(3s.) **v. 2025 (43)** : 1–22. ISSN-0037-8712 doi:10.5269/bspm.71573

Common neighborhood (signless) Laplacian spectrum and energy of CCC-graph

Firdous Ee Jannat and Rajat Kanti Nath*

ABSTRACT: In this paper, we consider commuting conjugacy class graph (abbreviated as CCC-graph) of a finite group G which is a graph with vertex set $\{x^G:x\in G\setminus Z(G)\}$ (where x^G denotes the conjugacy class containing x) and two distinct vertices x^G and y^G are joined by an edge if there exist some elements $x'\in x^G$ and $y'\in y^G$ such that they commute. We compute common neighborhood (signless) Laplacian spectrum and energy of CCC-graph of finite non-abelian groups whose central quotient is isomorphic to either $\mathbb{Z}_p\times\mathbb{Z}_p$ (where p is any prime) or the dihedral group D_{2n} ($n\geq 3$); and determine whether CCC-graphs of these groups are common neighborhood (signless) Laplacian hyperenergetic/borderenergetic. As a consequence, we characterize certain finite non-abelian groups viz. D_{2n} , T_{4n} , U_{6n} , $U_{(n,m)}$, SD_{8n} and V_{8n} such that their CCC-graphs are common neighborhood (signless) Laplacian hyperenergetic/borderenergetic. Further, we compare various common neighborhood energies of CCC-graphs of these groups and describe their closeness graphically.

Key Words: Common Neighborhood; Spectrum; Energy; Commuting Conjugacy Class Graph.

Contents

1	Introduction	
2	Computations of spectrum and energies 2.1 Groups whose central quotient is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$	
3	Some consequences 3.1 Comparing various CN-energies	13 17
4	Conclusion	20

1. Introduction

Characterizing finite groups through various graphs defined on them have been an active area of research over the last 50 years. A number of graphs have been defined on groups [6]. Among those, in our paper, we consider commuting conjugacy class graph (abbreviated as CCC-graph) of a finite non-abelian group G. For any element $x \in G$, we write x^G to denote the conjugacy class of G containing x. The CCC-graph of G, denoted by Γ_G , is defined as a simple undirected graph whose vertex set is the set of conjugacy classes of non-central elements of G and two vertices x^G and y^G are adjacent if there exists some elements $x' \in x^G$ and $y' \in y^G$ such that x'y' = y'x'. In 2009, Herzog et al. [27] introduced the concept of CCC-graph of a group. In 2016, Mohammadian et al. [32] have characterized finite groups such that their CCC-graph is triangle-free. Later on Salahshour and Ashrafi [34,35], obtained structures of CCC-graph of several families of finite CA-groups. Salahshour [36] also described Γ_G for the groups whose central quotient is isomorphic to a dihedral group. Characterizations of various classes of finite non-abelian groups through energy, (signless) Laplacian energy, common neighborhood energy (abbreviated as CN-energy) and genus of their CCC-graphs can be found in [4,5,28].

The energy of a graph \mathcal{G} (denoted by $E(\mathcal{G})$) is the sum of absolute values of all the eigenvalues of the adjacency matrix of \mathcal{G} . This notion was also used in obtaining π -electron energy of a conjugated carbon molecule in theoretical chemistry. The study of energy of a graph was initiated by Gutman [20] in 1978. After a long time, in 2006 and 2008, Gutman et al. introduced two more graph-energy-like quantity, known as Laplacian energy [25] (denoted by $LE(\mathcal{G})$) and signless Laplacian energy [22] (denoted by $LE^+(\mathcal{G})$), using Laplacian and signless Laplacian eigenvalues of a graph respectively. These energies are

Submitted March 08, 2024. Published August 10, 2025 2010 Mathematics Subject Classification: 05C25, 05C50, 15A18.

^{*} corresponding author

used to study various properties of graphs (see [3,7,16,17]). Later on, mathematicians have introduced several kinds of graph energies (see [23,24]) and studied graph properties. In 2011, Alwardi et al. [2] have introduced CN-energy of a graph. Let \mathcal{G} be a graph with vertex set $V(\mathcal{G}) = \{v_1, v_2, v_3, \dots, v_n\}$. Let $C(v_i, v_j)$ be the set of vertices of a graph \mathcal{G} other than v_i and v_j which are adjacent to both v_i and v_j . Then the common neighborhood matrix (CN-matrix) of \mathcal{G} , denoted by $CN(\mathcal{G})$, is a matrix of size n whose (i, j)-th entry is given by

$$\mathrm{CN}(\mathcal{G})_{i,j} = \begin{cases} |C(v_i, v_j)|, & \text{if } i \neq j \\ 0, & \text{otherwise.} \end{cases}$$

The CN-energy of \mathcal{G} (denoted by $E_{CN}(\mathcal{G})$) is the sum of absolute values of all the eigenvalues of $CN(\mathcal{G})$. Motivated by the study of (signless) Laplacian energy, Jannat et al. [30] have introduced the notions of common neighborhood Laplacian energy (CNL-energy) and common neighborhood signless Laplacian energy (CNSL-energy) of a graph.

The common neighborhood Laplacian matrix (CNL-matrix) and the common neighborhood signless Laplacian matrix (CNSL-matrix) of \mathcal{G} , denoted by CNL(\mathcal{G}) and CNSL(\mathcal{G}), respectively, are given by

$$CNL(\mathcal{G}) := CNRS(\mathcal{G}) - CN(\mathcal{G})$$
 and $CNSL(\mathcal{G}) := CNRS(\mathcal{G}) + CN(\mathcal{G})$,

where $CNRS(\mathcal{G})$ is a matrix of size $|V(\mathcal{G})| = n$ whose (i, j)-th entry is given by

$$CNRS(\mathcal{G})_{i,j} = \begin{cases} \sum_{k=1}^{n} CN(\mathcal{G})_{i,k}, & \text{if } i = j \text{ and } i = 1, 2, \dots, n \\ 0, & \text{if } i \neq j. \end{cases}$$

The common neighborhood Laplacian spectrum of \mathcal{G} (abbreviated as CNL-spectrum and denoted by CNL-spec(\mathcal{G})) is the set of eigenvalues of CNL(\mathcal{G}) with multiplicities. We write CNL-spec(\mathcal{G}) = $\{(\alpha_1)^{a_1}, (\alpha_2)^{a_2}, \ldots, (\alpha_k)^{a_k}\}$, where $\alpha_1, \alpha_2, \ldots, \alpha_k$ are the distinct eigenvalues of CNL(\mathcal{G}) with corresponding multiplicities a_1, a_2, \ldots, a_k . Similarly, common neighborhood signless Laplacian spectrum of \mathcal{G} (abbreviated as CNSL-spectrum and denoted by CNSL-spec(\mathcal{G})) is the set of eigenvalues of CNSL(\mathcal{G}) with multiplicities. We write CNSL-spec(\mathcal{G}) = $\{(\beta_1)^{b_1}, (\beta_2)^{b_2}, \ldots, (\beta_\ell)^{b_\ell}\}$, where $\beta_1, \beta_2, \ldots, \beta_\ell$ are the distinct eigenvalues of CNSL(\mathcal{G}) with corresponding multiplicities b_1, b_2, \ldots, b_ℓ . A graph \mathcal{G} is called CNL-integral (CNSL-integral) if CNL-spectrum (CNSL-spectrum) contains only integers. The notions of CNL-integral and CNSL-integral graphs were introduced in [30] motivated by the notions of integral (introduced by Harary and Schwenk [26]), L-integral (introduced by Grone and Merris [19]), Q-integral (introduced by Simic and Stanic [37]) and CN-integral (introduced by Alwardi et al. [2]) graphs. A finite graph is called super integral if it is integral, L-integral and Q-integral (see [4]). Integral graphs have some interests for designing the network topology of perfect state transfer networks (see [1] and the references there in).

The CNL-energy and CNSL-energy of \mathcal{G} , denoted by $LE_{CN}(\mathcal{G})$ and $LE_{CN}^+(\mathcal{G})$ respectively, are defined as

$$LE_{CN}(\mathcal{G}) := \sum_{i=1}^{k} a_i |\alpha_i - \Delta(\mathcal{G})|$$
(1.1)

and

$$LE_{CN}^{+}(\mathcal{G}) := \sum_{i=1}^{\ell} b_i \left| \beta_i - \Delta(\mathcal{G}) \right|, \tag{1.2}$$

where $\Delta(\mathcal{G}) = \frac{\operatorname{tr}(\operatorname{CNRS}(\mathcal{G}))}{|V(\mathcal{G})|}$ and $\operatorname{tr}(\operatorname{CNRS}(\mathcal{G}))$ is the trace of $\operatorname{CNRS}(\mathcal{G})$. In [30], various facets of the CNL-spectrum, CNL-energy, CNSL-spectrum and CNSL-energy of graphs were discussed; their connections with other well-known graph energies and Zagreb indices were also established. It was observed that

$$LE_{CN}(K_n) = LE_{CN}^+(K_n) = 2(n-1)(n-2),$$
 (1.3)

where K_n is the complete graph of order n. A graph \mathcal{G} of order n is called CNL-hyperenergetic or CNSL-hyperenergetic according as $LE_{CN}(\mathcal{G}) > 2(n-1)(n-2)$ or $LE_{CN}^+(\mathcal{G}) > 2(n-1)(n-2)$. Further, it is called CNL-borderenergetic (CNSL-borderenergetic) if CNL-energy (CNSL-energy) of \mathcal{G} is equal to 2(n-1)(n-2). These classes of graphs were introduced in [29,30] motivated by the notions of various types of hyperenergetic graphs (see [2,14,18,21,39,40,41]).

In Section 2, we compute CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graphs of finite non-abelian groups whose central quotient is isomorphic to either $\mathbb{Z}_p \times \mathbb{Z}_p$ (where p is any prime) or the dihedral group D_{2n} ($n \geq 3$). In Section 3, we determine whether CCC-graphs of these groups are CNL-integral, CNSL-integral, CNL-hyperenergetic, CNSL-hyperenergetic, CNL-borderenergetic and CNSL-borderenergetic. As a consequence, we characterize the groups viz. D_{2n} , T_{4n} , U_{6n} , $U_{(n,m)}$, SD_{8n} and V_{8n} such that their CCC-graphs have above mentioned properties. In Subsection 3.1, we compare various CN-energies of CCC-graphs of the groups G considered in Section 2 and show that $E_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G)$ or $E_{CN}(\Gamma_G) < LE_{CN}^+(\Gamma_G) < LE_{CN}^-(\Gamma_G)$. We also characterize the groups viz. D_{2n} , T_{4n} , U_{6n} , $U_{(n,m)}$, SD_{8n} and V_{8n} such that their CCC-graphs satisfy above mentioned equality/inequality. For the groups satisfying the inequality $E_{CN}(\Gamma_G) < LE_{CN}^+(\Gamma_G) < LE_{CN}^-(\Gamma_G)$, the closeness of various CN-energies of CCC-graphs of G are depicted graphically in Figures 1 – 8. Finally, we conclude the paper in Section 4 by listing certain problems that arise naturally after our investigation.

2. Computations of spectrum and energies

In this section, we compute CNL-spectrum, CNSL-spectrum and their respective energies of CCC-graphs of various families of non-abelian finite groups. In particular, we consider finite non-abelian groups whose central quotients are isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$ (where p is any prime) or $D_{2n} = \langle x, y : x^n = y^2 = 1, yxy^{-1} = x^{-1} \rangle$ (for $n \geq 3$) in the following subsections. We shall also consider a generalization of dihedral groups, namely $U_{(n,m)} = \langle x,y: x^{2n} = y^m = 1, x^{-1}yx = y^{-1} \rangle$ (for $n \geq 2$, the semidihedral groups $SD_{8n} = \langle x,y: x^{2n} = y, yxy = x^{2n-1} \rangle$ (for $n \geq 2$), the groups $U_{6n} = \langle x,y: x^{2n} = y^3 = 1, x^{-1}yx = y^{-1} \rangle$ (for $n \geq 2$) and $V_{8n} = \langle x,y: x^{2n} = y^4 = 1, yx = x^{-1}y^{-1}, y^{-1}x = x^{-1}y \rangle$ (for $n \geq 2$). The following result is useful in our computation.

Theorem 2.1 [30] Let $\mathcal{G} = l_1 K_{m_1} \cup l_2 K_{m_2} \cup l_3 K_{m_3}$, where $l_i K_{m_i}$ denotes the disjoint union of l_i copies of K_{m_i} for i = 1, 2, 3. Then

$$\text{CNL-spec}(\mathcal{G}) = \left\{ (0)^{l_1 + l_2 + l_3}, (m_1(m_1 - 2))^{l_1(m_1 - 1)}, (m_2(m_2 - 2))^{l_2(m_2 - 1)}, (m_3(m_3 - 2))^{l_3(m_3 - 1)} \right\}$$

and

$$\begin{aligned} \text{CNSL-spec}(\mathcal{G}) = \left\{ (2(m_1-1)(m_1-2))^{l_1}, ((m_1-2)^2)^{l_1(m_1-1)}, (2(m_2-1)(m_2-2))^{l_2}, \\ ((m_2-2)^2)^{l_2(m_2-1)}, (2(m_3-1)(m_3-2))^{l_3}, ((m_3-2)^2)^{l_3(m_3-1)} \right\}. \end{aligned}$$

2.1. Groups whose central quotient is isomorphic to $\mathbb{Z}_p \times \mathbb{Z}_p$

This class of groups have been considered by Salahshour and Ashrafi [34, Theorem 3.1] and showed that

$$\Gamma_G = (p+1)K_{\frac{(p-1)|Z(G)|}{p}}.$$
(2.1)

CN-energy of CCC-graphs of this class of groups have been studied in [28]. It is worth mentioning that commuting and non-commuting graphs of this class of groups are also studied in [8,9,10,11,12,15,13,33]. In the following theorem, we derive CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graphs of this class of groups.

