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Limit cycles for Singular Perturbation Problems via Inverse

Integrating Factor
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abstract: In this paper singularly perturbed vector fields Xε defined in R
2 are

discussed. The main results use the solutions of the linear partial differential equa-
tion XεV = div(Xε)V to give conditions for the existence of limit cycles converging
to a singular orbit with respect to the Hausdorff distance.
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1. Introduction and statement of the main results

The present work fits within the geometric study of singular perturbation prob-
lems expressed by one–parameter families of vector fields Xε : R

2 −→ R
2 where

Xε(x, y) = (f(x, y, ε), εg(x, y, ε)) (1)

with ε ≥ 0, f, g ∈ Cr for r ≥ 1 or f, g ∈ C$ for which we want to study the phase
portrait, for sufficient small ε, near the set of singular points of X0 :

Σ = {(x, y) ∈ R
2 : f(x, y, 0) = 0}.

Special emphasis will be given on systems which the solutions of the linear
partial differential equation

XεV := f
∂V

∂x
+ εg

∂V

∂y
= div (Xε) V

are known.
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The system of differential equations associated to Xε is

x′ = f(x, y, ε), y′ = εg(x, y, ε) (2)

with x = x(τ), y = y(τ).
The main trick in geometric singular perturbation (GSP) is to consider the

above family in addition to the family

εẋ = f(x, y, ε), ẏ = g(x, y, ε) (3)

with x = x(t), y = y(t) obtained after the time rescaling t = ετ .
System (2) is the fast system and (3) is the slow system.
Observe that for ε > 0 the phase portrait of the fast and the slow systems

coincide, but for ε = 0 the problems are completely different.
We call

∑

the slow manifold of the singular perturbation problem, and the
dynamical system defined by (3) on

∑

, for ε = 0, is called the reduced problem.

Figure 1: Fast and slow dynamics.

Combining results on the dynamics of these two limiting problems, with ε =
0, one obtains information on the dynamics for small values of ε. In fact, such
techniques can be exploited to formally construct approximate solutions on pieces
of curves that satisfy some limiting version of the original equation as ε goes to
zero.

Let n1 and n2 be normally hyperbolic points on
∑

, see for a definition Section
2. A singular orbit consists of three pieces of smooth curves: an orbit of the reduced
problem starting at n1, an orbit of the reduced problem ending at n2 and a orbit
of the fast problem connecting the two previous peaces.

For two compact sets A,B ⊆ R
2 we define the Hausdorff distance by

D(A,B) = max
z1∈A,z2∈B

{d(z1, B), d(z2, A)} .

The main question in GSP–theory is to exhibit conditions under which a sin-
gular orbit can be approached by regular orbits for ε ↘ 0, with respect to the
Hausdorff distance. The most interesting question is to decide if Xε has a limit
cycle approaching a singular orbit. In this case, the singular orbit should have a
non normally hyperbolic point, that means there is a turning point in the usual
terminology, i.e an extreme local of the function defined implicitly by f(x, y, 0) = 0.
Some papers are in this direction [2,3,4,8,9,10].
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In the qualitative theory of differential equations, research on limit cycles is a
difficult part. Limit cycles of planar vector fields were defined by Poincaré and
at the end of the 1920s van der Pol, Liénard and Andronov proved that a closed
trajectory of a self–sustained oscillation occurring in a vacuum tube circuit was
a limit cycle as considered by Poincaré. There are some methods for proving the
nonexistence and existence of limit cycles: Bendixon–Dulac, Poincaré–Bendixson,
the return map, etc. The main trick used in this paper is to use the criteria
introduced in [6] to study the limit cycles of Xε, for ε ↘ 0.

Figure 2: Singular orbit.

The main results of this paper are the following.

Theorem 1.1. Let Xε be the vector field (1). Consider ε0 > 0 and let Vε(x, y) =
V (x, y, ε) be a C1 solution of the linear partial differential equation XεV = div(Xε)V ,
defined in an open set U ⊆ R

2, for any 0 ≤ ε < ε0. Let Γ ⊂ U be a singular or-
bit and Γε be a limit cycle of Xε in U , for ε ∈ (0, ε0), with Γε −→ Γ, according
Hausdorff distance. Then V0(Γ) = 0.

Corollary 1.1A. Consider Xε and V like in Theorem 1.1. If the level zero of the
function V (x, y, ε) does not contain a closed curve, for 0 < ε < ε0, then Xε does
not present a limit cycle.

