0#£0 771(8) + 772(|’U|)
~n m 9 l - Zn m 9 r
vy Mo+ +D) = (2]
u7£0,1£0 m(Jul) +n2(1)
Lnm (2 + U,y +0) = Ly (2,)
/ / Pz +u, 8y +v,1) —1/1(113,5;y,l))f(n,m(s,l)dsdl.
Using generalized Minkowski’s inequality ([6]), we have
Zn,m(' +u, -+ U) - Zn,m('v ) i
g/ / (- +u, 55 +0,0) — (-, 85, D) ||n K (5, 1) dsdl
1n+1 Tn+1
S VA T A S B AR B B [ E e
7n+1

('7 S5

[l (z + 8,y +1) = Ly (2, 9)]]

m(s) +ma2(l)

DIl - n,m(S,l)dsdl

=A+B+C+D.

Using Lemmas 2.2 and 2.6(ii), we get

= S T 3
A= / / No(-+uys;-+0,0) — (-, 85, Dl Knm (8, 1)dsdl

=0

o[ [ e nten SR (3) )
- e 4
tog(n -+ 1) (ul) + () i Ei% i E;% [ ;C”)
log(n -+ 1) og(m + 1) (Ju) + (o)) i EJ i Em:%

(2.10)
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Using Lemmas 2.3 and 2.6(ii), we get

1
n+1 7T

= (+u, s +0,0) = (-, 8 D))|lr Knom(s, Ddsdl

num+mwm1@

1

( LI 2 [OD A
( /ﬂl &1 Enllg 12((2 (112) dl) . (2.11)

log( n—|—1

(m (ul) + m2(lv]))

Using Lemmas 2.4 and 2.6(ii), we get

C= / /m ) +’LL,S;'+’U,Z) _w(asaal))”T}?"»m(S’l)del

n+1

_ e " oy . 108 +&(0) 1 .
=o( [ [ -4t BEEEG m+nwdﬂ>

&
0
( |
{

m &i(s) + &2

)
iUm“”+mw»AgmaniJh)Q
W(mﬂu) +n2([v])) /nil m(s) +m Emjlg (312) ds) . (2.12)

(n
(

Using Lemmas 2.5 and 2.6(ii), we get

D:/’Z /’T H(w('+u’8;'+v’l)_1/’('>5§'al))||rl~(n,m(8,l)dsdl

1

_ L, RSIOEZSION 1 .
O(ALA$UMD+WUD)m@+m® W+DW+DﬂﬂdO

O<m+mm+DWﬂDHMHD"1£lm@+mm<%9dﬂ> (213
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Combining (23)-(27), we have

m(@+u,y+v)— nm(:ry)H

1
O( (n+ 1) - log(m + 1) (m (Jul) + n2([v])) - 4 (5)
m (nll)
)

4
()
1
log(n+1) () + 2 () T fl(m>+52l
m+1 771 v 21v 1 ( 1
m+1 T

(
o () dl)
s) + & (ﬁ) ( 1 )

¢ (mllﬂ))

+
Q

+
.

o |U|))/; ili )+ m ()
ns 2 \ gt

s)+ & ()
dsdl
(n+1)(m+1) m+1 O (ful) + (o) / /7 s) +na2(l) (3252) ’ >

— | ds
52

+0

Thus,

anym(:c+u,y+v) inm(x y)H
sup T
u#0,v#£0 (771(|U‘D + 772(|UD)

(log(n +1)-log(m+1)
log(n + 1) 51 ) T&0) /1

( m—|—1 m1+ j )+772(l) <12) dl)

1(s) + &2 (ﬁ) 1

+0( [ 8)+n2(m;)(52)d5)

§i(s) +&0) (1
(n+1)(m+1) m+1 / () + () <32l2) dsdl>. (2.14)

+0

Similarly, we can have

in,m(l' +s,y+ U) - Zn,m(xvy)H
sup T
$#£0,v7£0 (771(8) + 772(|U|))

=0 (log(n +1) -log(m+1) & (r%l) + & (ﬁ)

m () + (mil))
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log(n+1) (7 &
”( i L,

1 awan (1,
+O<(”+1)(m+1)/1 /1 m(s) +n2(l) <5212)ddl>' (2.15)

Similarly, we can have

by (@ 4w,y +1) — 1, m(l‘,y)H
sup T
70,170 (1 (Ju]) +n2(1))

=0 (log(n +1)-log(m+1)

log(n + 1) & (ﬁ +&0)
! ( 5"“4—1) /m1+1 2 (m;:l +n2(1) <12> dl)
log(m+1) [7 &1(s) + &2 (#—&-1) 1
+O( (n+1) /nil m(s) + 12 (,,%H) <82)d8)
1 T G +6e0 (1
o <<n FmTD / / e () d“”) | (219

Now, we solve

vam(x’y) . (EnH,m(may) _g(xvy))Hr

_ </7r /Tr 16(z, 59, D), K m(s,l)dsdl>
VA AT A R Y

m+41

) [(; 59, Dl

N Kpm(s,1)| dsdl.