Theorem 2.2 Let G be a finite non-abelian group with $|Z(G)| = z \ge 2$ and $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$, where p is a prime. Then CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of G are given by

$$\begin{aligned} \text{CNL-spec}(\Gamma_G) &= \left\{ (0)^{p+1}, \left(\frac{1}{p^2} (pz-z) (pz-z-2p) \right)^{\frac{(p+1)}{p} (pz-z-p)} \right\}, \\ \text{CNSL-spec}(\Gamma_G) &= \left\{ \left(\frac{2}{p^2} (pz-z-p) (pz-z-2p) \right)^{p+1}, \left(\frac{1}{p^2} (pz-z-2p)^2 \right)^{\frac{(p+1)}{p} (pz-z-p)} \right\} \text{ and } \\ LE_{CN}(\Gamma_G) &= LE_{CN}^+(\Gamma_G) &= \begin{cases} \frac{3}{2}, & \text{for } p=2 \,\&\, z=3 \\ \frac{4(p-2)(p+1)}{p^2}, & \text{for } p\geq 2 \,\&\, z=2 \\ \frac{2(p+1)(p(z-2)-z)(p(z-1)-z)}{p^2}, & \text{otherwise.} \end{cases} \end{aligned}$$

Proof: From (2.1), we have $\Gamma_G = (p+1)K_n$, where $n = \frac{(p-1)z}{n}$. Therefore, by Theorem 2.1, we get

CNL-spec
$$(\Gamma_G) = \{(0)^{p+1}, (\frac{1}{p^2}(pz-z)(pz-z-2p))^{\frac{(p+1)}{p}(pz-z-p)}\}$$
 and

CNSL-spec
$$(\Gamma_G) = \{ (\frac{2}{n^2}(pz-z-p)(pz-z-2p))^{p+1}, (\frac{1}{n^2}(pz-z-2p)^2)^{(p+1)\frac{1}{p}(pz-z-p)} \}$$

 $\text{CNSL-spec}(\Gamma_G) = \{ (\frac{2}{p^2}(pz - z - p)(pz - z - 2p))^{p+1}, (\frac{1}{p^2}(pz - z - 2p)^2)^{(p+1)\frac{1}{p}(pz - z - p)} \}.$ $\text{Here } |V(\Gamma_G)| = \frac{(p^2 - 1)z}{p} \text{ and } \text{tr}(\text{CNRS}(\Gamma_G)) = \frac{(p-1)(p+1)z(p(z-2)-z)(p(z-1)-z)}{p^3}. \text{ Therefore, } \Delta(\Gamma_G) = \frac{(p(z-2)-z)(p(z-1)-z)}{p^2}.$

Now we calculate CNL-energy of Γ_G . We have

$$L_1 := |0 - \Delta(\Gamma_G)| = \left| -\frac{(p(z-2) - z)(p(z-1) - z)}{p^2} \right|.$$

Let $\alpha_1(p,z) = -(p(z-2)-z)(p(z-1)-z)$. Then $\alpha_1(p,z) = -2p^2 - 3pz - z^2 + \frac{1}{2}p^2z(6-z) + \frac{1}{2}pz^2(4-p) < 0$ for $p \ge 4$ and $z \ge 6$. It can be seen that $\alpha_1(2,z) = -z(z-6) - 8 = 1$ or ≤ 0 according as z = 3 or $z \neq 3$; $\alpha_1(3,z) = -2(z-3)(2z-3) = 2$ or ≤ 0 according as z=2 or $z \neq 2$; $\alpha_1(p,2) = 2p-4 \geq 0$; $\alpha_1(p,3) = -2p^2 + 9p - 9 = 1 \text{ or } \le 0 \text{ according as } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 16 \le 0 \text{ and } p = 2 \text{ or } p \ne 2; \ \alpha_1(p,4) = -6p^2 + 20p - 20p -$ $\alpha_1(p,5) = -12p^2 + 35p - 25 \le 0$. Therefore

$$L_1 = \begin{cases} -\frac{(p(z-2)-z)(p(z-1)-z)}{p^2}, & \text{for } p = 2 \& z = 3; p \ge 2 \& z = 2\\ \frac{(p(z-2)-z)(p(z-1)-z)}{p^2}, & \text{otherwise.} \end{cases}$$

Also

$$L_2 := \left| \frac{(pz-z)(pz-2p-z)}{p^2} - \Delta(\Gamma_G) \right| = \left| \frac{pz-2p-z}{p} \right|.$$

Let $\alpha_2(p,z)=pz-2p-z$. Then $\alpha_2(p,z)=(z-2)p-z\geq z-4\geq 0$ for all $z\geq 4$ since $p\geq 2$. It can be seen that $\alpha_2(p,2)=-2<0$ and $\alpha_2(p,3)=p-3\geq 0$ or <0 according as $p\geq 3$ or p=2. Therefore

$$L_2 = \begin{cases} -\frac{pz-2p-z}{p}, & \text{for } p = 2 \& z = 3; p \ge 2 \& z = 2\\ \frac{pz-2p-z}{p}, & \text{otherwise.} \end{cases}$$

Hence, by (1.1), we get

$$LE_{CN}(\Gamma_G) = (p+1) \times L_1 + \frac{p+1}{p} (pz - z - p) \times L_2$$

$$= \begin{cases} \frac{3}{2}, & \text{for } p = 2 \& z = 3\\ \frac{4(p-2)(p+1)}{p^2}, & \text{for } p \ge 2 \& z = 2\\ \frac{2(p+1)(p(z-2)-z)(p(z-1)-z)}{p^2}, & \text{otherwise.} \end{cases}$$

For CNSL-energy of Γ_G we have

$$\begin{split} B_1 := \left| \frac{2(pz-p-z)(pz-2p-z)}{p^2} - \Delta(\Gamma_G) \right| &= \left| \frac{(pz-2p-z)(pz-p-z)}{p^2} \right| \\ &= -L_1 = \begin{cases} -\frac{(pz-2p-z)(pz-p-z)}{p^2}, & \text{for } p=2 \,\&\, z=3; p \geq 2 \,\&\, z=2 \\ \frac{(pz-2p-z)(pz-p-z)}{p^2}, & \text{otherwise.} \end{cases} \end{split}$$

Also

$$B_{2} := \left| \frac{(pz - 2p - z)^{2}}{p^{2}} - \Delta(\Gamma_{G}) \right| = \left| \frac{-pz + 2p + z}{p} \right| = -L_{2}$$

$$= \begin{cases} \frac{2p + z - pz}{p}, & \text{for } p = 2 \& z = 3; p \ge 2 \& z = 2 \\ -\frac{2p + z - pz}{p}, & \text{otherwise.} \end{cases}$$

Hence, by (1.2), we get

$$LE_{CN}^{+}(\Gamma_G) = (p+1) \times B_1 + \frac{p+1}{p} (pz - z - p) \times B_2$$

$$= \begin{cases} \frac{3}{2}, & \text{for } p = 2 \& z = 3\\ \frac{4(p-2)(p+1)}{p^2}, & \text{for } p \ge 2 \& z = 2\\ \frac{2(p+1)(p(z-2)-z)(p(z-1)-z)}{p^2}, & \text{otherwise.} \end{cases}$$

Hence the result follows.

As a corollary of the above theorem we get the following result.

Corollary 2.1 Let G be a non-abelian group of order p^n with $|Z(G)| = p^{n-2}$. Then CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of G are given by

$$CNSL\text{-spectrum}, \ CNL\text{-energy and } CNSL\text{-energy of } CCC\text{-graph of } G \ \text{are given by}$$

$$CNL\text{-spec}(\Gamma_G) = \left\{ (0)^{p+1}, \left(\frac{1}{p^2} (p^{n-1} - p^{n-2}) (p^{n-1} - p^{n-2} - 2p) \right)^{\frac{(p+1)}{p}} (p^{n-1} - p^{n-2} - p) \right\},$$

$$CNSL\text{-spec}(\Gamma_G) = \left\{ \left(\frac{2}{p^2} (p^{n-1} - p^{n-2} - p) (p^{n-1} - p^{n-2} - 2p) \right)^{p+1}, \left(\frac{1}{p^2} (p^{n-1} - p^{n-2} - 2p)^2 \right)^{\frac{(p+1)}{p}} (p^{n-1} - p^{n-2} - p) \right\}$$
and

$$LE_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G) = \begin{cases} 0, & \text{for } p = 2 \& n = 3\\ \frac{2(p+1)\left(p\left(p^{n-2}-2\right)-p^{n-2}\right)\left(p\left(p^{n-2}-1\right)-p^{n-2}\right)}{p^2}, & \text{otherwise.} \end{cases}$$

Proof: Here $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Hence the result follows from Theorem 2.2.

2.2. Groups whose central quotient is isomorphic to a dihedral group

The CCC-graph of this class of group was first studied by Salahshour [36] in 2020. Salahshour [36, Theorem 1.2] obtained the following structures of Γ_G (where $\frac{G}{Z(G)} \cong D_{2n}$)

$$\Gamma_G = \begin{cases} K_{\frac{(n-1)|Z(G)|}{2}} \cup 2K_{\frac{|Z(G)|}{2}}, & \text{if } 2 \mid n \\ K_{\frac{(n-1)|Z(G)|}{2}} \cup K_{|Z(G)|}, & \text{if } 2 \nmid n. \end{cases}$$
(2.2)

The CN-energy of such Γ_G was studied in [28]. Also spectrum, L-spectrum and Q-spectrum of commuting and non-commuting graphs of this class of groups was studied in [8,9,10,11,12,13] along with their respective energies.

Theorem 2.3 Let G be a finite group such that |Z(G)| = z and $\frac{G}{Z(G)} \cong D_{2n}$ (where $n \geq 3$). Then CNL-spectrum, CNL-spectrum, CNL-energy and CNSL-energy of CCC-graph of G are as given below:

(a) If n is even then

(i) CNL-spec(
$$\Gamma_G$$
) = $\left\{ (0)^3, (\frac{1}{4}(nz-z)(nz-z-4))^{\frac{1}{2}(nz-z-2)}, (\frac{1}{4}z(z-4))^{z-2} \right\}$ and

$$LE_{CN}(\Gamma_G) = \frac{((n-1)z - 2)(n(z+1)((n-2)z - 4) + 11z - 4)}{2(n+1)}.$$

(ii) CNSL-spec(
$$\Gamma_G$$
) = $\left\{ (\frac{1}{2}(nz-z-2)(nz-z-4))^1, (\frac{1}{4}(nz-z-4)^2)^{\frac{1}{2}(nz-z-2)}, (\frac{1}{2}(z-2)(z-4))^2, (\frac{1}{4}(z-4)^2)^{z-2} \right\}$

and

$$LE_{CN}^{+}(\Gamma_G) = \begin{cases} \frac{28}{5}, & \text{for } n = 4 \& z = 2\\ \frac{3}{5}z^2(4z - 6), & \text{for } n = 4 \& z \ge 3\\ \frac{(n-2)(n-1)z^2(nz-6)}{2(n+1)}, & \text{otherwise.} \end{cases}$$

(b) If n is odd then

$$\text{(i) CNL-spec}(\Gamma_G) = \left\{ (0)^2, (\frac{1}{4}(nz-z)(nz-z-4))^{\frac{1}{2}(nz-z-2)}, (z(z-2))^{z-1} \right\}$$

$$and \ LE_{CN}(\Gamma_G) = \begin{cases} 0, & for \ n=3 \,\&\, z=1 \\ 4(z-1)(z-2), & for \ n=3 \,\&\, z\geq 2 \\ \frac{((n-1)z-2)\left((n-3)(n+1)z^2+((n-6)n+17)z-4(n+1)\right)}{2(n+1)}, & otherwise. \end{cases}$$

$$\text{(ii) CNSL-spec}(\Gamma_G) = \left\{ (\frac{1}{2}(nz-z-2)(nz-z-4))^1, (\frac{1}{4}(nz-z-4)^2)^{\frac{1}{2}(nz-z-2)}, \right.$$

(ii) CNSL-spec(
$$\Gamma_G$$
) = $\left\{ (\frac{1}{2}(nz-z-2)(nz-z-4))^1, (\frac{1}{4}(nz-z-4)^2)^{\frac{1}{2}(nz-z-2)}, (2(z-1)(z-2))^1, ((z-2)^2)^{z-1} \right\}$
and $LE_{CN}^+(\Gamma_G) = \begin{cases} 0, & \text{for } n=3 \& z=1; \ n=5 \& z=1 \\ 4(z-1)(z-2), & \text{for } n=3 \& z \geq 2 \\ \frac{(n-5)(n-3)(n+3)}{2(n+1)}, & \text{for } n \geq 7 \& z=1 \\ \frac{(n-3)(n-1)z^2(nz+z-6)}{2(n+1)}, & \text{otherwise.} \end{cases}$

Proof: From (2.2), we have $\Gamma_G = K_{\frac{(n-1)z}{2}} \cup 2K_{\frac{z}{2}}$ or $K_{\frac{(n-1)z}{2}} \cup K_z$ according as n is even or odd. (a)(i) If n is even, then by Theorem 2.1

$$\text{CNL-spec}(\Gamma_G) = \left\{ (0)^1, \left(\frac{(n-1)z}{2} \left(\frac{(n-1)z}{2} - 2 \right) \right)^{\frac{(n-1)z}{2} - 1}, (0)^2, \left(\frac{z}{2} \left(\frac{z}{2} - 2 \right) \right)^{2(\frac{z}{2} - 1)} \right\}.$$

