
Bol. Soc. Paran. Mat.

(3s.) v. 26 1-2 (2008): 91–106.
c©SPM –ISNN-00378712

The Stefan problem with moving boundary ∗

M. A. Rincon & A. Scardua

abstract: A mathematical model of the linear thermodynamic equations with
moving ends, based on the Stefan Problem is considered. In this work, we are in-
terested in obtaining existence, uniqueness and regularity using the Faedo-Galerkin
method. For numerical solutions, we shall employ the finite element method to-
gether with the Crank-Nicolson method. A numerical experiment is presented to
show the moving boundary for the problem.

Key Words: Stefan Problem; Crank-Nicolson method; Moving Boundary; Fi-
nite Element Method.
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1. Introduction

One wide variety of problems with moving ends has been studied by many years.
The thermal equations with moving ends give origin to several physical problems,
such as, Stefan Problem, who can be interpreted as flame propagation problem,
study of atom movements, study of combustion theory. Flame propagation prob-
lems have been established in [2] that studied a mathematical formulation suitable
in the analyze for the theory of diffusion flames. Studies the mathematical model
of moving ends arising in combustion theory was developed by Schmidt-Lainé [1]
and [3]. The discharge or absorption of thermal energy during the change in atom
arrangement have been studied in [8] and [7]. We can also see the problem as
a model for certain processes involving chemical reactions. The objective of this
paper is to obtain existence and uniqueness of solutions and too we apply the finite
element method with a finite difference method in time to obtain an approximated
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numerical solution. Some numerical experiments are presented to show the effect
of moving boundary in the solutions of the linear thermodynamic, whose model is
based on the Stefan Problem, (see [11]) given by,





∂u

∂t
−
∂2u

∂x2
= 0, 0 < x < s(t)

u(x, 0) = ϕ(x), u(0, t) = ψ(t),

u(s(t), t) = ρ(t), ∀t > 0

where u(x, t) is the temperature and s(t) is the solution of equation:

{
−λ(t)s′(t) + ux(s(t), t) = h(t)

s(0) = s0,

must be determined and ψ, ρ, h, λ, ϕ, s0 are initial date of the problem defined for
t ≥ 0 and ϕ(x) for 0 ≤ x ≤ s0.

2. Formulation Problem

Our objective is study the approximated solutions of the following thermody-
namics system,

(I)





∂u

∂t
− k

∂2u

∂x2
= f(x, t), (x, t) ∈ Qt

u(α(t), t) = 0, u(β(t), t) = 0, ∀x ∈ (α(t), β(t)), ∀t ∈ [0, T ]

u(x, 0) = u0(x), α(0) < x < β(0)

(1)

where k > 0 is the thermal conductivity.
We consider the domain Qt ⊂ IR2 defined by

Qt =
{

(x, t) ∈ IR× (0, T ) ; α(t) < x < β(t)
}

and the horizontal length of the interval is defined by γ(t) = β(t) − α(t) > 0.
Let us study the existence, uniqueness, and the approximated solution of the

Problem (4). For this we consider the following hypothesis:

H1: α, β ∈ C2(0,∞) in 0 < γ0 < γ(t) < γ1, ∀t ≥ 0,

H2: α′, β′ ∈ L∞(0,∞), ∀t ≥ 0

where γ0 and γ1 are positive constants. Consider now the change of variable to
transform the domain Qt in a cylindric domain Q, given by

τ : Qt −→ Q = (0, 1) ×]0, T [

(x, t) 7→ (y, t) =
(x− α(t)

γ(t)
, t

)
.

(2)
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Note that τ ∈ C2(Qt) and by inverse function Theorem, the application τ−1 also
is C2(Q) (see for instance [5,9]).