We remark that Theorem 1.1 provides a necessary condition in order that a
singular orbit Γ can generate, for ε > 0 sufficiently small, a limit cycle. More
specifically, if V (x, y, ε) is a solution of XεV = div(Xε)V , defined in the open set
U of R

2, then the necessary condition for Γ ⊆ U is that V0(Γ) = 0.

Theorem 1.2. Consider Xε and V like in Theorem 1.1. If

f(x, y, ε) = f0(x, y) + f1(x, y)ε + f2(x, y)ε2 + ...

and

g(x, y, ε) = g0(x, y) + g1(x, y)ε + g2(x, y)ε2 + ...

are analytical in their variables, then V (x, y, ε) is analytical, and

V (x, y, ε) = V0(x, y) + εV1(x, y) + ε2V2(x, y) + ...
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with
V0(x, y) = ϕ(y)f0(x, y),

for some C1 function ϕ, and

∑

i+j=k

(

fi

∂Vj

∂x
− ∂fi

∂x
Vj

)

=
∑

i+j=k−1

(

∂gi

∂y
Vj − gi

∂Vj

∂y

)

.

We remark that Theorem 1.2 provides an way to compute an approximation of
the solution V (x, y, ε).

In Section 2 we present basic facts of the GSP–theory and one criteria for
the study the existence and nonexistence of limit cycles introduced in [6]. In
Section 3 we prove the main result and in Section 4 we present some examples and
applications.

2. Basic facts of GSP-theory and inverse integrating factor

2.1. The GSP-theory. The foundation of GSP-theory, which is briefly summa-
rized here, was laid by Fenichel in [5]. We consider only planar problems but
remember that in [5] one can check the general case.

Let Xε(x, y) = (f(x, y, ε), εg(x, y, ε)) with (x, y) ∈ R
2 and the slow manifold Σ

given implicitly by f(x, y, 0) = 0.

We say that p = (x0, y0) ∈ Σ is normally hyperbolic if
∂f

∂x
(p, 0) 6= 0.

We assume that, for every normally hyperbolic p ∈ Σ,
∂f

∂x
(p, 0) has ks eigen-

values with negative real part and ku eigenvalues with positive real part.

Theorem 2.1. Let n ∈ Σ be a hyperbolic singular point of the slow flow with js–
dimensional local stable manifold W s and a ju–dimensional local unstable manifold
Wu. Then there exists an ε-continuous family nε such that n0 = n and nε has a
(js +ks)– dimensional local stable manifold W s

ε and a (ju +ku)– dimensional local
unstable manifold W u

ε .

For a proof see [5]. The importance of this theorem is that every structure of the
slow system which persists under regular perturbation also persists under singular
perturbation. The next step is to decide if a singular orbit can be approached by
regular orbits.

Theorem 2.2. If n,m ∈ Σ, like in Theorem 2.1, are connected by an orbit of the
fast problem then there exists an orbit of Xε connecting nε and mε.

For a proof see [11]. Combining Theorem 2.1 and Theorem 2.2 one can see that
if a singular orbit Γ is composed by orbits of the reduced problem on the normally
hyperbolic part of the slow manifold and connected by orbits of the fast problem,
then there are regular orbits Γε of Xε, such that Γε −→ Γ, for ε ↘ 0, according
Hausdorff distance. To analyse the non–normally hyperbolic case there is a new
technique introduced by Dumortier and Roussarie in [4] which is based on the blow
up techniques. Another approach can be obtained in [3] for the same problems by
assuming that the systems are time reversible.
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Figure 3: Singular perturbation with normal hyperbolicity.

2.2. The inverse integrating factor. Let U be the domain of definition of
the vector field X(x, y) = (p(x, y), q(x, y)) and let W be an open subset of U .
A non-zero function V on W that satisfies the linear partial differential equation
XV = div(X)V, is called an inverse integrating factor of the vector field X.

This function V is important because

(i) R = 1/V defines on W \ {V = 0} an integrating factor of the differential
system associated to the vector field.

(ii) {V = 0} contains the limit cycles of the phase portrait of the vector field X.
This fact allows to study the limit cycles which bifurcate from periodic orbits
of a centre ( Hamiltonian or not) and compute their shape. For doing that we
develop the function V in power series of the small perturbation parameter.
A remarkable fact is that the first term of this expansion coincides with the
first non–identically zero Melnikov function.

(iii) There are a great number of examples of vector fields with an inverse inte-
grating function V being an easier function than their first integrals.

3. Proof of the main results

In this section we shall prove the results state in the introduction.