Here $|V(\Gamma_G)| = \frac{1}{2}(n+1)z$ and $\operatorname{tr}(\operatorname{CNRS}(\Gamma_G)) = \frac{1}{8}z((n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1))$. So, $\Delta(\Gamma_G) = \frac{(n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1)}{4(n+1)}$. Note that $z \geq 2$. We have

$$L_1 := |0 - \Delta(\Gamma_G)| = \left| -\frac{(n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1)}{4(n+1)} \right|.$$

Let $\alpha_1(n,z)=(n((n-3)n+3)+1)z^2-6((n-2)n+3)z+8(n+1)$. Then $\alpha_1(n,z)=8+8n+6z(2n-3)+z^2+3nz^2+\frac{n^2z}{2}(nz-12)+\frac{n^2z^2}{2}(n-6)>0$ for $n\geq 12$. Also, $\alpha_1(4,z)=29z^2-66z+40\geq 0$, $\alpha_1(6,z)=127z^2-162z+56\geq 0$, $\alpha_1(8,z)=345z^2-306z+72\geq 0$ and $\alpha_1(10,z)=731z^2-498z+88\geq 0$. Therefore

$$L_1 = \frac{(n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1)}{4(n+1)}.$$

We have

$$L_2 := \left| \frac{1}{4} (nz - z)(nz - z - 4) - \Delta(\Gamma_G) \right| = \left| \frac{n(z+1)((n-2)z - 4) + 11z - 4}{2(n+1)} \right|.$$

Let $\alpha_2(n,z) = \{n(z+1)((n-2)z-4) + 11z-4\}$. Then $\alpha_2(n,z) > 0$ for $n \ge 6$, since $n-2 \ge 4 \implies z(n-2)-4 \ge 0 \implies n(z+1)(z(n-2)-4) \ge 0$. Also, $\alpha_2(4,z) = 8z^2 + 3z - 20 \ge 0$. Therefore

$$L_2 = \frac{n(z+1)((n-2)z-4) + 11z - 4}{2(n+1)}.$$

We have

$$L_3 := \left| \frac{1}{4} z(z-4) - \Delta(\Gamma_G) \right| = \left| \frac{14z - 8 - 8n - nz(2(z+8) + n(-6 + (n-3)z))}{4(n+1)} \right|.$$

Let $\alpha_3(n,z) = 14z - 8 - 8n - nz(2(z+8) + n(-6 + (n-3)z))$. For $n \ge 10$, n((n-3)z-6) > 0 and 2(z+8) > 0. So, $\alpha_3(n,z) < 0$ for all $n \ge 10$. Also, $\alpha_3(4,z) = -24z^2 + 46z - 40 \le 0$, $\alpha_3(6,z) = -120z^2 + 134z - 56 \le 0$ and $\alpha_3(8,z) = -336z^2 + 270z - 72 < 0$. Therefore

$$L_3 = -\frac{14z - 8 - 8n - nz(2(z+8) + n(-6 + (n-3)z))}{4(n+1)}.$$

Hence, by (1.1), we get

$$LE_{CN}(\Gamma_G) = 3 \times L_1 + \frac{1}{2}(nz - z - 2) \times L_2 + (z - 2) \times L_3$$
$$= \frac{((n-1)z - 2)(n(z+1)((n-2)z - 4) + 11z - 4)}{2(n+1)}.$$

(a)(ii) If n is even, then by Theorem 2.1

$$\operatorname{CNSL-spec}(\Gamma_G) = \left\{ \left(2 \left(\frac{(n-1)z}{2} - 1 \right) \left(\frac{(n-1)z}{2} - 2 \right) \right)^1, \left(\left(\frac{(n-1)z}{2} - 2 \right)^2 \right)^{\frac{(n-1)z}{2} - 1}, \left(\frac{1}{2} (z-2)(z-4) \right)^2, \left(\frac{1}{4} (z-4)^2 \right)^{z-2} \right\}.$$

Here $|V(\Gamma_G)| = \frac{1}{2}(n+1)z$ and $\operatorname{tr}(\operatorname{CNRS}(\Gamma_G) = \frac{1}{8}z((n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1))$. So, $\Delta(\Gamma_G) = \frac{(n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1)}{4(n+1)}$. Note that $z \geq 2$. We have

$$B_1 := \left| \frac{1}{2} (nz - z - 2)(nz - z - 4) - \Delta(\Gamma_G) \right| = \left| \frac{\left(n \left(n^2 + n - 5 \right) + 1 \right) z^2 - 6n(n+2)z + 8n + 30z + 8}{4(n+1)} \right|.$$

Let $\beta_1(n,z)=(n(n^2+n-5)+1)z^2-6n(n+2)z+8n+30z+8$. Then $\beta_1(n,z)=8+8n+30z+z^2+nz^2(n-5)+\frac{nz}{2}(n^2z-24)+\frac{n^2z}{2}(nz-12)$. Clearly for $n\geq 12$, $\beta_1(n,z)>0$, as $n^2z-24\geq 0$ and $nz-12\geq 0$. It can be seen that $\beta_1(4,z)=61z^2-114z+40\geq 0$, $\beta_1(6,z)=223z^2-258z+56\geq 0$, $\beta_1(8,z)=537z^2-450z+72\geq 0$ and $\beta_1(10,z)=1051z^2-690z+88\geq 0$. Therefore

$$B_1 = \frac{\left(n\left(n^2 + n - 5\right) + 1\right)z^2 - 6n(n+2)z + 8n + 30z + 8}{4(n+1)}.$$

We have

$$B_2 := \left| \frac{1}{4} (nz - z - 4)^2 - \Delta(\Gamma_G) \right| = \left| \frac{n((n-2)z^2 - (n+6)z + 4) + 13z + 4}{2(n+1)} \right|.$$

Let $\beta_2(n,z) = n((n-2)z^2 - (n+6)z + 4) + 13z + 4$. Then $\beta_2(n,z) = 4 + 4n + 13z + \frac{nz}{3}(nz - 18) + \frac{n^2z}{3}(z - 3) + \frac{nz^2}{3}(n-6) > 0$ for $n \ge 6$ and $z \ge 3$. It can be seen that $\beta_2(4,z) = 8z^2 - 27z + 20 = -2$ or $z \ge 3$ and $\beta_2(n,z) = 2n(n-8) + 30 = -2$ or $z \ge 0$ according as z = 2 or $z \ge 0$. Therefore

$$B_2 = \begin{cases} \frac{1}{5}, & \text{for } n = 4 \& z = 2\\ \frac{n((n-2)z^2 - (n+6)z + 4) + 13z + 4}{2(n+1)}, & \text{otherwise.} \end{cases}$$

We have

$$B_3 := \left| \frac{1}{2} (z-2)(z-4) - \Delta(\Gamma_G) \right| = \left| \frac{-\left(\left(n^3 - 3n^2 + n - 1 \right) z^2 \right) + 6(n-4)nz + 8n + 6z + 8}{4(n+1)} \right|.$$

Let $\beta_3(n,z) = -((n^3 - 3n^2 + n - 1)z^2) + 6(n - 4)nz + 8n + 6z + 8$. Then $\beta_3(n,z) = 8(1-nz) + 8n(1-z) + 2z(3-4n) + z^2(1-n) + \frac{n^2z}{2}(12-nz) + \frac{n^2z^2}{2}(6-n) < 0$ for $n \ge 12$. It can be seen that $\beta_3(4,z) = -19z^2 + 6z + 40 \le 0$, $\beta_3(6,z) = -113z^2 + 78z + 56 \le 0$, $\beta_3(8,z) = -327z^2 + 198z + 72 \le 0$ and $\beta_3(10,z) = -709z^2 + 366z + 88 \le 0$. Therefore

$$B_3 = -\frac{-\left(\left(n^3 - 3n^2 + n - 1\right)z^2\right) + 6(n - 4)nz + 8n + 6z + 8}{4(n + 1)}.$$

We have

$$B_4 := \left| \frac{1}{4} (z - 4)^2 - \Delta(\Gamma_G) \right| = \left| \frac{n(8 - z(n((n - 3)z - 6) + 2(z + 10))) + 10z + 8}{4(n + 1)} \right|.$$

Let $\beta_4(n,z) = n(8 - z(n((n-3)z-6) + 2(z+10))) + 10z + 8$. Then $\beta_4(n,z) = 8n - 10nz + 10z - 10nz + 8 - 2nz^2 + \frac{n^2z}{2}(12 - nz) + \frac{n^2z^2}{2}(6 - n) < 0$ for $n \ge 12$. It can be seen that $\beta_4(4,z) = -24z^2 + 26z + 40 \le 0$, $\beta_4(6,z) = -120z^2 + 106z + 56 \le 0$, $\beta_4(8,z) = -336z^2 + 234z + 72 \le 0$ and

 $\beta_4(10,z) = -720z^2 + 410z + 88 \le 0$. Therefore

$$B_4 = -\frac{n(8 - z(n((n-3)z - 6) + 2(z+10))) + 10z + 8}{4(n+1)}.$$

Hence, by (1.2), we get

$$LE_{CN}^{+}(\Gamma_G) = 1 \times B_1 + \frac{1}{2}(nz - z - 2) \times B_2 + 2 \times B_3 + (z - 2) \times B_4$$

$$= \begin{cases} \frac{28}{5}, & \text{for } n = 4 \& z = 2\\ \frac{3}{5}z^2(4z - 6), & \text{for } n = 4 \& z \ge 3\\ \frac{(n-2)(n-1)z^2(nz-6)}{2(n+1)}, & \text{otherwise.} \end{cases}$$

(b)(i) If n is odd, then by Theorem 2.1

$$\text{CNL-spec}(\Gamma_G) = \left\{ (0)^1, \left(\frac{(n-1)z}{2} \left(\frac{(n-1)z}{2} - 2 \right) \right)^{\frac{(n-1)z}{2} - 1}, (0)^1, (z(z-2))^{z-1} \right\}.$$

Here $|V(\Gamma_G)| = \frac{1}{2}(n+1)z$ and $\operatorname{tr}(\operatorname{CNRS}(\Gamma_G) = \frac{1}{8}z(nz+z-4)(((n-4)n+7)z-2(n+1))$. So, $\Delta(\Gamma_G) = \frac{(nz+z-4)(((n-4)n+7)z-2(n+1))}{4(n+1)}$. We have

$$L_1' := |0 - \Delta(\Gamma_G)| = \left| -\frac{(nz + z - 4)(((n-4)n + 7)z - 2(n+1))}{4(n+1)} \right|.$$

Let $\alpha_1'(n,z) = (nz+z-4)(((n-4)n+7)z-2(n+1))$. Then $\alpha_1'(n,z) = (nz+z-4)(7z-2+\frac{nz}{2}(n-8)+\frac{n}{2}(nz-4)) > 0$ for $n \ge 8$, since $z \ge 1$. Again $\alpha_1'(3,z) = 16z^2 - 48z + 32 \ge 0$, $\alpha_1'(5,z) = 72z^2 - 120z + 48 \ge 0$ and $\alpha_1'(7,z) = 12z^2 - 120z + 48 \ge 0$ $224z^2 - 240z + 64 \ge 0$, as $z \ge 1$. Therefore

$$L_1' = \frac{(nz+z-4)(((n-4)n+7)z-2(n+1))}{4(n+1)}$$

We have

$$L_2' := \left| \frac{1}{4} (nz - z)(nz - z - 4) - \Delta(\Gamma_G) \right| = \left| \frac{n^2 z^2 + n^2 z - 2nz^2 - 6nz - 4n - 3z^2 + 17z - 4}{2(n+1)} \right|.$$

Let $\alpha_2'(n,z) = n^2 z^2 + n^2 z - 2nz^2 - 6nz - 4n - 3z^2 + 17z - 4$. Then $\alpha_2'(n,z) = 17z - 4 + \frac{n}{2}(nz - 8) + \frac{nz}{2}(n-2)$ 12) $+\frac{z^2}{2}(n^2-6)+\frac{nz^2}{2}(n-4)>0$ for $n\geq 8$. It can be seen that $\alpha_2'(3,z)=8z-16=-8$ or ≥ 0 according as z=1 or $z\geq 2$; $\alpha_2'(5,z)=12z^2+12z-24\geq 0$ and $\alpha_2'(7,z)=32z^2+24z-32\geq 0$, as $z\geq 1$. Therefore

$$L_2' = \begin{cases} 1, & \text{for } n = 3 \& z = 1 \\ \frac{n^2 z^2 + n^2 z - 2nz^2 - 6nz - 4n - 3z^2 + 17z - 4}{2(n+1)}, & \text{otherwise.} \end{cases}$$

We have

$$L_3' := |z(z-2) - \Delta(\Gamma_G)| = \left| \frac{-n^3 z^2 + 3n^2 z^2 + 6n^2 z + nz^2 - 20nz - 8n - 3z^2 + 22z - 8}{4(n+1)} \right|.$$

Let $\alpha_3'(n,z) = -n^3z^2 + 3n^2z^2 + 6n^2z + nz^2 - 20nz - 8n - 3z^2 + 22z - 8$. Then $\alpha_3'(n,z) = -8 - 8n - 2z(10n - 11) - 3z^2 - \frac{n^2z}{3}(nz - 18) - \frac{nz^2}{3}(n^2 - 3) - \frac{n^2z^2}{3}(n - 9) < 0$ for $n \ge 19$. It can be seen that $\alpha_3'(3,z) = 16z - 32 = -16$ or $n \ge 0$ according as $n \ge 1$ or $n \ge 2$, $n \ge 2$, $n \ge 2$, $n \ge 2$, $n \ge 3$,