The change of variable v(y, t) = u(α(t) + γ(t)y, t), implies that

u(x, t) = v
(x− α(t)

γ(t)
, t

)
. Using the application τ , we obtain the following cylindri-

cal problem:

(II)





v′ − a(t)
∂2v

∂y2
− b(y, t)

∂v

∂y
= g(y, t), in Q

v(0, t) = 0, v(1, t) = 0, t ≥ 0

v(y, 0) = v0(y), 0 < y < 1.

(3)

where a(t) = k/γ2, b(y, t) = (α′ + γ′y)/γ and

g(y, t) = f
(
T −1(y, t)

)
= f(x, t),

v(y, t) = u
(
T −1(y, t)

)
= u(x, t).

For convenience, we have also used the prime ( ′ ) to denote the derivative with
respect to time t and (( . )), ( . ), ‖ . ‖ and | . |, the scalar product and the norms
in H1

0 (0, 1) and L2(0, 1), respectively.
As our primary objective for this work is to present numerical results of the

problem. We shall show the existence and uniqueness from the solution of the
cylindrical Problem (3) who implies in the existence and uniqueness of the solution
of the noncylindrical Problem (4), since they are equivalent.

3. Existence and Uniqueness

We will investigate global existence and uniqueness solution for Problem(3)
and consequently for Problem (4). For this, consider the notation Ω = (0, 1),
Ωt = (α(t), β(t)) and Ω0 = (α(0), β(0)).

Theorem 3.1 Under the hypotheses (H1) and (H2) and the initial data v0 ∈
H1

0 (Ω) and g ∈ L1(0,∞;L2(Ω)) ∩ L2(0, T ;L2(Ω)), there exists only one strong
solution v : Q −→ IR of the problem (II), that is,

v′ − a(t)
∂2v

∂y2
− b(y, t)

∂v

∂y
= g(y, t) in L2(0, T ;L2(Ω)),

satisfying the following conditions:

(i) v ∈ L2(0, T ;H1
0 (Ω) ∩H2(Ω)) ∩ L∞(0, T ;H1

0 (Ω)),

(ii) v′ ∈ L2(0, T ;L2(Ω)).

And consequently we obtain the following result,
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Theorem 3.2 Under the hypotheses (H1) and (H2) and the initial data u0 ∈
H1

0 (Ω0) and f ∈ L1(0,∞;L2(Ωt) ∩ L2(0,∞;L2(Ωt)) , there exists only one
strong solution u : Qt −→ IR of the problem (I), that is,

u′ − k
∂2u

∂x2
= f(x, t) in L2(0,∞;L2(Ωt))

satisfying the following conditions:

(i) u ∈ L∞(0,∞;H1
0 (Ωt) ∩H

2(Ωt)),

(ii) u′ ∈ L2(0,∞;L2(Ωt)).

The details of the demonstration can be found in [10]. In this work we are omitting
the calculations and will find just the idea of the demonstration.

Proof: We introduce the approximate solutions. Let T > 0 and denote by Vm

the subspace spanned by {w1, w2, ..., wm}, where {wν ; ν = 1, · · ·m} are the first m

eigenvectors of the space H1
0 (Ω), solution of the spectral problem -

∂2wi

∂x2
= λiwi.

If vm(t) ∈ Vm then it can be represented by

vm(y, t) =
m∑

ν=1

gνm(t)wν(y),

where vm is the solution of the system of ordinary differential equations




(v′m, w) + a(t)
(∂vm

∂y
,
∂w

∂y

)
−

(
b(y, t)

∂vm

∂y
,w

)
= (g, w), ∀w ∈ Vm

vm(0) = v0m −→ v0 in H1
0 (Ω),

(4)

The system (4) has local solution in the interval (0, Tm), by Carathéodory
Theorem. To extend the local solution to the interval (0, T ) independent of m the
following a priori estimate is needed.