Using Lemmas 2.2 to 2.5 and 2.6(i), we have

o 6(s) + &) L [T G+ 60
/O /0 Sldsdl>+0<(m+1)/o / Slzdsdl>

m+1
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:0({/0 51(”“2“2%}/ = 1d>

1 ” 51 n-‘rl +§2
ol dl} o
1 +€2 m+1 1
+O((n+1){ } .1 )
1 s5) + &2(1)
+O<(n—|—1)(m—|—l)/nil/m1+1 202 d‘”)

—0 <1og(n+ 1) -log(m + 1) {51 (ni1) 6 (mir 1) })
o (lo(%n(rr_l)l) /:IH & ('n—lﬂlz +§2(l)dl)
(log(m+1) /ﬂ §i(s) + &2 (ﬁ) ds)

52

s) +&(
+o<n+1m+l// el 217

Using (28)-(31) in , we get

2l = O log(n + 1) - log(m + 1) {fl (ni1>+£2 (mlﬂ)})

log(n +1) ” &1 n+1>+52(l)dl
m+1 1 2

(
.
o (log (m+1) 5) + & (ﬁl) ds)
(

+0

+

n+1) 1 52

s) + &a(l
e L2 M)

+0

+0 log(n + 1) -log(m + 1)

i log(n+1) [T £1<ﬁ)+§2(l) 1
ol (B L (o) ()4

+

+0 |3

log(m + 1) / &) + & ()
(D) S )+ (74)
(s)

Lols <n+ m+1/ /7 )i (11 dsdzﬂ. (2.18)
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Since & (s) + &(1) = %ﬁ;% and (n1(s) +n2(1)) < (m(m) +n2(ﬁ))%, 0<s<m0<l<m, we
get

lEm () IS = O |4 (bg(n + 1) log(m +1) {

| log(n+1) [T &1 (ﬁ
+0 _4 ( (ng:Il) /mll (771 (&1
[ (1 m+1) [~ &) +& (ﬁ) 1
Ho _4< i”rl) /i m(s) + 12 (;) <52> ds)]
ol [ [, G Ge)es)] oo

Since &1(s) + &2(1) and 11 (s) + n2(l) are moduli of continuity, % is positive, non-decreasing and

log(n+1) [™ §<T)+€2() 1 dl) log(n—&—l)gl(%ﬂ)"_&(mH) T ldl
[ [, () /

R 771( >+772(l) 2 (m+1) 771(”+1) +772( . ) e

S log(n+1) & (n+1
IR AR (m%l)

Then,
log(n+1) ™ & (T> + &) 1 _ log(n + 1) &1 (ﬁ) + & (%—H)
0 ( (m+1) /m1+1 m ( 1 ) +n2(1) <l2> dl) -9 ( 2 m (n+1) + 12 (m+1) - (220

Since &1(s) + &2(1) and 11 (s) + n2(l) are moduli of continuity, % is positive, non-decreasing and

o [ (66 -60) 1))
( (n+1) /il (771 (n-i—l) +n2(1) (82>d
logim+1) (& () +& () \ /= /1
>< ?n—kl) <7}1<+)+7)2<;:) /# (52)d8
(e i (e
- 2 m ( ) + 12 ( )
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Since &1(s) + &2(1) and 11 (s) + n2(l) are moduli of continuity, f}ig:;ig;((ll)) is positive, non-decreasing and

1
Combining (33)-(36), we get

W (-5 ISP

=0 log(n—kl)log(m—i—l)fl(’“1*1)+§2( =) + togn + 1) & (1) + & ()
D RN A Y En Fr

+ <log(m+ n& (e >+5Q(m1+1>)

Y E Fe

+0

o Lo o (B () mal

log(n+1)  log(m +1) &1 (ﬁ) + & (ﬁ)
<10g<”““°g<m+l>+ et e )

s)+&(l
e [ [ (B0 (L)l

logtn +1) _ Toglm + 1)
2 * 2

' <n+1 Y(m + 1 / /578 22 (2l2>ddl>]
n+1 1)/ /7 231 ll))<212)d3dl]

<21og (n+1)log(m + 1) +log(n+1)(m+l)+2>

(// s () )

=0

=0 [<log(n +1)-log(m+1)+
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2.4. Corollaries

Following corollaries are deduced from Theorem 2.1.