 $\alpha_3'(9,z) = -480z^2 + 328z - 80 \le 0, \ \alpha_3'(11,z) = -960z^2 + 528z - 96 \le 0, \ \alpha_3'(13,z) = -1680z^2 + 776z - 112 \le 0, \ \alpha_3'(15,z) = -2688z^2 + 1072z - 128 \le 0 \ \text{and} \ \alpha_3'(17,z) = -4032z^2 + 1416z - 144 \le 0. \ \text{Therefore}$

$$L_3' = \begin{cases} z-2, & \text{for } n=3 \,\&\, z \geq 2 \\ -\frac{-n^3z^2+3n^2z^2+6n^2z+nz^2-20nz-8n-3z^2+22z-8}{4(n+1)}, & \text{otherwise}. \end{cases}$$

Hence, by (1.1), we get

$$LE_{CN}(\Gamma_G) = 2 \times L_1' + \frac{1}{2}(nz - z - 2) \times L_2' + (z - 1) \times L_3'$$

$$= \begin{cases} 0, & \text{for } n = 3 \& z = 1 \\ 4(z - 1)(z - 2), & \text{for } n = 3 \& z \ge 2 \\ \frac{((n-1)z - 2)((n-3)(n+1)z^2 + ((n-6)n+17)z - 4(n+1))}{2(n+1)}, & \text{otherwise.} \end{cases}$$

(b)(ii) If n is odd, then by Theorem 2.1

$$\text{CNSL-spec}(\Gamma_G) = \left\{ \left(2\left(\frac{(n-1)z}{2} - 1\right) \left(\frac{(n-1)z}{2} - 2\right) \right)^1, \left(\left(\frac{(n-1)z}{2} - 2\right)^2 \right)^{\frac{(n-1)z}{2} - 1}, (2(z-1)(z-2))^1, \left((z-2)^2 \right)^{z-1} \right\}.$$

Here $|V(\Gamma_G)| = \frac{1}{2}(n+1)z$ and $\operatorname{tr}(\operatorname{CNRS}(\Gamma_G) = \frac{1}{8}z(nz+z-4)(((n-4)n+7)z-2(n+1))$. So, $\Delta(\Gamma_G) = \frac{(nz+z-4)(((n-4)n+7)z-2(n+1))}{4(n+1)}$. We have

$$B_1' := \left| \frac{1}{2} (nz - z - 2)(nz - z - 4) - \Delta(\Gamma_G) \right| = \left| \frac{n^3 z^2 + n^2 z^2 - 6n^2 z - 5nz^2 - 12nz + 8n - 5z^2 + 42z + 8}{4(n+1)} \right|.$$

Let $\beta_1'(n,z) = n^3z^2 + n^2z^2 - 6n^2z - 5nz^2 - 12nz + 8n - 5z^2 + 42z + 8$. Then $\beta_1'(n,z) = 8 + 8n + 42z + z^2(n(n-5)-5) + nz(n(nz-6)-12)$. For $n \ge 9$ we have $nz-6 \ge 3$ which gives n(nz-6)-12 > 0 and n(n-5)-5 > 0. Thus, $\beta_1'(n,z) > 0$. Again $\beta_1'(3,z) = 16z^2 - 48z + 32 \ge 0$, $\beta_1'(5,z) = 120z^2 - 168z + 48 \ge 0$ and $\beta_1'(7,z) = 352z^2 - 336z + 64 \ge 0$, as $z \ge 1$. Therefore

$$B_1' = \frac{n^3 z^2 + n^2 z^2 - 6n^2 z - 5nz^2 - 12nz + 8n - 5z^2 + 42z + 8}{4(n+1)}.$$

We have

$$B_2' := \left| \frac{1}{4} (nz - z - 4)^2 - \Delta(\Gamma_G) \right| = \left| \frac{n^2 z^2 - n^2 z - 2nz^2 - 6nz + 4n - 3z^2 + 19z + 4}{2(n+1)} \right|.$$

Let $\beta_2'(n,z) = n^2z^2 - n^2z - 2nz^2 - 6nz + 4n - 3z^2 + 19z + 4$. Then $\beta_2'(n,z) = 4 + 4n + 19z + \frac{nz}{4}(nz - 24) + \frac{n^2z}{4}(z-4) + \frac{z^2}{4}(n^2-12) + \frac{nz^2}{4}(n-8) > 0$ for $n \geq 9$ and $z \geq 5$. It can be seen that $\beta_2'(3,z) = 16 - 8z = 8$ or ≤ 0 according as z=1 or $z \geq 2$; $\beta_2'(5,z) = 12z^2 - 36z + 24 \geq 0$; $\beta_2'(7,z) = 32z^2 - 72z + 32 = -8$ or ≥ 0 according as z=1 or $z \geq 2$; $\beta_2'(n,1) = 20 - 4n \geq 0$ or < 0 according as n=1,3,5 or $n \geq 7$; $\beta_2'(n,2) = 2n(n-8) + 30 \geq 0$ for all $n \neq 2$ and $n \geq 3$ according as n=3 or $n \neq 3$. Therefore

$$B_2' = \begin{cases} z - 2, & \text{for } n = 3 \& z \ge 2\\ \frac{n^2 z^2 - n^2 z - 2nz^2 - 6nz + 4n - 3z^2 + 19z + 4}{2(n+1)}, & \text{otherwise.} \end{cases}$$

We have

$$B_3' := |2(z-1)(z-2) - \Delta(\Gamma_G)| = \left| \frac{-n^3z^2 + 3n^2z^2 + 6n^2z + 5nz^2 - 36nz + 8n + z^2 + 6z + 8}{4(n+1)} \right|.$$

Let $\beta_3'(n,z) = -n^3z^2 + 3n^2z^2 + 6n^2z + 5nz^2 - 36nz + 8n + z^2 + 6z + 8$. Then $\beta_3'(n,z) = -8nz + 8 - 8nz + 8n - 20nz + 6z - \frac{n^2z}{4}(nz - 24) - \frac{z^2}{4}(n^3 - 4) - \frac{nz^2}{4}(n^2 - 5) - \frac{n^2z^2}{4}(n - 12) < 0$ for $n \ge 25$. Again, $\beta_3'(3,z) = 16z(z - 3) + 32 \ge 0$, $\beta_3'(5,z) = -24z^2 - 24z + 48 \le 0$, $\beta_3'(7,z) = -160z^2 + 48z + 64 \le 0$, $\beta_3'(9,z) = -440z^2 + 168z + 80 \le 0$, $\beta_3'(11,z) = -912z^2 + 336z + 96 \le 0$, $\beta_3'(13,z) = -1624z^2 + 552z + 112 \le 0$, $\beta_3'(15,z) = -2624z^2 + 816z + 128 \le 0$, $\beta_3'(17,z) = -3960z^2 + 1128z + 144 \le 0$, $\beta_3'(19,z) = -5680z^2 + 1488z + 160 \le 0$, $\beta_3'(21,z) = -7832z^2 + 1896z + 176 \le 0$ and $\beta_3'(23,z) = -10464z^2 + 2352z + 192 \le 0$. Therefore,

$$B_3' = \begin{cases} z(z-3) + 2, & \text{for } n = 3 \,\&\, z \geq 1 \\ -\frac{n^3(-z^2) + 3n^2z^2 + 6n^2z + 5nz^2 - 36nz + 8n + z^2 + 6z + 8}{4(n+1)}, & \text{for } n \geq 5 \,\&\, z \geq 1. \end{cases}$$

We have

$$B_4' := \left| (z-2)^2 - \Delta(\Gamma_G) \right| = \left| \frac{-n^3 z^2 + 3n^2 z^2 + 6n^2 z + nz^2 - 28nz + 8n - 3z^2 + 14z + 8}{4(n+1)} \right|.$$

Let $\beta_4'(n,z) = -n^3z^2 + 3n^2z^2 + 6n^2z + nz^2 - 28nz + 8n - 3z^2 + 14z + 8$. Then $\beta_4'(n,z) = -8n(z-1) - 14z(n-1) + (8 - 6nz - 3z^2) - \frac{n^2z}{3}(nz - 18) - \frac{nz^2}{3}(n^2 - 3) - \frac{n^2z^2}{3}(n-9) < 0$ for $n \ge 19$. It can be seen that $\beta_4'(3,z) = 32 - 16z = 16$ or ≤ 0 according as z = 1 or $z \ge 2$; $\beta_4'(5,z) = 24z(1-2z) + 48 = 24$ or ≤ 0 according as z = 1 or $z \ge 2$; $\beta_4'(7,z) = -192z^2 + 112z + 64 \le 0$; $\beta_4'(9,z) = -480z^2 + 248z + 80 \le 0$; $\beta_4'(11,z) = -960z^2 + 432z + 96 \le 0$; $\beta_4'(13,z) = -1680z^2 + 664z + 112 \le 0$; $\beta_4'(15,z) = -2688z^2 + 944z + 128 \le 0$ and $\beta_4'(17,z) = -4032z^2 + 1272z + 144 \le 0$, as $z \ge 1$. Therefore,

$$B_4' = \begin{cases} \frac{-n^3z^2 + 3n^2z^2 + 6n^2z + nz^2 - 28nz + 8n - 3z^2 + 14z + 8}{4(n+1)}, & \text{for } n = 3, 5 \& z = 1 \\ -\frac{n^3z^2 + 3n^2z^2 + 6n^2z + nz^2 - 28nz + 8n - 3z^2 + 14z + 8}{4(n+1)}, & \text{otherwise.} \end{cases}$$

Hence, by (1.2), we get

$$LE_{CN}^{+}(\Gamma_G) = 1 \times B_1' + \frac{1}{2}(nz - z - 2) \times B_2' + 1 \times B_3' + (z - 1) \times B_4'$$

$$= \begin{cases} 0, & \text{for } n = 3 \& z = 1; \ n = 5 \& z = 1 \\ 4(z - 1)(z - 2), & \text{for } n = 3 \& z \ge 2 \\ \frac{(n - 5)(n - 3)(n + 3)}{2(n + 1)}, & \text{for } n \ge 7 \& z = 1 \\ \frac{(n - 3)(n - 1)z^2(nz + z - 6)}{2(n + 1)}, & \text{otherwise.} \end{cases}$$

Hence the result follows.

As a corollary of the above Theorem 2.3, we get the following results.

Corollary 2.2 The CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of the dihedral group D_{2n} (where $n \geq 3$) are as given below:

- (a) If n is odd then
- (i) CNL-spec($\Gamma_{D_{2n}}$) = $\{(0)^2, (\frac{1}{4}(n-1)(n-5))^{\frac{1}{2}(n-3)}\}$ and $LE_{CN}(\Gamma_{D_{2n}}) = \frac{(n-5)(n-3)(n-1)}{n+1}$.
- (ii) CNSL-spec $(\Gamma_{D_{2n}}) = \{(0)^1, (\frac{1}{2}(n-3)(n-5))^1, (\frac{1}{4}(n-5)^2)^{\frac{1}{2}(n-3)}\}$ and $LE_{CN}^+(\Gamma_{D_{2n}}) = \frac{(n-5)(n-3)(n+3)}{2(n+1)}$.
- (b) If n is even then
- (i) CNL-spec $(\Gamma_{D_{2n}}) = \{(0)^3, (\frac{1}{4}(n-2)(n-6))^{\frac{1}{2}(n-4)}\}$ and $LE_{CN}(\Gamma_{D_{2n}}) = \frac{3(n-6)(n-4)(n-2)}{2(n+2)}$.
- (ii) CNSL-spec($\Gamma_{D_{2n}}$) = $\{(0)^2, (\frac{1}{2}(n-4)(n-6))^1, (\frac{1}{4}(n-6)^2)^{\frac{1}{4}(n-4)}\}$ and

$$LE_{CN}^{+}(\Gamma_{D_{2n}}) = \begin{cases} \frac{28}{5}, & \text{for } n = 8\\ \frac{(n-6)(n-4)(n-2)}{n+2}, & \text{for } n \neq 8. \end{cases}$$

Proof: We know that $\frac{D_{2n}}{Z(D_{2n})} \cong D_{2 \times \frac{n}{2}}$ or D_{2n} according as n is even or odd. Therefore, by Theorem 2.3, we get the required result.

Corollary 2.3 The CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of the dicyclic group T_{4n} (where $n \geq 2$) are as given below:

- (a) CNL-spec $(\Gamma_{T_{4n}}) = \{(0)^3, ((n-1)(n-3))^{n-2}\}\ and\ LE_{CN}(\Gamma_{T_{4n}}) = \frac{6(n-3)(n-2)(n-1)}{n+1}.$
- (b) CNSL-spec $(\Gamma_{T_{4n}}) = \{(0)^2, (2(n-2)(n-3))^1, ((n-3)^2)^{n-2}\}$ and

$$LE_{CN}^{+}(\Gamma_{T_{4n}}) = \begin{cases} \frac{28}{5}, & \text{for } n = 4\\ \frac{4(n-3)(n-2)(n-1)}{n+1}, & \text{for } n \neq 4. \end{cases}$$

Proof: We know that $\frac{T_{4n}}{Z(T_{4n})} \cong D_{2n}$. Therefore, by Theorem 2.2 (for the case n=2) and Theorem 2.3, we get the required result.