Estimate I: Taking w = vm ∈ Vm in (4), we obtain

(v′m, vm) + a(t)
(∂vm

∂y
,
∂vm

∂y

)
−

(
b(y, t)

∂vm

∂y
, vm

)
= (g, vm). (5)

Integrating the third term of (5), by parts and using the boundary conditions,
we have,

∫ 1

0

b(y, t)
∂vm

∂y
vm = −

∫ 1

0

∂

∂y
(b(y, t)vm)vm = −

1

2

γ′

γ
|vm|2. (6)

Using the norma equivalence of norms in H1
0 (Ω), Hölder inequality (6) and substi-

tuting into (5), we have

1

2

d

dt
|vm|2 + a(t)‖vm‖2 +

1

2

γ′

γ
|vm|2 ≤

1

2
(|g|2 + |vm|2).
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Integrating from [0, t), with t ∈ [0, Tm), we get

1

2
|vm(t)|2 + a(t)

∫ t

0

‖vm‖2 ≤
1

2
|vm(0)|2 +

1

2
|g|2 +

∫ t

0

1

2

(
1 +

∣∣γ
′

γ

∣∣
)
|vm|2.

From the hypotheses (H1) and (H2), γ ′ ∈ L1(0,∞), then

∫ t

0

1

2

(
1 +

∣∣γ
′

γ

∣∣
)
|vm|2 ≤

∫ t

0

1

2

(
1 +

∣∣ γ
′

γ0

∣∣
)
|vm|2 ≤ c

∫ t

0

|vm|2.

where c is a positive constant. Let c1 = min{ 1
2 , a(t)}, then

|vm(t)|2 +

∫ t

0

‖vm‖2 ≤
1

2c1
|vm(0)|2 +

1

2c1
|g|2 +

c

c1

∫ T

0

|vm|2.

By the use of Gronwall’s Lemma in the last inequality, we obtain the following
estimates

vm is bounded in L∞(0, T ;L2(Ω)),
vm is bounded in L2(0, T ;H1

0 (Ω)).
(7)

Estimate II: Taking w = v′m in (4), we obtain

(v′m, v
′
m) + a(t)

(∂vm

∂y
,
∂v′m
∂y

)
−

(
b(y, t)

∂vm

∂y
, v′m

)
= (g, v′m), ∀v′m ∈ Vm. (8)

The second term on left hand side in (8) implies that

a(t)
(∂vm

∂y
,
∂v′m
∂y

)
=
a(t)

2

d

dt
‖vm‖2, (9)

by equivalence of norms in H1
0 (Ω). For the third term in (8) can be estimated as,

b(y, t)
∣∣∣∂vm

∂y

∣∣∣ |v′m| ≤
|α′| + |γ′|

γ0
‖vm‖ |v′m|. (10)

Substituting (9),(10) in the equation (8), we get

|v′m|2 +
a(t)

2

d

dt
‖vm‖2 ≤

|α′| + |γ′|

γ0
‖vm‖|v′m| + |g| |v′m|. (11)

From elementary inequality

|α′| + |γ′|

γ0
‖vm‖ |v′m| + |g| |v′m| ≤ 4

( |α′|2 + |γ′|2

|γ0|2

)
‖vm‖2 + 2|g|2 +

1

2
|v′m|2.

Therefore,

1

2
|v′m|2 +

a(t)

2

d

dt
‖vm‖2 ≤ 2

( |α′|2 + |γ′|2

|γ0|2

)
‖vm‖2 + 2|g|2.
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We observe that, from the hypothesis (H1), γ(t) < γ1, ∀t ∈ [0, T ].
Integrating in 0 < t < Tm, using the hypothesis (H1) and the definition a(t),

we obtain

1

2

∫ t

0

|v′m|2 +
k

2γ2
1

∫ t

0

d

dt
‖vm‖2 ≤ 4

∫ T

0

|α′|2 + |γ′|2

|γ|2
‖vm‖2 + 2

∫ T

0

|g|2.