Proof of Theorem 1.1: We suppose that the function V (x, y, ε) is a solution of the
equation XεV = div(Xε)V on the open subset U of R

2, for ε ∈ [0, ε0). It means
that the system

x′ = f(x, y, ε)/V (x, y, ε), y′ = εg(x, y, ε)/V (x, y, ε), (4)

on U \{V = 0} is Hamiltonian. Note that System (2) and System (4) are topologi-
cally equivalent in U\{V = 0}. Since System 4 is Hamiltonian, it has no limit cycles
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on {V 6= 0}. Therefore, if system (2) has a limit cycle in U it must be contained on
{V = 0}. Thus, we have Vε(Γε) = 0. If there exists p ∈ Γ such that V0(p) 6= 0 then
there exists an open subset W ⊆ R

2 such that p ∈ W and V0(q) 6= 0, for any q ∈ W .
The Hausdorff convergence Γε −→ Γ implies that there exists ε1 ∈ (0, ε0) such that
Γε

⋂

W 6= ∅ for any 0 < ε < ε1. In this case there exists q ∈ Γε with V0(q) 6= 0.
The continuity of V with respect to ε gives that there exists 0 < ε2 ∈ (0, ε1) such
that for 0 < ε < ε2 we have Vε(q) 6= 0, and it is a contradiction. Then V0(Γ) = 0.

Proof of Corollary 1.1A: Since the set {V = 0} contains the limit cycles of Xε in
U and it has no closed curve, Xε can not have limit cycles.

Proof of Theorem 1.2: We deal with planar systems of the form (2) where f(x, y, ε)
and g(x, y, ε) depend analytically on their variables in an open subset U. Assume
that ε is a small parameter. We look for an analytic solution

V (x, y, ε) =

∞
∑

k=0

Vk(x, y)εk,

of the linear partial differential equation

f
∂V

∂x
+ εg

∂V

∂y
=

(

∂f

∂x
+ ε

∂g

∂y

)

V. (5)

It is known that V is analytic in the variables x, y, ε (see for instance [7]). From
equation (5) we deduce the zero–order equation with respect to ε

f0
∂V0

∂x
= V0

∂f0

∂x
. (6)

At k–th order with respect to ε we obtain

∑

i+j=k

(

fi

∂Vj

∂x
− ∂fi

∂x
Vj

)

=
∑

i+j=k−1

(

∂gi

∂y
Vj − gi

∂Vj

∂y

)

. (7)

For any value of k, the homogeneous partial differential equation for Vk is the

same. So, the way to solve (7) is recursive. Since equation (6) becomes
∂

∂x

(

V0

f

)

=

0, we have
V0(x, y) = ϕ(y)f(x, y)

for some C1 function ϕ depending of the variable y.
Besides, if fi = gi = 0 for i > 1 then (7) implies

f
∂Vk

∂x
− Vk

∂f

∂x
= Vk−1

∂g

∂y
− g

∂Vk−1

∂y

or equivalently

f2 ∂

∂x

(

Vk

f

)

= −g2 ∂

∂y

(

Vk−1

g

)

.
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4. Examples and applications

In the following examples we compute the inverse integrating factor of some
vector fields singularly perturbed using the partial differential equations states in
Theorem 1.2.

Example 1. Let Xε(x, y) = (y2 − x2, εx2). We have f(x, y) = y2 − x2, V0(x, y) =
yf(x, y), V1(x, y) = −x3, and Vk(x, y) = 0, for k ≥ 2. Thus V (x, y, ε) = y3 −
yx2 − x3ε. Using Corollary 1.1A we conclude that Xε does not present limit cycles
because the levels of V do not contain closed curves.

Example 2. Let Xε(x, y) = (y − x2, εx). We have f(x, y) = y − x2, V0(x, y) =
−2f(x, y), V1(x, y) = 1, and Vk(x, y) = 0, for k ≥ 2. Thus V (x, y, ε) = −2y+2x2+ε.
Using Corollary 1.1A we conclude that Xε does not present limit cycles because
the levels of V do not contain closed curves.

Example 3. Let Xε(x, y) = (−y + x2, εx). We have f(x, y) = −y + x2, V0(x, y) =
−f(x, y), V1(x, y) = 1/2, and Vk(x, y) = 0, for k ≥ 2. Thus V (x, y, ε) = y − x2 +
(1/2)ε. Using Corollary 1.1A we conclude that Xε does not present limit cycles be-
cause the levels of V do not contain closed curves. It is interesting to observe that
the singularity (0, 0, ε) is a centre, because the system is invariant by the symmetry
(x, y, t) 7−→ (−x, y,−t), and its eigenvalues are ±√

εi.