Corollary 2.4 The CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of the group $U_{6n} = \langle x, y : x^{2n} = y^3 = 1, x^{-1}yx = y^{-1} \rangle$ (where $n \geq 2$) are as given below:

(a) CNL-spec
$$(\Gamma_{U_{6n}}) = \{(0)^2, (n(n-2))^{2(n-1)}\}\ and\ LE_{CN}(\Gamma_{U_{6n}}) = 4(n-2)(n-1).$$

(b) CNSL-spec
$$(\Gamma_{U_{6n}}) = \{(2(n-1)(n-2))^2, ((n-2)^2)^{2(n-1)}\}\ and\ LE_{CN}^+(\Gamma_{U_{6n}}) = 4(n-2)(n-1).$$

Proof: We know that $\frac{U_{6n}}{Z(U_{6n})} = D_{2\times 3}$. Therefore, by Theorem 2.3, we get the required result.

Corollary 2.5 The CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of the group $U_{(n,m)}$ (where m > 2 and $n \ge 2$) are as given below:

(a) If m is odd then

(i) CNL-spec
$$(\Gamma_{U_{(n,m)}}) = \left\{ (0)^2, (n(n-2))^{n-1}, \left(\frac{1}{4}(nm-n)(nm-n-4)\right)^{\frac{1}{2}(nm-n-2)} \right\}$$
 and

$$LE_{CN}(\Gamma_{U_{(n,m)}}) = \begin{cases} 4(n-1)(n-2), & \text{for } m = 3 \& n \ge 2\\ \frac{((m-1)n-2)\left((m-3)(m+1)n^2 + ((m-6)m+17)n - 4(m+1)\right)}{2(m+1)}, & \text{otherwise.} \end{cases}$$

(ii) CNSL-spec
$$(\Gamma_{U_{(n,m)}}) =$$

$$\left\{ (2(n-1)(n-2))^1, ((n-2)^2)^{n-1}, \left(\frac{1}{2}(nm-n-2)(nm-n-4)\right)^1, \left(\frac{1}{4}(nm-n-4)^2\right)^{\frac{1}{2}(nm-n-2)} \right\} \ and \ n = 2(nm-n-2)^{\frac{1}{2}(nm-n-2)}$$

$$LE_{CN}^{+}(\Gamma_{U_{(n,m)}}) = \begin{cases} 4(n-1)(n-2), & \text{for } m = 3 \& n \geq 2\\ \frac{(m-3)(m-1)n^2(mn+n-6)}{2(m+1)}, & \text{otherwise.} \end{cases}$$

(b) If m and $\frac{m}{2}$ are even then

(i) CNL-spec
$$(\Gamma_{U_{(n,m)}}) = \left\{ (0)^3, \left(\frac{1}{4}(m-2)n((m-2)n-4)\right)^{\frac{1}{2}(mn-2n-2)}, ((n-2)n)^{2(n-1)} \right\}$$
 and

$$LE_{CN}(\Gamma_{U_{(n,m)}}) = \begin{cases} 6(n-1)(n-2), & \text{for } m = 4 \& n \ge 2\\ \frac{((m-2)n-2)\left(m^2n(2n+1)-4m\left(2n^2+3n+1\right)+44n-8\right)}{2(m+2)}, & \text{otherwise.} \end{cases}$$

(ii) CNSL-spec
$$(\Gamma_{U_{(n,m)}}) = \left\{ \left(\frac{1}{2}(mn-2n-4)(mn-2n-2)\right)^1, \left(\frac{1}{4}(mn-2n-4)^2\right)^{\frac{1}{2}(mn-2n-2)}, (2(n-2)(n-1))^2, ((n-2)^2)^{2(n-1)} \right\} \text{ and } \right\}$$

$$LE^+_{CN}(\Gamma_{U_{(n,m)}}) = \begin{cases} 6(n-1)(n-2), & \textit{for } m=4 \ \& \ n \geq 2 \\ \frac{24}{5}n^2(4n-3), & \textit{for } m=8 \ \& \ n \geq 2 \\ \frac{(m-4)(m-2)n^2(mn-6)}{m+2}, & \textit{otherwise}. \end{cases}$$

(c) If m is even and $\frac{m}{2}$ is odd then

(i) CNL-spec
$$(\Gamma_{U_{(n,m)}}) = \left\{ (0)^2, \left(\frac{1}{4}(mn - 2n - 4)(mn - 2n) \right)^{\frac{1}{2}(mn - 2n - 2)}, (4(n-1)n)^{2n-1} \right\}$$
 and

$$LE_{CN}(\Gamma_{U_{(n,m)}}) = \begin{cases} 8(n-1)(2n-1), & \text{for } m = 6 \& n \ge 2\\ \frac{((m-2)n-2)\left(m^2n(2n+1)-4m\left(2n^2+3n+1\right)-24n^2+68n-8\right)}{2(m+2)}, & \text{otherwise.} \end{cases}$$

(ii) CNSL-spec
$$(\Gamma_{U_{(n,m)}}) = \left\{ \left(\frac{1}{2} (mn - 2n - 4)(mn - 2n - 2) \right)^1, \left(\frac{1}{4} (mn - 2n - 4)^2 \right)^{\frac{1}{2} (mn - 2n - 2)} (4(n-1)(2n-1))^1, (4(n-1)^2)^{2n-1} \right\}$$
 and

$$LE_{CN}^{+}(\Gamma_{U_{(n,m)}}) = \begin{cases} 8(n-1)(2n-1), & \text{for } m=6 \& n \ge 2\\ \frac{(m-6)(m-2)n^2((m+2)n-6)}{m+2}, & \text{otherwise.} \end{cases}$$

Proof: We know that $\frac{U_{(n,m)}}{Z(U_{(n,m)})}$ is isomorphic to $D_{2\times\frac{m}{2}}$ or D_{2m} according as m is even or odd. Therefore, by Theorem 2.3, we get the required result.

Corollary 2.6 The CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of the group SD_{8n} (where $n \geq 2$) are as given below:

- (a) If n is even then
- (i) CNL-spec $(\Gamma_{SD_{8n}}) = \{(0)^3, ((2n-1)(2n-3))^{2n-2}\}$ and $LE_{CN}(\Gamma_{SD_{8n}}) = \frac{12(n-1)(4(n-2)n+3)}{2n+1}$.
- (ii) CNSL-spec $(\Gamma_{SD_{8n}}) = \{(0)^2, (2(2n-2)(2n-3))^1, ((2n-3)^2)^{2n-2}\}$ and

$$LE_{CN}^{+}(\Gamma_{SD_{8n}}) = \begin{cases} \frac{28}{5}, & for \ n = 2\\ \frac{8(n-1)(2n-3)(2n-1)}{2n+1}, & for \ n \ge 4. \end{cases}$$

- (b) If n is odd then
- (i) CNL-spec $(\Gamma_{SD_{8n}}) = \{(0)^2, (8)^3, ((2n-2)(2n-4))^{2n-3}\}$ and

$$LE_{CN}(\Gamma_{SD_{8n}}) = \begin{cases} 24, & for \ n = 3\\ \frac{4(2n-3)(5(n-3)n+4)}{n+1}, & for \ n \ge 5. \end{cases}$$

(ii) CNSL-spec $(\Gamma_{SD_{8n}}) = \{(2(2n-3)(2n-4))^1, ((2n-4)^2)^{2n-3}, 12^1, 4^3\}$ and

$$LE_{CN}^{+}(\Gamma_{SD_{8n}}) = \begin{cases} 24, & for \ n = 3\\ \frac{16(n-3)(n-1)(2n-1)}{n+1}, & for \ n \ge 5. \end{cases}$$

Proof: We know that $\frac{SD_{8n}}{Z(SD_{8n})}$ is isomorphic to $D_{2\times 2n}$ or D_{2n} according as n is even or odd. Therefore, by Theorem 2.3, we get the required result.

Corollary 2.7 The CNL-spectrum, CNSL-spectrum, CNL-energy and CNSL-energy of CCC-graph of the group V_{8n} (where $n \ge 2$) are as given below:

- (a) If n is even then
- (i) CNL-spec $(\Gamma_{V_{8n}}) = \{(0)^5, ((2n-2)(2n-4))^{2n-3}\}$ and $LE_{CN}(\Gamma_{V_{8n}}) = \frac{20(n-2)(n-1)(2n-3)}{n+1}$.
- (ii) CNSL-spec($\Gamma_{V_{8n}}$) = $\{(0)^4, (2(2n-3)(2n-4))^1, ((2n-4)^2)^{2n-3}\}$ and

$$LE_{CN}^+(\Gamma_{V_{8n}}) = \frac{16(n-2)(n-1)(2n-3)}{n+1}.$$

- (b) If n is odd then
- (i) CNL-spec($\Gamma_{V_{8n}}$) = $\{(0)^3, ((2n-1)(2n-3))^{2n-2}\}$ and $LE_{CN}(\Gamma_{V_{8n}}) = \frac{12(n-1)(4(n-2)n+3)}{2n+1}$.
- (ii) CNSL-spec($\Gamma_{V_{8n}}$) = $\{(0)^2, (2(2n-2)(2n-3))^1, ((2n-3)^2)^{2n-2}\}$ and

$$LE_{CN}^+(\Gamma_{V_{8n}}) = \frac{8(n-1)(2n-3)(2n-1)}{2n+1}.$$

Proof: (a) If n is even then, by [35, Proposition 2.4], we have $\Gamma_{V_{8n}} = K_{2n-2} \cup 2K_2$. (i) By Theorem 2.1, we get

(1) By Theorem 2.1, we get

CNL-spec(
$$\Gamma_{V_{8n}}$$
) = { $(0)^5$, $((2n-2)(2n-4))^{2n-3}$ }.

Here $|V(\Gamma_{V_{8n}})| = 2(n+1)$ and $\operatorname{tr}(\operatorname{CNRS}(\Gamma_{V_{8n}})) = 4(n-2)(n-1)(2n-3)$. So, $\Delta(\Gamma_{V_{8n}}) = \frac{2(n-2)(n-1)(2n-3)}{n+1}$. We have

$$L_1 := |0 - \Delta(\Gamma_{V_{8n}})| = \left| -\frac{2(n-2)(n-1)(2n-3)}{n+1} \right| = \frac{2(n-2)(n-1)(2n-3)}{n+1},$$

since -2(n-2)(n-1)(2n-3) < 0, as $n \ge 2$, so 2n-3 > 0, $n-2 \ge 0$ and n-1 > 0. Also

$$L_2 := |(2n-2)(2n-4) - \Delta(\Gamma_{V_{8n}})| = \left| \frac{10(n-2)(n-1)}{n+1} \right| = \frac{10(n-2)(n-1)}{n+1}, \text{ as } n \ge 2.$$

Therefore, by (1.1), we get

$$LE_{CN}(\Gamma_{V_{8n}}) = 5 \times L_1 + (2n-3) \times L_2 = \frac{20(n-2)(n-1)(2n-3)}{n+1}$$

(ii) By Theorem 2.1, we get

$$CNSL\text{-spec}(\Gamma_{V_{8n}}) = \{(0)^4, (2(2n-3)(2n-4))^1, ((2n-4)^2)^{2n-3}\}.$$

We have

$$B_1 := |0 - \Delta(\Gamma_{V_{s_n}})| = L_1,$$

$$B_2 := |2(2n-3)(2n-4) - \Delta(\Gamma_{V_{8n}})| = \left|\frac{2(n-2)(n+3)(2n-3)}{n+1}\right| = \frac{2(n-2)(n+3)(2n-3)}{n+1}, \text{ as } n \ge 2,$$

and

$$B_3 := \left| (2n-4)^2 - \Delta(\Gamma_{V_{8n}}) \right| = \left| \frac{2(n-2)(3n-7)}{n+1} \right| = \frac{2(n-2)(3n-7)}{n+1},$$

as $n \geq 2$, so $2(n-2)(3n-7) \geq 0$. Therefore, by (1.2), we get

$$LE_{CN}^+(\Gamma_{V_{8n}}) = 4 \times B_1 + 1 \times B_2 + (2n-3) \times B_3 = \frac{16(n-2)(n-1)(2n-3)}{n+1}.$$

(b) If n is odd then, [35, Proposition 2.4], we have $\Gamma_{V_{8n}} = K_{2n-1} \cup 2K_1 = \Gamma_{D_2 \times 4n}$. Hence, the result follows from Corollary 2.2.

3. Some consequences

In this section, we discuss some consequences of the results obtained in Section 2. Looking at the CNL-spectrum and CNSL-spectrum of CCC-graphs of the groups considered in Section 2, we get the following result.

Theorem 3.1 Let G be a finite non-abelian group with center Z(G). Then the CCC-graph of G is (CNSL) CNL-integral if

- (a) $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$.
- (b) $\frac{G}{Z(G)} \cong D_{2n}$.
- (c) G is isomorphic to D_{2n} , T_{4n} , U_{6n} , $U_{(n,m)}$, SD_{8n} and V_{8n} .

Now we shall determine whether CCC-graphs of these groups are (CNSL) CNL-hyperenergetic.

Theorem 3.2 Let G be a finite non-abelian group and $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Then the CCC-graph of G is not (CNSL) CNL-hyperenergetic.