Note that, from hypothesis (H2),

4

∫ T

0

|α′|2 + |γ′|2

|γ|2
‖vm‖2 ≤ ĉ

∫ T

0

‖vm‖2,

where ĉ is a positive constant.
Then, there is a positive constant c, such that

∫ t

0

|v′m|2 + ‖vm(t)‖2 ≤ c+ c

∫ T

0

‖vm‖2.

By Gronwall inequality we have

vm is bounded in L∞(0, T ;H1
0 (Ω)),

v′m is bounded in L2(0, T ;L2(Ω)).
(12)

Estimate III: Taking w = −
∂2vm

∂y2
in (4) and after to integrate the second term by

parts we have

−
(
v′m,

∂2vm

∂y2

)
+ a(t)

(∂2vm

∂y2
,
∂2vm

∂y2

)
+

(
b(y, t)

∂vm

∂y
,
∂2vm

∂y2

)
= −

(
g,
∂2vm

∂y2

)
. (13)

The first term on left hand side in (13) implies that

−
(
v′m,

∂2vm

∂y2

)
=

∫ 1

0

∂v′m
∂y

∂vm

∂y

1

2

d

dt
‖vm‖2. (14)

The second term on left hand side in (13) give us

a(t)
(∂2vm

∂y2
,
∂2vm

∂y2

)
≥

k

γ2
1

∣∣∣∂
2vm

∂y2

∣∣∣
2

. (15)

As 0 < y < 1 and from the hypothesis (H1), we have

((α′ + γ′y

γ

)∂vm

∂y
,
∂2vm

∂y2

)
≤

( |α′| + |γ′|

γ0

)
‖vm‖

∣∣∣∂
2vm

∂y2

∣∣∣.

Then

( |α′| + |γ′|

γ0

)
‖vm‖

∣∣∣∂
2vm

∂y2

∣∣∣ ≤ 4γ2
1

k

( |α′| + |γ′|

γ0

)2

‖vm‖2 +
k

4γ2
1

∣∣∣∂
2vm

∂y2

∣∣∣
2

. (16)
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Similarly we have

−
(
g,
∂2vm

∂y

)
≤

∣∣∣g
∣∣∣
∣∣∣∂

2vm

∂y2

∣∣∣ ≤ 4γ2
1

k

∣∣∣g
∣∣∣
2

+
k

4γ2
1

∣∣∣∂
2vm

∂y2

∣∣∣
2

. (17)

Substituting (14), (15), (16) and (17) in the equation (13), we obtain

1

2

d

dt
||vm||2 +

k

2γ2
1

∣∣∣∂
2vm

∂y2

∣∣∣
2

≤
4γ2

1

k

( |α′| + |γ′|

γ0

)2

||vm||2 +
4γ2

1

k
|g|2.

Denoting C1 by

C1 =
4γ2

1

k

( |α′| + |γ′|

γ0

)2

.

We have then

d

dt
||vm||2 +

k

γ2
1

∣∣∣∂
2vm

∂y2

∣∣∣
2

≤ 2C1||vm||2 +
8γ2

1

k
|g|2 ≤ C(||vm||2 + |g|2).

where C = max
{

2C1,
8γ2

1

k

}
.

Integrating from 0 to t < Tm and as g ∈ L2(0, T ;L2(Ω)) and vm(0) → v0 in
H1

0 (Ω) we have that

‖vm(t)‖2 +

t∫

0

|
∂2vm

∂y2
|2 ≤ C + C

T∫

0

‖vm‖2.

By Gronwall inequality we conclude that

vm is bounded in L∞(0, T ;H1
0 (Ω))

∂2vm

∂y2
is bounded in L2(0, T ;L2(Ω)).

(18)

The estimates obtained in (7), (12) and (18), permit us to pass the limits in the
approximate system (4) in the Faedo-Galerkin method, see for instance ( [5,9]) and
hence, we have proved the existence of solutions v(y, t) in the sense defined in
Theorem 3.1. tu

Uniqueness: The uniqueness of solution is made by contradiction and does
not prove that work.tu

Hence, now we can to prove the Theorem 3.2:

Proof: Let v the solution of the Problem (3), with the following initial data

v0(y) = u0(α(0) + γ(0)y).

