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Stabilization of Navier-Stokes Equations

Viorel Barbu (Tagi, Romania)

ABSTRACT: We survey here a few recent stabilization results for Navier-Stokes
equations.
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1. Introduction

We are concerned here with the stabilization of steady state solutions to Navier-
Stokes equation

y—vAy+ (y-V)y=Vp+mu+ fo inDxR"

V.y=0 in D x R+ W
y=0 on 0D x Rt
y(0) = %o in D

where D is a bounded and smooth domain of R%, d = 2,3 and f. € (L*(D))<. Here

m € C}(O) and m > 1 on O; CC O where Oy, O are open subdomains of D.
There is a large number of recent works devoted to feedback stabilization of

Navier-Stokes equations of the form (1) with internal and boundary controllers.
Let y. be a solution to stationary equation

—VvAy. + (ye : v)ye =Vpe+ fe inD

V-ye=0 in D (2)
Ye =0 on dD.
The main result established in [4] (see also [l], [5], [0]) is that there is a

stabilizing feedback controller u = u(t,x) of the form

M
ltia) ==Y wi@) [ Rly=peimda )
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where R is a self-adjoint operator to be precised below and {;}M, is a given
system of functions.

We set y —y. = y, H = {y € (L*(D))¥; V-y =0, y-n = 0 on D},
P: (L*(D))% — H is the Leray projector and

Ay = PAy, By=P(y-V)y,

with D(A) = {y € HN (H(D))% Ay € (L?(D))?}. Then we may write equation
for y =y — vy as

Y (#) + vAy(t) + Ay(t) + By(t) = Fu

dt (4)
y(0) =yo—ye ==
M
where Aoy = P((ye-V)y+(y-V)y.) and Fu = Z P(map;)u;, {1} M, € D(A). We

i=1
shall denote by | - | the norm of H, (-,-) the scalar product and by A%, 0 < a < 1,
the fractional power of order a of operator A%. We set also |u|, = |AZu| for all
a € (0,1).
The operator R arising in (3) is the symmetric solution to Riccati equation

1 1 :
(VA + Ao)y, Ry) + 3| F*Ry|* = 5 |A%y[*, Wy € D(A¥) (5)

and has the following properties (see [1])

R € L(D(A%),(D(A%))) N L(D(A%), H) (6)
(Ry,y) > 0|A1y|?, Wy € D(A1). (7)

Here {¢;}}L, is a system of functions which belongs to space lin{e;}., of eigen-
functions far A = vA + Ag (N is the number of unstable eigenvalues) and the
dimension M of the system is given by spectral properties of A (M = 2 if all
unstable eigenvalues are simple and is maximum 2N in general case). As shown

in [4], the feedback operator (3) exponentially stabilizes zero solution of (4) in a
neighborhood )
U, = {x € D(A%); Jaly < p}. ®)
The optimal radius p of stability domain ¢/, is determined by formula
2|b R
wiy<e  lyl3

where b(y, z,w) = [,(y- V)zwdz, Yy, z,w € D(A%). It follows that for d = 3,
p might be taken as

1
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This result is of course not optimal because it uses a linear stabilizing feedback
for the linearized equation in nonlinear equation (4) and so our aim here is to find
the maximal domain of stability via a nonlinear feedback control.

One might speculate that an optimal control feedback for equation (4) with
cost functional

S =5 [ @) + (o ()

has a wider domain of stability. The construction of such a feedback law is our
aim. Here |- |/ is the norm in RM.
We shall denote by A : D(A) = D(A) — H the operator

Ay =vAy + Aoy, D(A) = D(A) (12)
and by B : D(B) C H — H the operator defined by
(By,w) = by, y,w), Yw € D(A?). (13)

We shall denote by W the space D(A%) with the norm denoted | - Fe

In Section 2 below we shall develop this approach and refer to [2] for com-
plete proofs. Section 3 is devoted to a different technique, stabilization by noise
developed in forth-coming paper [3].