Proof: Let |Z(G)| = z. Then $z \ge 2$ and $|V(\Gamma_G)| = \frac{(p^2 - 1)z}{p}$. By Theorem 2.2 and (1.3)

$$LE_{CN}(K_{|V(\Gamma_G)|}) - LE_{CN}(\Gamma_G) = \begin{cases} \frac{4((p-2)p(2p^2+p-2)+4)}{p^2}, & \text{for } p \ge 2 \& z = 2\\ 16, & \text{for } p = 2 \& z = 3\\ \frac{2p^3z^2 - 2p^2z^2 - 4p^2 - 2pz^2 + 2z^2}{p}, & \text{otherwise.} \end{cases}$$

Let $f_1(p) = 4 ((p-2)p (2p^2 + p - 2) + 4)$ and $f_2(p,z) = 2p^3z^2 - 2p^2z^2 - 4p^2 - 2pz^2 + 2z^2$, where $z \ge 3$. Then $f_1(p) > 0$. Also, $f_2(p,z) = \frac{2}{3}(p-3)p^2z^2 + \frac{2}{3}p^2 (pz^2 - 6) + \frac{2}{3}(p^2 - 3)pz^2 + 2z^2 > 0$ for $p \ge 3$. For p=2 we have $f_2(p,z) = 6z^2 - 16 > 0$. Hence, $LE_{CN}(K_{|V(\Gamma_G)|}) - LE_{CN}(\Gamma_G) > 0$. By Theorem 2.2, we also have $LE_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G)$. Therefore, $LE_{CN}^+(\Gamma_G) - LE_{CN}^+(K_{|V(\Gamma_G)|}) > 0$. Hence the result follows.

An immediate corollary of the above theorem is given below.

Corollary 3.1 Let G be a non-abelian group of order p^n and center $|Z(G)| = p^{n-2}$. Then CCC-graph of G is not (CNSL) CNL-hyperenergetic.

Theorem 3.3 Let G be a finite non-abelian group and $\frac{G}{Z(G)} \cong D_{2n}$ (where $n \geq 3$). Then the CCC-graph of G is

- (a) CNL-borderenergetic if n = 3, 11 & z = 1.
- (b) CNL-hyperenergetic except for n=4,6 & $z=2;\ n=4$ & $z=3;\ n=4$ & $z=4;\ n=3$ & $z\geq 2;\ n=5,7,9$ & z=1 and n=5 & z=2,3.
- (c) CNSL-borderenergetic for n = 3 & z = 1.
- (d) CNSL-hyperenergetic except for n=4 & z=2,3,4,5; n=6,8 & z=2; n=6 & z=3; n=5 & z=1; n=3 & $z\geq 2;$ $n\geq 7$ (n is odd) & z=1; n=5,7,9 & z=2 and n=5 & z=3,4.

Proof: We have

$$|V(\Gamma_G)| = \begin{cases} \frac{1}{2}(n+1)z, & \text{for } n \text{ is even} \\ \frac{1}{2}(n+1)z, & \text{for } n \text{ is odd.} \end{cases}$$

Case 1: n is even

In this case $z \geq 2$. By Theorem 2.3 and (1.3), we have

$$LE_{CN}(K_{|V(\Gamma_G)|}) - LE_{CN}(\Gamma_G) = \frac{-n^3z^3 + 3n^2z^3 + 12n^2z^2 - 2nz^3 - 18nz^2 - 24nz + 12z^2 + 12z}{2(n+1)}$$

Let $f_1(n,z) = -n^3z^3 + 3n^2z^3 + 12n^2z^2 - 2nz^3 - 18nz^2 - 24nz + 12z^2 + 12z$. Then $f_1(n,z) = \frac{1}{2}n^2z^3(6-n) + \frac{1}{2}n^2z^2(24-nz) - 2nz^3 + 6z^2(2-3n) + 12z(1-2n) < 0$ for $n \ge 6$ and $z \ge 4$. We have $f_1(n,2) = 8n^2(9-n) + 72 - 136n < 0$ for $n \ge 10$. Also $f_1(4,2) = 168$, $f_1(6,2) = 120$ and $f_1(8,2) = -504$. Therefore, $f_1(n,2) > 0$ or $f_1(n,2) > 0$ or $f_2(n,2) = 120$ and $f_2(n,3) = 120$ and $f_3(n,3) = 120$ and $f_3(n,3$

Also $f_1(4,3) = 288$ and $f_1(6,3) = -612$. Therefore, $f_1(4,3) > 0$ or < 0 according as n = 4 or $n \ge 6$. Now we need to check for n = 4 and $z \ge 4$. We have $f_1(4,z) = 12z^2(11-2z) - 84z < 0$ for $z \ge 6$. Also $f_1(4,4) = 240$ and $f_1(4,5) = -120$. Therefore, $f_1(4,z) > 0$ or < 0 according as z = 4 or $z \ge 5$. Hence, $LE_{CN}(K_{|V(\Gamma_G)|}) - LE_{CN}(\Gamma_G) > 0$ for n = 4,6 & z = 2 and n = 4 & z = 3,4. Otherwise, $LE_{CN}(K_{|V(\Gamma_G)|}) - LE_{CN}(\Gamma_G) < 0$.

By Theorem 2.3 and (1.3), we also have

$$LE_{CN}^{+}(K_{|V(\Gamma_G)|}) - LE_{CN}^{+}(\Gamma_G) = \begin{cases} \frac{92}{5}, & \text{for } n = 4 \& z = 2\\ \frac{1}{10}z\left(-24z^2 + 161z - 150\right) + 4, & \text{for } n = 4 \& z \geq 3\\ \frac{-n^3z^3 + n^3z^2 + 3n^2z^3 + 9n^2z^2 - 6n^2z - 2nz^3 - 15nz^2 - 12nz + 8n + 13z^2 - 6z + 8}{2(n+1)}, & \text{otherwise.} \end{cases}$$

Let $f_2(z) = \frac{1}{10}z \left(-24z^2 + 161z - 150\right) + 4$ and $f_3(n,z) = -n^3z^3 + n^3z^2 + 3n^2z^3 + 9n^2z^2 - 6n^2z - 2nz^3 - 15nz^2 - 12nz + 8n + 13z^2 - 6z + 8$. Then $f_2(z) = \frac{1}{10}z \left(z \left(161 - 24z\right) - 150\right) + 4 > 0$ or < 0 according as z = 3, 4, 5 or $z \ge 6$. Also, $f_3(n,z) = \frac{1}{3}n^3(3-z)z^2 + \frac{1}{3}(9-n)n^2z^3 + \frac{1}{3}n^2z^2(27-nz) - 6n^2z + z^2(13-2nz) + \left(8n - 15nz^2\right) + \left(8-12nz\right) - 6z < 0$ for $n \ge 10$ and $z \ge 3$.

We have $f_3(n,2) = 4n^2(12-n) + 48 - 92n < 0$ for $n \ge 12$. Also, $f_3(6,2) = 360$, $f_3(8,2) = 336$ and $f_3(10,2) = -72$. Therefore, $f_3(n,2) > 0$ or < 0 according as n = 6, 8 or $n \ge 10$.

We have $f_3(6,z) = z^2(463-120z)-294z+56 < 0$ for $z \ge 4$. Also, $f_3(6,3) = 101$. Therefore, $f_3(6,z) > 0$ or < 0 according as z = 3 or $z \ge 4$. We have $f_3(8,z) = z^2(981-336z)-486z+72 < 0$ for $z \ge 3$. Therefore, $f_3(n,z) > 0$ if n = 6, 8 & z = 2 and n = 6 & z = 3. Otherwise, $f_3(n,z) < 0$. Hence, $LE_{CN}^+(K_{|V(\Gamma_G)|}) - LE_{CN}^+(\Gamma_G) > 0$ if n = 4 & z = 2, 3, 4, 5; n = 6, 8 & z = 2 and n = 6 & z = 3. Otherwise, $LE_{CN}^+(K_{|V(\Gamma_G)|}) - LE_{CN}^+(\Gamma_G) < 0$.

Case 2: n is odd

By Theorem 2.3 and (1.3), we have

$$LE_{CN}\big(K_{|V(\Gamma_G)|}\big) - LE_{CN}\big(\Gamma_G\big) = \begin{cases} 0, & \text{for } n = 3 \,\&\, z = 1 \\ 4z^2 - 4, & \text{for } n = 3 \,\&\, z \geq 2 \\ \frac{24z - 24nz + 12z^2 - 24nz^2 + 12n^2z^2 - 3z^3 + nz^3 + 3n^2z^3 - n^3z^3}{2(n+1)}, & \text{otherwise.} \end{cases}$$

Clearly $4z^2-4>0$ for $z\geq 2$. Let $f_4(n,z)=24z-24nz+12z^2-24nz^2+12n^2z^2-3z^3+nz^3+3n^2z^3-n^3z^3$. Then $f_4(n,z)=\frac{1}{3}n^2z^3(9-n)+\frac{1}{3}nz^3(3-n^2)+\frac{1}{3}n^2z^2(36-nz)-3z^3+12z^2(1-2n)+24z(1-n)<0$ for $n\geq 9$ and $z\geq 4$. We have $f_4(n,1)=n^2(15-n)+33-47n<0$ for $n\geq 15$. Also, $f_4(5,1)=48$, $f_4(7,1)=96$, $f_4(9,1)=96$, $f_4(11,1)=0$ and $f_4(13,1)=-240$. Therefore

$$f_4(n,1) \begin{cases} = 0, & \text{for } n = 11 \\ > 0, & \text{for } n = 5,7,9 \\ < 0, & \text{for } n \ge 13. \end{cases}$$

We have $f_4(n,2) = 8n^2(9-n)+72-136n < 0$ for $n \ge 9$, $f_4(5,2) = 192$ and $f_4(7,2) = -96$. Therefore, $f_4(n,2) > 0$ or < 0 according as n = 5 or $n \ge 7$.

We have $f_4(n,3) = 27n^2(7-n) + 99 - 261n < 0$ for $n \ge 7$ and $f_4(5,3) = 144$. Therefore, $f_4(n,3) > 0$ or < 0 according as n = 5 or $n \ge 7$.

Again, we have $f_4(5,z) = 48z^2(4-z) - 96z < 0$ and $f_4(7,z) = 48z^2(9-4z) - 144z < 0$ for $z \ge 4$. Therefore

$$f_4(n,z) \begin{cases} = 0, & \text{for } n = 11 \& z = 1 \\ > 0, & \text{for } n = 5, 7, 9 \& z = 1; n = 5 \& z = 3 \\ < 0, & \text{otherwise.} \end{cases}$$

Hence

$$LE_{CN}(K_{|V(\Gamma_G)|}) - LE_{CN}(\Gamma_G) \begin{cases} = 0, & \text{for } n = 3, 11 \& z = 1 \\ > 0, & \text{for } n = 3 \& z \ge 2; \\ n = 5, 7, 9 \& z = 1; & n = 5 \& z = 2, 3 \\ < 0, & \text{otherwise.} \end{cases}$$

By Theorem 2.3 and (1.3), we also have

$$LE_{CN}^{+}(K_{|V(\Gamma_G)|}) - LE_{CN}^{+}(\Gamma_G) = \begin{cases} 0, & \text{for } n = 3 \& z = 1 \\ 4, & \text{for } n = 5 \& z = 1 \\ 4(z^2 - 1), & \text{for } n = 3 \& z \geq 2 \\ \frac{n^2 + 4n - 21}{n + 1}, & \text{for } n \geq 7 \& z = 1 \\ \frac{-n^3 z^3 + n^3 z^2 + 3n^2 z^3 + 9n^2 z^2 - 6n^2 z + nz^3 - 21nz^2 - 12nz + 8n - 3z^3 + 19z^2 - 6z + 8}{2(n + 1)}, & \text{otherwise.} \end{cases}$$

Clearly $4(z^2-1) > 0$ for $z \ge 2$ and $n^2 + 4n - 21 > 0$ for $n \ge 7$. Let $f_5(n,z) = -n^3z^3 + n^3z^2 + 3n^2z^3 + 9n^2z^2 - 6n^2z + nz^3 - 21nz^2 - 12nz + 8n - 3z^3 + 19z^2 - 6z + 8$. Then $f_5(n,z) = \frac{1}{4}n^3z^2(4-z) + \frac{1}{4}n^2z^3(12-n) + \frac{1}{4}n^2z^2(36-nz) + \frac{1}{4}nz^3(4-n^2) - 21nz^2 + (8n-12nz) - 6n^2z + z^2(19-3z) + (8-6z) < 0$ for $n \ge 13$ and $z \ge 7$. We have $f_5(n,2) = 4n^2(12-n) + 48 - 92n < 0$ for $n \ge 13$. Again $f_5(5,2) = 288$, $f_5(7,2) = 384$, $f_5(9,2) = 192$ and $f_5(11,2) = -480$. Therefore, $f_5(n,2) > 0$ or $f_5(n,2) = 0$ according as $f_5(n,2) = 0$.

We have $f_5(n,3) = 18n^2(8-n) + 80 - 190n < 0$ for $n \ge 9$. Again, $f_5(5,3) = 480$ and $f_5(7,3) = -368$. Therefore, $f_5(n,3) > 0$ or < 0 according as n = 5 or $n \ge 7$. We have $f_5(n,4) = 24n^2(13-2n) + 96 - 312n < 0$ for $n \ge 7$. Also, $f_5(5,4) = 336$. Therefore, $f_5(n,4) > 0$ or < 0 according as n = 5 or $n \ge 7$. We have $f_5(n,5) = 10n^2(57-10n) + 78 - 452n < 0$ for $n \ge 7$. Also, $f_5(5,5) = -432$. Therefore, $f_5(n,5) < 0$. We have $f_5(n,6) = 36n^2(26-5n) + 8 - 604n < 0$ for $n \ge 7$. Also, $f_5(5,6) = -2112$. Therefore, $f_5(n,6) < 0$.