Consider the function u(x, t) = v(y, t), where x = α(t) + γ(t)y. To verify that
u(x, t), under the hypotheses of Theorem 3.2, is the solution of Problem 1, it is
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sufficient to observe that the mapping τ : Qt −→ Q is of class C2. Since the Prob-
lems 1 and 3 are equivalently, then u satisfy the Problem 1.tu

In the next theorem, we shall also prove the following regularity result, under
further requirements of initial conditions and the regularity for α(t) and β(t), given
by

H3: α, β ∈W k,∞(0, T ), 0 < γ0 < γ(t) < γ1, ∀ t ≥ 0.

So we establish the following regularity result, whose proof can be found in [10]:

Theorem 3.3 Under the hypotheses (H2) and (H3) and given the initial data
dkv(0)

dtk
∈ (H1

0 (0, 1) ∩ H2(0, 1)) and g ∈ Hk(0, T ;Hk(0, 1)), then there exists a

unique solution v : Q→ IR, of the problem (II), satisfying the following conditions

v ∈ L2(0, T ;Hk+1
0 (0, 1) ∩Hk+2(0, 1)), for k = 0, 1, · · · .

The regularity of v(y, t) given by Theorem (3.3), implies the regularity of u(x, t)
solution of the Problem (4) and the uniqueness of solutions of the Problem (4) is
a direct consequence of uniqueness of the Problem (3). tu

4. Approximate Solution

Our goal in this section is the numerical implementation of approximate solu-
tions. To obtain the numerical approximate solutions we will use both finite element
method and finite difference method. Moreover, some numerical experiments will
be presented to analyze the effect of the moving boundary in the thermodynamics
system (4).

For convenience, our numerical analysis using finite element method approx-
imation will be based on the equivalent problem (3) in the rectangular domain,
instead of the problem (4), for which the domain depends on time. The variational
formulation of the problem (3), is given by





(v′, w) + a(t)(
∂v

∂y
,
∂w

∂y
) − (b(y, t)

∂v

∂y
, w) = (g(y, t), w), ∀w ∈ H1

0 (0, 1)

v(0, t) = 0, v(1, t) = 0, ∀t ∈ [0, T ]

(v(0), w) = (v0, w).

(19)

4.1. Faedo-Galerkin Method and Approximation. Let Vm the subspace
spanned by {ϕ1, ϕ2, . . . , ϕm+1}, where {ϕν ; ν = 1, · · · ,m+ 1} are the first m+ 1
bases vectors of the space V = H1

0 (Ω). If vh(y, t) ∈ Vm, then it can be represented
by

vh(y, t) =

m+1∑

i=1

ci(t)ϕi(y), ϕi(y) ∈ Vm. (20)
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Restricting the equation (19) in the subspace Vm and taking vh in (20) we find
that ∫ 1

0

( m+1∑

i=1

c′i(t)ϕi(y)
)
w dy + a(t)

∫ 1

0

( m+1∑

i=1

ci(t)
∂ϕi

∂y

)∂w
∂y

dy

−

∫ 1

0

b(y, t)
( m+1∑

i=1

ci(t)
∂ϕi

∂y

)
w dy =

∫ 1

0

g(y, t)w dy.

(21)

Taking, in particular, w = ϕj(y) ∈ Vm, j = 1, 2, ...,m in (21) one gets

m+1∑

i=1

{
c′i(t)

∫ 1

0

ϕi(y)ϕj(y)dy + ci(t)a(t)

∫ 1

0

∂ϕi

∂y

∂ϕj

∂y
dy

−ci(t)

∫ 1

0

b(y, t)
∂ϕi

∂y
ϕjdy

}
=

∫ 1

0

g(y, t)ϕj(y) dy,

(22)

We define

A =

∫ 1

0

∂ϕi(y)