Corollary 2.1 Following Note 1(i), we obtain

fenn _ - () _0

n,m g

r

1
((n+1)(m+1)> (2 log(n + 1) -log(m + 1) +log(n + 1)(m + 1) + 2)

(s) + & l) 1
/ (5) + ) (ﬁﬂ)ds‘”}

m+1

where &1(s) 4+ &2(1) and n1(s) + n2(l) denote the moduli of continuity such that % is positive and

non-decreasing.

Corollary 2.2 Following Note 1(ii), we obtain

(m)

-3 ) (210g(n+ 1) -log(m + 1) + log(n + 1)(m + 1)+2>

(e
[ L s (am) ]

where &1(8) + &(1) and n1(s) + n2(l) denote the moduli of continuity such tha
non-decreasing.

r

t &i1(s)+&2(D)

(s e () '8 positive and

Corollary 2.3 Let § € Hi, p);7 > 1 and suppose & (s) + & (1) = (s), m(s) +n2(l) = (sl)?, 0 < B <
a <1, then

P (m)
125 (2 1N

—g(z,y

o <2 log(n + 1) log(m + 1) 4+ log(n + 1)(m + 1) + 2)

- .((n+1)(m+1))ﬁa1 if 0<B<ax<l,

if =0, a=1.

(n+1)(m+1)

0 <21°g(”+1)log(m+1)+log(”+1)(m+l)+2> log(n + 1)7 - log(m + )7

Proof: Putting & (s) + & (1) = (s1)®, n1(s) +n2(l) = (s1)?, 0 < B < a < 1, in Theorem 2.1, we get

[ <210g(n+1>

log(m + 1) + log(n + 1)(m + 1) +2> : </ﬂ /7r s9h=2. zaﬁledsﬂ,

1
n+1 m+1

7, () — ()| =
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(m)

r

0 <2 log(n + 1)log(m + 1) +log(n+1)(m + 1) + 2)

T T (s P2 dlds

n+1 m+1

if0<fB<a<l,

0 Qﬁﬂbwn>Gﬂgm+lﬂ%M%+D+byn+DOn+D+2>

n+1 m+1

5 Slleds} if B=0, a=1,

72, (2,9) = §(ay)]| "

@) <2 log(n + 1) log(m + 1) 4+ log(n + 1)(m + 1) + 2)

((n+1)(m+1))f~ if0<B<a<l,

0] (m) (2 log(n +1) -log(m + 1) +log(n+ 1)(m + 1) + 2)

{log(n + 1)} - {log(m + 1)m} if =0, a=1.
O
Corollary 2.4 Letg € Hi, p) ;7 > 1, a,b € R and suppose & (s)+£2(1) = %’ m(s)+n2(l) =
s 1
S B
m and 0< B <a<l, 0<s,l<m, then
) <2 log(n + 1) -log(m + 1) +log(n+1)(m +1) + 2)
{log(n + 1) log(m + 1)} ifa=0,a—b>—1,
7 ~ (n)
1 () — gy =1 ¢
) <2 log(n 4 1)log(m + 1) + log(n + 1)(m + 1) + 2)
{log(n+1) - log(m + 1)} ifa=p0,a—b=—1.
. sl)” sl)?
Proof: Puttlng f](s) +€2(l) = W@, 7]1(8) +772(l) = W and 0 S B < « S 1, 0 <

s,1 <, in Theorem 2.1, we have

||£TI;I,m(xa y) - §(x,y)||£f') =

1
0 <(n+1>(m+1)) (2 log(n +1) - log(m + 1)

b—a b—a
+log(n +1)(m + 1) +2> (/ / (sl)*=P=2. <log i) : (log }) dldsﬂ,

n+1 m+1
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— | (@) — )"

0 <2 log(n+1) -log(m + 1) + log(n + 1)(m + 1) + 2)

b—a b—a
(f 7, (s (m;) - (mg }) dlds)
)

ifa=p,a—b> -1,

0 (m) (2 log(n + 1) -log(m + 1) +log(n+1)(m +1) + 2)

(s

if a=p,a—b=—1.