Now we prove a proposition which will be used in next example.

Proposition 4.1. Let V (x, y) be a C1−function defined in some open subset U ⊆
R

2. If λ ∈ R and g(x, y) ∈ C1(U) then V (x, y) is an inverse integrating factor of
the vector field

X(x, y) = (−λ∂V/∂y − V ∂g/∂y, λ∂V/∂x + V ∂g/∂x).

Proof: We have that

(XV )(x, y) =
∂V

∂x

(

−λ
∂V

∂y
− V

∂g

∂y

)

+
∂V

∂y

(

λ
∂V

∂x
+ V

∂g

∂x

)

=

=

(

∂V

∂y

∂g

∂x
− ∂V

∂x

∂g

∂y

)

V = div(X)V (x, y),

for any (x, y) ∈ U.

Example 4. Let Xε be the vector field given by

Xε(x, y) = (−2εy − (x2 + y2 − 1), ε(2x + x2 + y2 − 1)).

The slow manifold is given by Σ = {(x, y) : x2 + y2 = 1} and the function
Vε(x, y) = V0(x, y) = x2 + y2 − 1 is an inverse integrating factor of Xε. In fact
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we can apply Proposition 4.1 with λ = ε and g(x, y) = εx + y. The slow system
associated to the vector field is

εẋ = −2εy − (x2 + y2 − 1), ẏ = 2x + (x2 + y2 − 1),

and the reduced problem is

x2 + y2 − 1 = 0, ẏ = 2x.

The fast and slow dynamics are illustrated in Figure 4. According Theorem 1.2
the only singular orbit which can be approached by limit cycles is the slow manifold
x2 + y2 − 1 = 0.

The curve x2 + y2 − 1 = 0 is an invariant of the vector field because XεV0 = 0
if V0 = 0. Moreover, the system

−2εy − (x2 + y2 − 1) = 0, 2x + (x2 + y2 − 1) = 0, x2 + y2 − 1 = 0

has solution only if ε = 0. Thus Xε does not present critical points on V0 = 0 for
ε > 0. The periodic orbit of Xε corresponding to V0 = 0 is

x(t) = cos(2εt), y(t) = sin(2εt).

A direct calculation shows that
∫ 2π

0

div(Xε)(x(t), y(t))dt = 1 − sin(4επ)

ε
− cos(4επ).

Therefore the closed orbit defined by V0 = 0 is a limit cycle of Xε for ε ↘ 0.

Figure 4: Fast and slow dynamics for ε = 0.

In our last example, we consider a vector field which do not have a polynomial
inverse integrating factor.

Example 5. The vector field Xε,a(x, y) = (y − x3/3 + x, ε(a− x)) was considered
in [1]. It is an example of the canard phenomenon. It is known that for |a| < 1
the vector field has a unique limit cycle, which is stable, and for |a| ≥ 1 does not
present limit cycles and it has a singular point (a, a3/3 − a) which is the $-limit
of any orbit. For |a| = 1 occurs an Andronov–Hopf bifurcation. When |a| ↗ 1 the
amplitude of the limit cycles tends to zero.
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Proposition 4.2. The vector field Xε,a associated to Example 5 has no polynomial
inverse integrating factor.

Proof: We assume that V is a polynomial solution of degree n of Xε,aV = divXε,aV.

We consider V =

n
∑

i=0

Pi(y)xi a polynomial in variable x with coefficients polynomi-

als in y. The degree of the polynomial Pi(y) is at most n−i. We want to determine V
such that ξ(V ) = Xε,aV − div(Xε,a)V = 0, for all x, y ∈ R

2. We denote Pi = Pi(y)
for i = 0 . . . n. Thus

ξ(V ) =
n+2
∑

i=0

ai(y)xi = P1y + εaP ′
0 − P0 + (2P2y + εaP ′

1 − εP ′
0)x

+(3P3y + P2 + εaP ′
2 − εP ′

1 + P0)x
2

+
n−1
∑

i=3

[

(i + 1)Pi+1y + εaP ′
i − εP ′

i−1 + (i − 1)Pi +
5 − i

3
Pi−2

]

xi

+

[

εaP ′
n − εP ′

n−1 +
5 − n

3
Pn−2 + (n − 1)Pn

]

xn

+

[

−εP ′
n +

4 − n

3
Pn−1

]

xn+1 +
3 − n

3
Pnxn+2.

Making ξ(V ) = 0 for all x, y ∈ R
2, the coefficients of xn+2, xn+1, . . . , x4, for n > 5,

give Pn = Pn−1 = Pn−2 = · · · = P4 = 0. So, to conclude the proof we need to show
that P0 = P1 = P2 = P3 = 0. Solving ai(y) = 0 for i = 0, 1, ..., 5, in function of the
polynomial P3 we get the following ordinary differential equation

3ε2a(a + 1)P ′′′
3 + 3ε2(a − a3 + 9y)P ′′

3 + ε(9ay − 2a2 + 4)P ′
3 + 4yP3 = 0.