∂y

∂ϕj(y)

∂y
dy, B(t) =

∫ 1

0

b(y, t)
∂ϕi(y)

∂y
ϕj(y) dy

D =

∫ 1

0

ϕi(y)ϕj(y) dy, G(t) =

∫ 1

0

g(y, t)ϕj(y) dy,

where A,B(t) and D are m ×m square matrix and G is a vector known m × 1.
Substituting the matrices in (22), we obtain the following ordinary differential
system, ∣∣∣∣∣

Dc′(t) +
(
a(t)A−B(t)

)
c(t) = G(t), ∀t ≥ 0

c(0) = c0.
(23)

where c = [c1, c2, ..., cm]t is a m×1 c is the vector to be determined in each discrete
time.

4.2. Finite Difference Method. In order to solve the system (23) in each
discrete time, we will apply the numerical method due to Crank-Nicolson (see, for
instance, Hugles [6] ).

For T > 0, N a given positive integer, we define the time step ∆t and let
cn = c(tn) be the approximate solution of the exact solution c(t) of (23), where we
denote the discrete time in the interval [0, T ] by tn = n∆t, n = 0, 1 · · ·N , and the
values of W at the discrete time tn by Wn.

Consider the following approximation for the function c(t), using difference
finite method in the discrete time n = 0, 1, · · · , N

c′(tn) =
1

∆t

(
cn+1 − cn

)
and c(tn) =

1

2

(
cn + cn+1

)
(24)

Setting t = tn in (23), using (24) and after multiplying the equation by ∆t, we
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obtain the iterative method
(
D + ∆t

2 (anA−Bn)
)
cn+1 =

(
D − ∆t

2 (anA−Bn)
)
cn + ∆t

2

(
Gn+1 +Gn

)

for n = 0, 1, · · · , N.
(25)

Suppose that the matrices, D = Dij , A = Aij and B = Bij are known, then the
iterative method (25) can be easily implemented. From initial conditions, c0 is
known. Then taking t = 0 into (25) yields,

(
D +

∆t

2
(a0A−B0)

)
c1 =

(
D −

∆t

2
(a0A−B0)

)
c0 +

∆t

2

(
G1 +G0

)
. (26)

Solving the linear system then get the vector c1 = (c11, c
1
2, · · · , c

1
m). Then for

n = 1, 2 · · · N we have the same procedure and the values of cn = (cn1 , c
n
2 , · · · , c

n
m),

are determined with an iterative process in each instant of time tn = n∆t.
Note that the matrix D and A are positive definite and symmetric, and the B

matrix is anti-symmetric. In addition, the matrix of coefficients (D+(∆t/2)(anA−
Bn)) of the system (25) is not singular for each instant of time.

4.3. Finite Element Approximation. To calculate the matrices of linear sys-
tem (25), we need to introduce the basis function ϕi ∈ Vm. In finite element
method, the bases functions are piecewise polynomials of some degree in Ω and
vanish on ∂Ω (see, for instance, [4]). More specifically, in this work, we have
used the hat function, i.e, piecewise linear functions, as the basis function of Vm

subspace, defined in the following way

ϕi(y) =





y − yi−1

h
, ∀ y ∈ [yi−1, yi]

yi+1 − y

h
, ∀ y ∈ [yi, yi+1]

0, ∀ y /∈ [yi−1, yi+1]

(27)

where we are considering the uniform mesh, h = hi = yi+1 − yi , i = 1, 2, . . . ,m in
the discretization in m-parts, with 0 = y1 < y2 < · · · < ym+1 = 1. Note that, if
|i− j| > 2, then (ϕi, ϕj) = 0, and (∂ϕi/∂y, ∂ϕj/∂y) = 0. Hence all the matrices of
system (25) are tridiagonal.

Note that we can interpolate the function g(y, t) in Ω, using the base function
ϕi(y), i.e, we take

g(y, t) =
m+1∑

i=1

gi(t)ϕi(y), with gi(t) = g(yi, t).