1)(log %)dlds)

0 <2 log(n+1) -log(m + 1) + log(n + 1)(m + 1) + 2)

{log(n + 1) log(m + 1)}*=|  ifa=B,a—b> —1,

(a, )| =

Qz

() —

0 <2 log(n+1) -log(m + 1) + log(n + 1)(m + 1) + 2)

{log(n + 1) log(m + 1)} ifa=p,a—b=-1.

O
3. Degree of Convergence of a Function of N-Dimensional Variable of N-Multiple
Conjugate Fourier Series (N > 3)
Let g(x1,x2, - ,zy) is periodic integrable function of period 27 in each variable over N-dimensional

cube TV. The N-multiple Fourier series of g(x1, 2, , o) can be written in the form
9(1'1, To, 7xN) ~ Z Z R Z Cony g e (g)ei(ml$1-i-mzﬂiz-i"“-i-mNIN)7
(m1,ma,-- ,mpy)€EZN

where ¢, my, my (g) is the Fourier coefficient of g (see [1, p. 300]).
The N-multiple conjugate Fourier series of f(x1,---,2y) can be written in the form

g(x1, 22, ZZ Z —i sign my )(—1 sign my) - - - (—4 sign my)
(m1,ma,--- ,my)€ZN

i(miz1+mozot+-+myzy
'leﬁmz’“me(g)e )

The following representation of the symmetric square partial sum of above series is given by

Smu ;M N ‘TN)

1'1,
N
WN B /_ ] _me wn (901,02, IN) [ Dom, (1) dladly - - dly,

J=1

where D,, ; (1) are the conjugate Derichlet kernels for each j.
If Hisa N dimensional Hausdorff matrix then

hmlv‘]l?""mN qN

(?11)( 2) ( )fo fo ' 'fol (L= D)™ g (1 = L)mem 2 Y (L= D)™ Iy
= dx(ltha alN)7 Q1:0a17~-~m17 q2:oal7"'m25"' aQN:0717"-mN;

0, g1 > mi,q2 > Mg, -+ ,qN > MN.
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Let Y 0> mim0" " 2omn—0%mims,..my  be a N-multiple conjugate Fourier series with

~ o miy mo my : th :

Sy ma,ee my = Zq1:U Zq2=0 e ZqN:O dgy .o, qn @S 1ts (M1, mg, -+ ,my )" partial sums.
. . ~H . .

The N-dimensional Hausdorff means t;;, ..., .. ,,, is given by

ma ma2 mN
“H _ _
tml,m2,~~~,mN - E E : E : hml#}l;"';mN7QNS(117Q27"'#ZN'

q1:0 q2:0 qN:O

If tﬁhmb'”,mN — ¢ as mi,ma,- - ,my — oo, then the N-dimensional conjugate Fourier series
o0 oo o0 . th . ~
D =0 2 ma—0 """ 2mn @mima, my With the sequence of (mq,--- ,my)™ partial sums (3m, my, - my)

is said to be summable to some finite value ¢ by the H method.
Now, we give the concept of Hélder classes of functions on TV. The Holder class for continuous periodic
function g(x1,xe, - ,xn) with period 27 in each variable is defined as

Hay o, an) =19 1 9(@1, 22, -+ sy, Do, - IN)]
=|g(x1+ U, en +in) — gz, an)| < CL(|L]™ + 1] + -+ [In]*Y)}

for some 0 < a1, ,any <1 and for all x1,--- ,xn,l1,, -+ ,In, where C7 > 0 is a constant may depend
on f, but not on x1,--- ,xn,l1,, - ,I{n. This class of functions is also called Lipschitz class and denoted
by Lip(aq,---,an). It can be easily varified that H(q,,... .ay) is @ Banach space with respect to the norm

I l¢ay, - ,an) defined by

Hg||(a1’___’aN) = Hg”C + sup AN gy eyl DN,
T1#l N ELN
where
Aal’m’aNg(Ila"' 7xN;l1a"' 7lN)
lg(x1 4+ 1, yon +In) —g(z1,--- ,2N)]

= T li, - ,x In).
|$1—l1|a1+"'+|$N_lN‘aN (17&1’ N#N)