Substituting the polynomial P3 =

n−3
∑

i=0

biy
i in the last equation and collecting

in the variable y, is straightforward that P3 = 0. Then it is easy to see that
P2 = P1 = P0 = 0.

For each 0 6 y0 < 2/3 we denote Γy0
the oval singular orbit in the quadrant

x 6 0, y > 0 contained in {y = y0}
⋃

{

y = x3/3 − x
}

. According [1] and [4], there
exist a C∞ functions ay0

(ε), for ε sufficiently small, such that ay0
(0) = −1 and

such that there exists a limit cycle Γε,ay0
(ε) of Xε,ay0

(ε) with Γε,ay0
(ε) −→ Γy0

when
ε ↘ 0. These functions are given implicitly, using perturbations methods and blow
up method applied to the variables x and y, and to the parameters a and ε.

Theorem 1.1 implies that if V y0 is a solution of Xε,aV y0 = div (Xε,a) V y0 then
V y0(Γε,ay0

(ε)) = 0, and Theorem 1.2 gives a way to compute an approximation of
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V y0 :

V y0(x, y, ε, a) = V y0

0 (x, y, a) + V y0

1 (x, y, a)ε + ...

with

V y0

0 (x, y, a) = F0(y)

(

y − x3

3
+ x

)

and V y0

1 satisfying

(y − x3/3 + x)2
∂

∂x

(

V y0

1

y − x3/3 + x

)

= −(a − x)2
∂

∂y

(

V y0

0

a − x

)

. (8)

Using Theorem 1.1, we get F0(y0) = 0, because V0(Γy0
) = 0.

In the sequel, we assume for simplicity that y0 = 0. It is known there exists a
limit cycle near Γ0. So, we want to find V 0(x, y, ε, a) such that in the neighborhood
of Γ0, |V 0

0 (x, y, a) + εV 0
1 (x, y, a)| is close to zero.

Computing V 0
1 (x, y, a) from (8) we obtain

V 0
1 (x, y, a) =

(

−3x + x3 − 3y
)

F1(y)+

+
3
(

−2x − 6y + 3x2y + a
(

−4 + 2x2 − 3xy
))

F0(y)

4 − 9y2
+

+

(−3x + x3 − 3y

4 − 9y2

)

RS
(

3y + 3ξ − ξ3, H(x, y, ξ)
)

,

with

H(x, y, ξ) =
log(x − ξ)

ξ2 − 1
(η1F0(y) + η2F

′
0(y))

where RS(f,H) represents the sum of H(x, y, ξ) for all ξ that satisfy the polynomial
equation f(ξ) = 0, and η1, η2 are given by

η1 = (−4 − 6ay) + (2a + 3y)ξ
η2 = −(ξi − a) − (4 − 9y2).

Analysing V 0
1 (x, y, a) near y = 0 for x ∈ (−

√
3, 0), we conclude that F1(0) must

be small, and F ′
0(0) = 0. Moreover, for x0 ∈ (−

√
3, 0), lim

x→x0

V 0
1 (x, x3/3−x, a) = 0.

In short, for F0(y) and F1(y) satisfying F0(0) = F ′
0(0) = 0 and F1(0) sufficiently

small, the function V 0
0 (x, y, a) + εV 0

1 (x, y, a) satisfies that in the neighborhood of
Γ0, |V 0

0 (x, y, a) + εV 0
1 (x, y, a)| is close to zero. For a numerical approach we con-

sider F0(y) = y2 and F1(y) ≡ 0.

In Figure 5 we observe that there exists an oval on the level 0 of the function
V 0

0 + εV 0
1 , in the quadrant x < 0, y > 0. This oval approaches a limit cycle of Xε,a

for ε = 1/20 and a = −0.8. This limit cycle is stable.
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Figure 5: V 0
0 + 1

20V 0
1 = 0 for a = −0.8 and F1 ≡ 0.
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