Thus, the function G(t) can be rewritten as follows:

G(t) =

m+1∑

i=1

∫ 1

0

gi(t)ϕiϕj dy = Dijgi(t),
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and for discrete time, we have G(tn) = Gn = Dgn, where D is the matrix defined
before.

5. Numerical Simulation

In this section, attention is turned to implementation of approximate solutions,
whose programs were developed in the thesis [12]. A numerical experiments will be
given to analyze the effect of the moving ends of Ωt. The goal is to obtain exact so-
lutions to compare with the approximate numerical one, which are obtained by the
iterative method (25). For this, we introduce an appropriate external force f(x, t)
sufficiently regular on the right-hand side of the original Problem (1). Therefore,
the exact solution is known for suitable choice of f(x, t), which allow us to get the
numerical simulation for Problem(1) or Problem (3). The error estimates, in the
semi-discrete or fully discrete, can be found [10]. This will be the procedure for
analysis of the convergence. Notice that, for problem (1) the equivalent external
force acting in the equation (3)1 would be a function g(y, t) defined from f via the
diffeomorphism T , defined in (2). This way, we will work with the system (3).

Example -. Let

v(y, t) =
1

π2
sin(πy)cos(πt)

be a exact solution of the o Problem (3) for suitable choice of g(y, t). Then, the
initial and boundary conditions read, respectively

v(y, 0) =
1

π2
sin(πy), v(0, t) = v(1, t) = 0.

Considering the ends functions of Ωt define by

α(t) = −
t

t+ 1
and β(t) =

2t+ 1

t+ 1
, then γ(t) = β(t) − α(t) =

3t+ 1

t+ 1
.

From this one has

lim
t→∞

α(t) = −1, lim
t→∞

β(t) = 2 and lim
t→∞

γ(t) = 3.

Moreover, γ(t) is increasing, b(y, t) and a(t) defined in the Problem (3) are given
by

b(y, t) =

(
α′(t) + yγ′(t)

)

γ(t)
=

2y − 1

(t+ 1)(3t+ 1)
, a(t) =

k

γ(t)2
= k

(t+ 1)2

(3t+ 1)2

Numerical Error -. In the norm L∞(0, T ;L2(Ωt)) the numerical error between the
approximate uh(x, t) and exact u(x, t) solution is calculated by :

EL∞(0,T ;L2(Ωt)) = max
tn∈[0,1]

(
|u(x, tn) − uh(x, tn)|L2(Ωt)

)

= max
tn∈[0,1]

(∫ β(t)

α(t)

|u(xi, tn) − uh(xi, tn)|2dx
)1/2

,
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for i = 1, · · · ,m and n = 1, · · · , N.

The table that follow, is shown the errors obtained between exact and approx-
imate solutions to the problem (1) when the step time is fixed ∆t = 0.01 and
for several sizes of mesh h = 0.1; 0.05; 0.02; 0.01; 0.001 that represent respectively
m = 10; 20; 50; 100; 1000 nodes of the interval [α(t), β(t)]. For this case were made
100 iterations in the iterative method (25).

Table

∆t h EL∞(0,T ;L2(Ωt))

0.01 0.1 0.005747
0.01 0.05 0.005723
0.01 0.02 0.005717
0.01 0.01 0.005688
0.01 0.001 0.005652

Note that each error depends algebraically on h. That is, the errorEL∞(0,T ;L2(Ωt))

decrease as the mesh size h decrease, as expected, albeit slowly.