By convention A% Cg(zy, - jan;ly, - ,Iy) =0 and

lgllc=" sup  |g(z1, -, 2n)|.
(z1,,zn)€ETY

The function space L"[[0,27]V] is given by
L([0, 27)"]

27 27 27
= 110, 271N — RN . Tdxy - d ) 3.1
{g 027 =2 [ [ [ e xN<oo,r21} (3.1)

The norm of (37) is defined by

1
27 27 27 r ™
||9||r — {W fo 0 "‘fo lg(x1,-- ,zN)| dxl"'de} , T€ [LOO);
ess Sup(m,m Jan)€[0,27]Y |f($1, T 7xN)| ’ r = 0o0.
Let &,--- ,&n : TV — RN be an arbitrary function. The class of function HE ) g defined by
HE 48 = L g e L7][0,27]N] : sup (s + b, oy +Iv) —glen, - an)lly )
" 1170, Ly #0 Ei(ln) + -+ En(in)
where &1,&s, -+ , &N are the moduli of continuity that is &;,&s,- - ,&N are non-decreasing positive con-
tinuous function with the following properties:
lim & (h) =&(0) =0, lim &(l) =&(0) =0,---, lim &En(ly) =En(0) =0

I, =0t I5—0 In—0t
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and
Slip+-+hn) <&l)++&UnN), v+ +ivw) <Envng) + -+ v (v, n)-

We define

sup lg(xr + 11, N +1In) — g(a1, - - ’Z'N)Hr.

(€1, 56N) _
= |lgll, +
. Igll, 110, Iy 20 S(l) +-+&v(in)

llgl

Clearly, ||-]© %) is a norm on HE™ V),

It can be varified that the completeness of the space L"[[0,27]"] implies the completeness of the space
H7(_§11'“ -,fN).

We write

1

@)~

qj(lla"' 7lN):w(x1all;"' vale): g(z1+llv'” 7IN+ZN)

—g(@1+l, ey —In) =gl =l an = In) |

xry i) N
U(zy, - ,oN) :/ / / [P (v, -+ on)|dvidvg - - dop;
o Jo 0

1 cos(q1 + 3)h cos(qn + 3)In
= (2n N Z by ,a sin 71) th N Sln(lN) (3.2)
q1=0 2 gn=0
Now, we establish a following theorem:
3.1. Main Theorem
Theorem 3.1 Let g(x1, -+ ,xn) be a function, conjugate to a function g(x1,--- ,xn) (periodic with
period 27 in each variable) Lebesgue integrable on TN. Then, the error estimation of j(xy, T2, ,TN)

in the space (Hﬁgl’m ’gN); r > 1) using N-dimensional Hausdorff matriz H is given by

Htm1mz~~7mv -

N
<2Hlog m; + 1) —|—logH mz+1)+2>

. CeEn(y) 1
</m1+1 /m2+1 /mN+1 +77N( ) (l{\/’ . ZJI\\/()dll o le) (33)

where (& + -+ &n) and (m + -+ + nn) denote the moduli of continuity such that H is mon-

decreasing and positive.

3.2. Proof of the Main Theorem 3.1

Proof: One can extend the Lemmas 2.2 to 2.6 in each variable from double to N-multiple. Further, the
proof goes along the same lines of the proof of Theorem 2.1. O
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3.3. Corollaries
Following corollaries are deduced from Theorem 3.1.
Corollary 3.1 Following Note 1(i) for N-dimensional Cesaro means of order 1, we obtain
N

~ () N 1 N
(C,1,-,1) ~ _ I I | I ) I l )
Htmlm?mmN - gHr =0 1 (mz + 1) 2i:1 IOg(mz + 1) + IOg i:1(mz + 1) +2

/" B /’T &Sl + -+ En(IN) 1 dls - di
() () ()TN

1 1
mi1+1 Y mof1 my 1L

where (14 --+&n) and (N1 +---+1nn) denotes the modulus of continuity such that H is positive

and non-decreasing.

Corollary 3.2 Following Note 1(ii) for N-dimensional Euler’s means of order 1, we obtain

N ) N 1 N N
Htﬁrﬁ’%;z..ﬁ%N -g| =0 Hm 2 [[1og(m; + 1) +log [ [ (mi + 1) +2
i=1 " i=1 i=1
/Tr oM &)+ +HEn () 1 diy - diy
mFT Y Tt M () + - +an () @1 17) 7

where (§&14---+&n) and (m +---+nn) denotes the modulus of continuity such that H 18 positive

and non-decreasing.
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