Now we shall check for n = 5, 7, 9, 11 and $z \ge 7$. We have $f_5(5, z) = 24z^2(11 - 2z) + 48 - 216z < 0$, $f_5(7, z) = 16z^2(41 - 12z) + 64 - 384z < 0$, $f_5(9, z) = 8z^2(161 - 60z) + 80 - 600z < 0$ and $f_5(11, z) = 96z^2(23 - 10z) + 96 - 864z < 0$, as $z \ge 7$. Thus, $f_5(n, z) > 0$ if n = 5, 7, 9 & z = 2 and n = 5 & z = 3, 4. Otherwise, $f_5(n, z) < 0$.

Hence

$$LE_{CN}^{+}(K_{|V(\Gamma_G)|}) - LE_{CN}^{+}(\Gamma_G) = \begin{cases} = 0, & \text{for } n = 3 \& z = 1 \\ > 0, & \text{for } n = 5 \& z = 1; \ n = 3 \& z \ge 2; \\ n \ge 7 \& z = 1; \ n = 5, 7, 9 \& z = 2; \ n = 5 \& z = 3, 4 \\ < 0, & \text{otherwise.} \end{cases}$$

Hence the result follows. \Box

As a corollary of the above theorem we get the following results.

Corollary 3.2 The CCC-graph of U_{6n} $(n \ge 2)$ is not (CNSL) CNL-hyperenergetic.

Corollary 3.3 Let $G = D_{2n}, T_{4n}, U_{6n}, SD_{8n} \text{ or } U_{(n,m)}$. Then

- (a) Γ_G is CNL-borderenergetic if and only if $G = D_6$ and D_{22} .
- (b) Γ_G is CNL-hyperenergetic if and only if $G = D_{2n}$ for $n \geq 13$; T_{4n} for $n \geq 7$; SD_{8n} for $n \geq 4$ and $U_{(n,m)}$ except for $m = 3 \& n \geq 2$, m = 5 & n = 2, 3, $m = 4 \& n \geq 2$, m = 8 & n = 2 and $m = 6 \& n \geq 2$.
- (c) Γ_G is CNSL-borderenergetic if and only if $G = D_6$.
- (d) Γ_G is CNSL-hyperenergetic if and only if $G = D_{2n}$ for n is even and $n \geq 20$; T_{4n} for $n \geq 10$; SD_{8n} for $n \geq 6$ and $U_{(n,m)}$ except for $m = 3 \& n \geq 2$, m = 5, 7, 9 & n = 2, m = 5 & n = 3, 4, $m = 4 \& n \geq 2$, m = 8 & n = 2, $m = 6 \& n \geq 2$ and m = 10 & n = 2.

Corollary 3.4 The CCC-graph of V_{8n} $(n \ge 2)$ is CNL-hyperenergetic for $n \ge 6$ and CNSL-hyperenergetic for $n \ge 4$.

Proof: Case 1: n is even

We have $|V(\Gamma_{V_{8n}})| = (2n+2)$. By Corollary 2.7 and (1.3), we get

$$LE_{CN}(K_{|V(\Gamma_{V_{8n}})|}) - LE_{CN}(\Gamma_{V_{8n}}) = \frac{120 - 32(n-4)(n-2)n}{n+1} \begin{cases} > 0, & \text{for } 2 \le n \le 4 \\ < 0, & \text{for } n \ge 6. \end{cases}$$

$$6(n-1)(n(5n-19) + 16) \begin{cases} > 0, & \text{for } n = 2 \end{cases}$$

$$LE_{CN}^{+}(K_{|V(\Gamma_{V_{8n}})|}) - LE_{CN}^{+}(\Gamma_{V_{8n}}) = -\frac{6(n-1)(n(5n-19)+16)}{n+1} \begin{cases} > 0, & \text{for } n=2\\ < 0, & \text{for } n \geq 4. \end{cases}$$

Thus, $\Gamma_{V_{8n}}$ is not CNL-hyperenergetic if n=2,4 and $\Gamma_{V_{8n}}$ is CNL-hyperenergetic if $n\geq 6$. Also, it is not CNSL-hyperenergetic if n=2 and $\Gamma_{V_{8n}}$ is CNSL-hyperenergetic if $n\geq 4$.

Case 2: n is odd

We have $\Gamma_{V_{8n}} = K_{2n-1} \cup 2K_1 = \Gamma_{D_{2\times 4n}}$. Then, by Corollary 3.3, we have that $\Gamma_{V_{8n}}$ is CNL-hyperenergetic if $n \geq 4$ and CNSL-hyperenergetic if $n \geq 5$. Hence, the result follows.

3.1. Comparing various CN-energies

In this subsection, we compare various CN-energies of CCC-graphs of the groups considered in Section 2.

Theorem 3.4 Let G be a finite group such that $|Z(G)| = z \ge 2$ and $\frac{G}{Z(G)} \cong \mathbb{Z}_p \times \mathbb{Z}_p$. If p = 2 & z = 3 or $p \ge 3 \& z = 2$ then $E_{CN}(\Gamma_G) < LE_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G)$. For all other cases, $E_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G)$.

Proof: In view of Theorem 2.2, it is sufficient to compare $E_{CN}(\Gamma_G)$ and $LE_{CN}(\Gamma_G)$. By Theorem 2.2 and [28, Theorem 2.9], we have

$$LE_{CN}(\Gamma_G) - E_{CN}(\Gamma_G) = \begin{cases} 3, & \text{for } p = 2 \& z = 3\\ \frac{8(p-2)(p+1)}{p^2}, & \text{for } p \ge 2 \& z = 2\\ 0, & \text{otherwise.} \end{cases}$$

Clearly, 8(p-2)(p+1)=0 or >0 according as p=2 or p>2. Hence, the result follows.

As a corollary to Theorem 3.4 we have the following result.

Corollary 3.5 Let G be a non-abelian p-group of order p^n and $|Z(G)| = p^{n-2}$, where p is a prime and $n \geq 3$. Then $E_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G)$.

Theorem 3.5 Let G be a finite group and $\frac{G}{Z(G)} \cong D_{2n}$ $(n \geq 3)$. If $n = 3 \& z \geq 1$ or n = 5 & z = 1 (where |Z(G)| = z) then $E_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G)$. For all other cases, $E_{CN}(\Gamma_G) < LE_{CN}(\Gamma_G) < LE_{CN}(\Gamma_G)$.

Proof: Case 1: n is even

In this case $z \geq 2$. By Theorem 2.3 and [28, Theorem 2.14], we have

$$LE_{CN}^+(\Gamma_G) - E_{CN}(\Gamma_G) = \begin{cases} \frac{8}{5}, & \text{for } n = 4 \& z = 2\\ \frac{z^2(24z - 91) + 150z - 120}{10}, & \text{for } n = 4 \& z \geq 3\\ \frac{(n-2)(n-1)nz^3 - (n(n(n+5) - 17) + 15)z^2 + 6(n+1)^2z - 24(n+1)}{2(n+1)}, & \text{otherwise.} \end{cases}$$

Let $f_1(z)=z^2(24z-91)+150z-120$ and $f_2(n,z)=(n-2)(n-1)nz^3-(n(n(n+5)-17)+15)z^2+6(n+1)^2z-24(n+1)$. Then $f_1(z)>0$ for $z\geq 4$. Also, $f_1(3)=\frac{159}{10}$. Therefore, $f_1(z)>0$ for $z\geq 3$. It can be seen that $f_2(n,z)=\frac{1}{3}n^3(z-3)z^2+\frac{1}{3}(n-9)n^2z^3+\frac{1}{3}n^2z^2(nz-15)+6\left(n^2z-4\right)+2nz^3+(17n-15)z^2+12n(z-2)+6z>0$ for $n\geq 10$ and $z\geq 3$. Also, $f_2(n,2)=4(n-2)(n-3)^2>0$ for $n\geq 6$. We have $f_2(6,z)=z^2(120z-309)+294z-168>0$ and $f_2(8,z)=z^2(336z-711)+486z-216>0$ for $z\geq 3$. Therefore, $f_2(n,z)>0$ for $n\geq 6$ and $z\geq 2$. Hence

$$LE_{CN}^+(\Gamma_G) - E_{CN}(\Gamma_G) > 0.$$

Again

$$LE_{CN}^{+}(\Gamma_G) - LE_{CN}(\Gamma_G) = \begin{cases} -\frac{8}{5}, & \text{for } n = 4 \& z = 2\\ \frac{-z(29z - 66) - 40}{10}, & \text{for } n = 4 \& z \geq 3\\ -\frac{(n((n-3)n+3)+1)z^2 - 6((n-2)n+3)z + 8(n+1)}{2(n+1)}, & \text{otherwise.} \end{cases}$$

Clearly, -z(29z-66)-40 < 0 for $z \ge 3$. Let $f_3(n,z) = -((n((n-3)n+3)+1)z^2-6((n-2)n+3)z+8(n+1))$. Then $f_3(n,z) = -\frac{1}{2}(n-6)n^2z^2 - \frac{1}{2}n^2z(nz-12) - 3nz^2 - 6(2n-3)z - 8n-z^2 - 8 < 0$ for $n \ge 6$ and $z \ge 2$. Therefore

$$LE_{CN}^+(\Gamma_G) - LE_{CN}(\Gamma_G) < 0.$$

Hence, $E_{CN}(\Gamma_G) < LE_{CN}^+(\Gamma_G) < LE_{CN}(\Gamma_G)$.

Case 2: n is odd

By Theorem 2.3 and [28, Theorem 2.14], we have

$$LE_{CN}^{+}(\Gamma_G) - E_{CN}(\Gamma_G) = \begin{cases} 0, & \text{for } n = 3, 5 \& z = 1 \\ 0, & \text{for } n = 3 \& z \ge 2 \\ \frac{(n-5)(n-3)}{n+1}, & \text{for } n \ge 7 \& z = 1 \\ \frac{z((n-3)(n-1)(n+1)z^2 - (n(n(n+5)-21)+23)z + 6(n+1)^2) - 16(n+1)}{2(n+1)}, & \text{otherwise.} \end{cases}$$

Clearly (n-5)(n-3)>0 for $n\geq 7$. Let $f_4(n,z)=z\left((n-3)(n-1)(n+1)z^2-(n(n(n+5)-21)+23)z+6(n+1)^2\right)-16(n+1)$, where $n\geq 5$ and $z\geq 2$. Then $f_4(n,z)=\frac{1}{4}n^3(z-4)z^2+\frac{1}{4}(n-12)n^2z^3+\frac{1}{4}(n^2-4)nz^3+\frac{1}{4}n^2z^2(nz-20)+2\left(3n^2z-8\right)+(21n-23)z^2+4n(3z-4)+3z^3+6z>0$ for $n\geq 13$ and $z\geq 4$. We have $f_4(n,2)=4(n-2)(n-3)^2>0$ as $n\geq 5$; $f_4(n,3)=18n^2(n-6)+182n-124>0$ for $n\geq 7$; and $f_4(5,3)=336$. Therefore, $f_4(n,3)>0$. Further, for $z\geq 4$ we have $f_4(5,z)=24z^2(2z-7)+216z-96>0$; $f_4(7,z)=16z^2(12z-29)+384z-128>0$; $f_4(9,z)=8z^2(60z-121)+600z-160>0$ and $f_4(11,z)=192z^2(5z-9)+864z-192>0$. Therefore, $f_4(n,z)>0$. Thus

$$LE_{CN}^{+}(\Gamma_G) - E_{CN}(\Gamma_G) \begin{cases} = 0, & \text{for } n = 3 \& z \ge 1; \ n = 5 \& z = 1 \\ > 0, & \text{otherwise.} \end{cases}$$

Again

$$LE_{CN}^{+}(\Gamma_G) - LE_{CN}(\Gamma_G) = \begin{cases} 0, & \text{for } n = 3 \& z = 1 \\ 0, & \text{for } n = 3 \& z \geq 2 \\ 0, & \text{for } n = 5 \& z = 1 \\ -\frac{(n-5)^2(n-3)}{2(n+1)}, & \text{for } n \geq 7 \& z = 1 \\ -\frac{(nz+z-4)(((n-4)n+7)z-2(n+1))}{2(n+1)}, & \text{otherwise.} \end{cases}$$

Clearly, $-(n-5)^2(n-3) < 0$ for $n \ge 7$. Let $f_5(n,z) = -(nz+z-4)(((n-4)n+7)z-2(n+1))$. Then $f_5(n,z) = -\frac{1}{2}(n-6)n^2z^2 - \frac{1}{2}n^2z(nz-12) - 3nz^2 - 6(2n-5)z - 8n - 7z^2 - 8 < 0$ for $n \ge 7$ and $z \ge 2$. For $z \ge 2$ we have $f_5(5,z) = -24(z-1)(3z-2) < 0$. Therefore, $f_5(n,z) < 0$. Thus

$$LE_{CN}^{+}(\Gamma_G) - LE_{CN}(\Gamma_G) \begin{cases} = 0, & \text{for } n = 3 \& z \ge 1; \ n = 5 \& z = 1 \\ < 0, & \text{otherwise.} \end{cases}$$

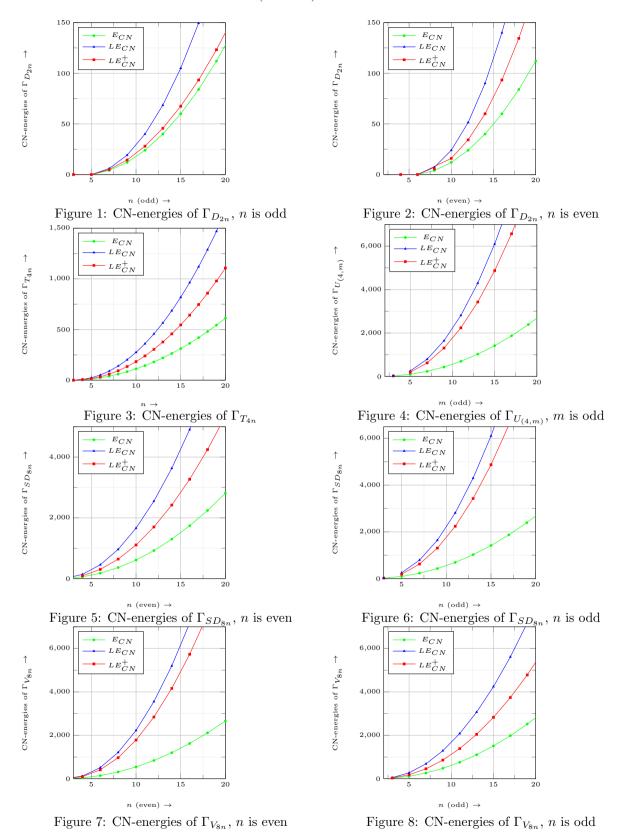
Hence, $E_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G) = LE_{CN}(\Gamma_G)$, if $n = 3 \& z \ge 1$ or n = 5 & z = 1. For all other cases, $E_{CN}(\Gamma_G) < LE_{CN}^+(\Gamma_G) < LE_{CN}(\Gamma_G)$. This completes the proof.