The results in the table of error, encourages us that the numerical method used
is good, thus, employing the same procedure to determine the numerical solution of
the problem with zero external force, g(y, t) = 0 in the problem (3), i.e, f(x, t) = 0
the original problem (1). Moreover, when f(x, t) = 0 we have the exponential
decay of energy, which is dependent on the thermal conductivity k as shown in the
following theorem:

Asymptotic behavior of the energy -. The goal in this section is to establish a rate
decay for the energy of system (1). Therefore, the asymptotic behavior, as t→ ∞,
of the natural energy

E(t) =
1

2
|u(t)|2L2(Ωt)

(28)

will be obtained inside of the time dependent domain Qt. Thus, we can state

Theorem 5.1 Assuming the hypotheses of Theorem 3.2, then the energy E(t) as-
sociated with the global weak solution of system (1) satisfies

E(t) ≤ E(0)e−2kt/γ2

1 ∀t ≥ 0.

where γ1 is a positive real constant, given in (H1).

In order to prove the Theorem 5.1 one needs to establish the Poincarè inequality
in Ωt. Thus one has.

Lemma 5.1 If u ∈ H1
0 (Ωt) then the Poicaré inequality

|u(t)|2L2(Ωt)
≤ γ2(t)|ux(t)|2L2(Ωt)

. (29)
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Proof: In fact, from the fundamental theorem of calculus one has

u (x, t) =

∫ x

α(t)

∂

∂ξ
u (ξ, t) dξ.

From this and Cauchy-Schwartz inequality one has

|u(x, t)|2IR ≤ γ(t)|ux(t)|2L2(Ωt)
.

Integrating in Ωt one gets

|u(t)|2L2(Ωt)
≤ γ2(t)|ux(t)|2L2(Ωt)

tu

Proof: Multiplying both sides of (1)1 by u(x, t) and integrating on Ωt yields

∫ β(t)

α(t)

[
ut(x, t) − kuxx(x, t)

]
u (x, t) dx = 0. (30)

Applying the Leibnitz rule in each term of (30) one has

∫ β(t)

α(t)

u (x, t)ut (x, t) dx =
1

2

d

dt

∫ β(t)

α(t)

|u (x, t)|
2
dx−

1

2
u2 (β (t) , t)β′ (t) +

1

2
u2 (α (t) , t)α′ (t) .

From this and boundary conditions imply that

∫ β(t)

α(t)

u (x, t)ut (x, t) dx =
1

2

d

dt
|u (t)|

2
L2(Ωt)

. (31)

Integrating by parts and using the boundary conditions, in the second term yield

∫ β(t)

α(t)

u(x, t)uxx(x, t)dx = |ux(t)|2L2(Ωt)
. (32)

Inserting (31) and (32) in (30) one has

1

2

d

dt
|u (t)|

2
L2(Ωt)

= −k |ux (t)|
2
L2(Ωt)

.

From Lemma 5.1 and hypothesis (H1) one gets

|u (t)|
2
L2(Ωt)

≤ γ2
1 |ux (t)|

2
L2(Ωt)

.

Therefore,
1

2

d

dt
|u (t)|

2
L2(Ωt)

≤ −
k

γ2
1

|u (t)|
2
L2(Ωt)

for all t ≥ 0. (33)
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k = 0.0038
k = 0.012
k = 0.86
k = 1.71

t

u
(
x
,
t
)

10.80.60.40.20

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

Figure 1 - Asymptotic decay of energy

From (28) and (33) one gets

d

dt

{
e2kt/γ2

1E (t)
}
≤ 0. (34)

Integrating from 0 to t we conclude the demonstration of Theorem 5.1 tu

In the following, we show graphically the asymptotic decay of energy for differ-
ent k, representing the materials, that are inserted in the table:

Material k(cm2/s)
Silver 1.71

Aluminum 0.86
Iron 0.12
Clay 0.0038

The Fig. 1, represents, for fixed x = 0.5, the same problem for different values
of k (thermal conductivity) data contained in the table . We can see that the rate
of decay of energy depends on the value of k, as expected.

The Fig.2, depicts the solution when f ≡ 0 in the Problema 1 and taking
k = 1, 71 (silver). That is, the effect of the moving boundary in the thermodynamics
system (1). One can see the decline of the solution when the time t is increasing.
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