We conclude this section with the following corollary.

Corollary 3.6 Let $G = D_{2n}, T_{4n}, U_{6n}, SD_{8n}, V_{8n}$ or $U_{(n,m)}$. Then

- (a) $E_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G) = LE_{CN}(\Gamma_G)$ if and only if $G = D_6, D_8, D_{10}, D_{12}, T_8, T_{12}, SD_{28}, V_{16}, U_{6n}$ for $n \ge 2$ and $U_{(n,m)}$ for m = 3, 4, 6 and $n \ge 2$.
- (b) $E_{CN}(\Gamma_G) < LE_{CN}^+(\Gamma_G) < LE_{CN}(\Gamma_G)$ if and only G is not among the groups listed in (a).

In Figures 1–8, closeness of various CN-energies of CCC-graphs of D_{2n} , T_{4n} , SD_{8n} , V_{8n} and $U_{(n,m)}$ are depicted.



4. Conclusion

In this paper, we compute common neighborhood (signless) Laplacian spectrum and energy of CCC-graphs of certain finite non-abelian groups. We show that CCC-graphs of all the groups considered in this paper are CNL-integral and CNSL-integral. The common neighborhood spectrum and energy of CCC-graphs of theses groups are already computed in [28]. Analogous to the notion of super integral graph, we call a finite graph *super CN-integral* if it is CN-integral, CNL-integral and CNSL-integral. Thus, CCC-graphs of the groups considered in this paper are super CN-integral. It may be interesting to consider the following problem.

Problem 1 Characterize all finite non-abelian groups G such that Γ_G is super CN-integral.

The existence of finite non-abelian groups G such that Γ_G is CN-hyperenergetic is not clear (see [28]). However, there are finite non-abelian groups G such that Γ_G is CN-borderenergetic (See [28, Theorem 3.6]), CNL-hyperenergetic/CNL-borderenergetic and CNSL-hyperenergetic/CSNL-borderenergetic (See Corollary 3.3). Thus the following problem is worth considering.

Problem 2 Characterize all finite non-abelian groups G such that Γ_G is CN-borderenergetic/ CNL-hyperenergetic/ CNL-borderenergetic/ CNL-borderenergetic.

We have found several classes of finite non-abelian groups G such that $E_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G)$ in Subsection 3.1. Thus, we pose the following problem.

Problem 3 Characterize all finite non-abelian groups G such that

$$E_{CN}(\Gamma_G) = LE_{CN}(\Gamma_G) = LE_{CN}^+(\Gamma_G).$$

In Subsection 3.1, we have also found several classes of finite non-abelian groups G such that $E_{CN}(\Gamma_G)$ $< LE_{CN}^+(\Gamma_G) < LE_{CN}(\Gamma_G)$. In [4, Theorem 4.6], it was observed that there are several classes of finite non-abelian groups G such that $E(\Gamma_G) < LE^+(\Gamma_G) < LE(\Gamma_G)$. It follows that there exist finite non-abelian groups such that $E(\Gamma_G)$, $LE^+(\Gamma_G)$, $LE(\Gamma_G)$ and $E_{CN}(\Gamma_G)$, $LE_{CN}^+(\Gamma_G)$, $LE_{CN}^-(\Gamma_G)$ behave similarly. Thus, the following problem arises naturally.

Problem 4 Determine all the finite non-abelian groups G such that $E(\Gamma_G)$, $LE^+(\Gamma_G)$, $LE(\Gamma_G)$ and $E_{CN}(\Gamma_G)$, $LE_{CN}^+(\Gamma_G)$, $LE_{CN}(\Gamma_G)$ behave similarly.

It is worth noting that problem similar to Problem 4 can also be asked for any finite graph.

In [22], Gutman et al. conjectured that $E(\mathcal{G}) \leq LE(\mathcal{G})$ for any finite graph \mathcal{G} but soon after the announcement, this conjecture was refuted [31,38]. For the groups G, we consider in this paper, we have

$$E_{CN}(\Gamma_G) \le LE_{CN}(\Gamma_G).$$
 (4.1)

In view of this it is too early to conjecture that the inequality (4.1) holds for CCC-graphs for any finite non-abelian group. However, one may consider the following problem.

Problem 5 Determine all the finite non-abelian groups such that the inequality (4.1) does not hold. In general, determine all the finite graphs \mathcal{G} such that the inequality $E_{CN}(\mathcal{G}) \leq LE_{CN}(\mathcal{G})$ does not hold.

Acknowledgments

The first author would like to thank DST for the INSPIRE Fellowship (IF200226). The authors would like to thank the referees for their valuable comments and suggestions.

References

- 1. Ahmadi, O., Alon, N., Blake, I. F. and Shaparlinski, I. E., *Graphs with integral spectrum*, Linear Algebra and its Application 430(1), 547-552, (2009).
- 2. Alwardi, A., Soner, N. D. and Gutman, I., On the common-neighborhood energy of a graph, Bulletin. Classe des Sciences Mathématiques et Naturelles. Sciences Mathématiques 36, 49-59, (2011).
- 3. Baghipur, M., Ghorbani, M., Ganie, H. A. and Shang, Y., On the second-largest Reciprocal Distance Signless Laplacian Eigenvalue, Mathematics 9, 512, (2021).
- 4. Bhowal, P. and Nath, R. K., Spectral aspects of commuting conjugacy class graph of finite groups, Algebraic Structures and Their Applications 8(2), 67-118, (2021).
- 5. Bhowal, P. and Nath, R. K. Genus of commuting conjugacy class graph of certain finite groups, Algebraic Structures and Their Applications 9(1), 93-108, (2022).
- 6. Cameron, P. J. Graphs defined on groups, International Journal of Group Theory 11(2), 53-107, (2022).
- 7. Das, K. C. and Mojallal, S. A., On Laplacian energy of graphs, Discrete Mathematics 325, 52-64, (2014).
- 8. Dutta, P., Bagchi, B. and Nath, R. K., Various energies of commuting graphs of finite non-abelian groups, Khayyam Journal of Mathematics 6(1), 27–45, (2020).
- 9. Dutta, P., Dutta, J. and Nath, R. K., Laplacian spectrum of non-commuting graphs of finite groups, Indian journal of pure and applied mathematics 49(2), 205-216, (2018).
- Dutta, J. and Nath, R. K., Finite groups whose commuting graphs are integral, Matematički Vesnik 69(3), 226–230, (2017).
- 11. Dutta, J. and Nath, R. K., Laplacian and signless Laplacian spectrum of commuting graphs of finite groups, Khayyam Journal of Mathematics 4(1), 77–87, (2018).
- 12. Dutta, P. and Nath, R. K., On Laplacian energy of non-commuting graphs of finite groups, Journal of Linear and Topological Algebra 7(2), 121–132, (2018).
- 13. Fasfous, W. N. T. and Nath, R. K., Inequalities involving energy and Laplacian energy of non-commuting graphs of finite groups, *Indian Journal of Pure and Applied Mathematics*, 56(2), 791-812, (2025)
- 14. Fasfous, W. N. T., Nath, R. K. and Sharafdini, R., Various spectra and energies of commuting graphs of finite rings, Hacettepe Journal of Mathematics and Statistics 49(6), 1915-1925, (2020).
- 15. Fasfous, W. N. T., Sharafdini, R. and Nath, R. K., Common neighborhood spectrum of commuting graphs of finite groups, Algebra and Discrete Mathematics 32(1), 33-48, (2021).
- 16. Ganie, H. A. and Pirzada, S. On the bounds for signless Laplacian energy of a graph, Discrete Applied Mathematics 228(10), 3–13, (2017).
- 17. Ganie, H. A. and Shang, Y., On the spectral radius and energy of signless Laplacian matrix of digraphs, Heliyon 8(3), (2022).
- 18. Gong, S., Li, X., Xu, G., Gutman, I. and Furtula, B., Borderenergetic Graphs, MATCH Communications in Mathematical and in Computer Chemistry 74, 321-332, (2015).
- Grone, R. and Merris, R. The Laplacian spectrum of a graph II, SIAM Journal of Discrete Mathematics 7(2), 221-299, (1994).
- Gutman, I., The energy of a graph, Berichte der Mathematisch-Statistischen Sektion im Forschungszentrum Graz 103, 1-22, (1978).
- 21. Gutman, I., Hyperenergetic molecular graphs, Journal of the Serbian Chemical Society 64, 199-205, (1999).
- 22. Gutman, I., Abreu, N. M. M., Vinagre, C. T. M., Bonifacioa, A. S. and Radenkovic, S., *Relation between energy and Laplacian energy*, MATCH Communications in Mathematical and in Computer Chemistry 59, 343-354, (2008).
- 23. Gutman, I. and Furtula, B., Survey of Graph Energies, Mathematics Interdisciplinary Research 2, 85-129, (2017).
- 24. Gutman, I. and Furtula, B., *Graph energies and their applications*, Bulletin. Classe des Sciences Mathématiques et Naturelles. Sciences Mathématiques 44, 29-45, (2019).
- 25. Gutman, I. and Zhou, B., Laplacian energy of a graph, Linear Algebra and its Applications 414, 29-37, (2006).
- Harary, F. and Schwenk, A. J., Which graphs have integral spectra?, Graphs and Combinatorics, Lect. Notes Maths. 406, 45-51, (1974).
- 27. Herzog, M., Longobardi, M. and Maj, M., On a commuting graph on conjugacy classes of groups, Communications in Algebra 37(10), 3369-3387, (2009).
- 28. Jannat, F. E. and Nath, R. K., Common neighbourhood spectrum and energy of commuting conjugacy class graph, Journal of Algebraic Systems 12(2), 301-326, (2025).

- 29. Jannat, F. E. and Nath, R. K., Common neighbourhood Laplacian and signless Laplacian spectra and energies of commuting graph, Palestine Journal of Mathematics (accepted for publication).
- 30. Jannat, F. E., Nath, R. K. and Das, K. C., Common neighborhood energies and their relations with Zagreb index, (submitted for publication) https://arxiv.org/abs/2402.15416.
- 31. Liu, J. and Liu, B., On the relation between energy and Laplacian energy, MATCH Communications in Mathematical and in Computer Chemistry 61, 403-406, (2009).
- 32. Mohammadian, A., Erfanian, A., Farrokhi, D. G. M. and Wilkens, B., *Triangle-free commuting conjugacy class graphs*, Journal of Group Theory 19, 1049-1061, (2016).
- 33. Nath, R. K., Fasfous, W. N. T., Das, K. C. and Shang, Y., Common neighbourhood energy of commuting graphs of finite groups, Symmetry 13(9), 1651-1662, (2021).
- 34. Salahshour, M. A. and Ashrafi, A. R., Commuting conjugacy class graphs of finite groups, Algebraic Structures and Their Applications 7(2), 135-145, (2020).
- 35. Salahshour, M. A. and Ashrafi, A. R., Commuting conjugacy class graph of finite CA-groups, Khayyam Journal of Mathematics 6(1), 108-118, (2020).
- 36. Salahshour, M. A., Commuting conjugacy class graph of G when $\frac{G}{Z(G)} \cong D_{2n}$, Mathematics Interdisciplinary Research 1, 379-385, (2020).
- Simic, S. K. and Stanic, Z., Q-integral graphs with edge-degrees at most five, Discrete Mathematics 308, 4625-4634, (2008).
- 38. Stevanovic, D., Stankovic, I. and Milosevic, M., On the relation between energy and Laplacian energy of graphs, MATCH Communications in Mathematical and in Computer Chemistry 61, 395-401, (2009).
- Tao, Q. and Hou, Y., Q-borderenergetic graphs, AKCE International Journal of Graphs and Combinatorics 17(1), 38-44, (2020).
- Tura, F., L-borderenergetic graphs, MATCH Communications in Mathematical and in Computer Chemistry 77, 37-44, (2017).
- 41. Walikar, H. B., Ramane, H. S. and Hampiholi, P. R., On the energy of a graph, Graph connections, Eds. R. Balakrishnan, H. M. Mulder and A. Vijayakumar, Allied publishers, New Delhi, 120-123, (1999).

Firdous Ee Jannat,
Department of Mathematical Science,
Tezpur University,, Napaam -784028,
India.

 $E ext{-}mail\ address: firdusej@gmail.com}$

and

Rajat Kanti Nath, Department of Mathematical Science, Tezpur University,, Napaam -784028, India.

E-mail address: rajatkantinath@yahoo.com