2. The nonlinear optimal control problem
Consider the control system (4), i.e.,
W\ Ayt By=Fu V>0
hal:d - Fu ’
at YT ERYE A T (14)
y(0) ==,

M
where u(t) = {u;(t)}, and Fu = Z u; P(map;)(x). By solution to (14) on [0, T] we

i=1

d, 1

mean a function y € C([0,T]; H) N L2(0,T; D(Az)) with d—i € L*(0,T;(D(A2)))
which satisfies a.e. the equation. For d = 2 and = € H there is a unique such a
solution while for d = 3 it exists only locally or globally (in time) for x in a suitable
chosen neighborhood of origin. We shall denote by D the stabilizability domain of
(14) with respect to cost functional (11), i.e.,

D={zeW; I(y,u)eL?(0, 00; D(A))x L2(0, 00; RM) satisfying (14)}.  (15)

As mentioned earlier D # () and it contains U, given by (8).
Define the function ¢ : D — R,

p(z) = inf (J(.u)}, Yo €D, (16)

We have
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Proposition 1 For each x € D there is at least one pair (y*,u*) such that

plx) = J(y", u’). (17)
Moreover, y*(t) € D, Vt > 0.

Proof. Existence is standard and so it will be omitted. =

Theorem 2 below is a maximum principle type result for problem (16). For the
sake of simplicity we shall assume from now on that d = 2. The extension to d = 3
is however straightforward.

Theorem 2 Let (y*,u*) be optimal in problem (16). Then
M

u*(t) = F*p(t) = {/D m(x)z/zi(x)p(t,m)dx} , Vt >0, (18)

i=1

where p € L2(0,00; H)NC(]0, 00); H) N L>(0, 00; D(A7)) N L2(0, 00; D(A%)) is the
solution to equation

d s
dlt? —A*p — (B'(y*))*p = A2y* a.e. t > 0. (19)

Here A* is the adjoint of A in H and (B'(y*))* is defined by
((B'(y"))"p.w) = b(y" w,p) + b(w,y”,p), Yw € D(A?). (20)
Proof: If (y*,u*) is optimal in (16), then it is also optimal for problem

stind [ (0O +1o(0) - 7" Ryl )t

d
d;g + A+ FF*Ry+ By =Fv, y(0)=z,v € L2(0,OO;RM)},

(21)

too, where R € L(D(A%),(D(A3)) N L(D(Az2), H) is the solution to the algebraic
Riccati equation (5).
Next we consider the operator £ : L2(0,00; H) — L?(0, 00; H) defined by

(L2)(t) = % + Az(t) + B'((y* (1)2(t) + FF*Rz(t)), ¥z € D(L)  (22)
D(£) = {= € L2(0,00; D(A41)) N C([0, 00); D(A%));
dz 2 EXNV
a €L (0,00, (D(A4)) )7 (23)
dz 9 _ _
I + Az € L*(0,00; H), 2(0) —O}.
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d
We have also that, if 2 € D(L), then z € L2 (0, 00; D(A)), = € L2,(0,00; H).

loc dt loc

(By L? .(0,00; X) we mean the space of measurable functions u : (0,00) — X such

that u € L?(6,T; X) forall 0 < 6 < T < 00.) We set

d
W12(0,00; H) = {z € L%,(0, 00, H); d% € L2 (0,00, H)}.
and it turns out that (see [2]) the operator L is surjective. O

Proof of Theorem 2. For each f € L?(0,00; H), the solution ¢ € L?(0, H; H) to

equation

Y Aq- (B (FF'Ryq=J, 120 (24)

is defined by

<Qad)>L2(0,oo;H) = _<fa‘c_1¢>L2(O,oo;H)7 V’(/JEL2(O,OO,H) (25)

and so L*(q) = —f where L£* is the adjoint of L.
According to this definition, the solution p to equation (19) is defined by

(0 V) 12(0,00;H) = (A%y* — RFF*p, L) 120,050y, V¥ € L*(0,00; H).  (26)

Since, as seen earlier, FF*Rz = FF*RL 14 € L?(0,00; H), (26) makes sense.
Now, coming back to problem (21), we see that for v*(¢) = u*(¢t) + F*Ry*(t)
(optimal) we have

/Oo(o(y*(t),Z(t))g+(v*(t)—F*Ry*(t)7v(t)—F*RZ(t)))dtZO (27)

for all v € L2(0,00; RM), where z is the solution to equation
L(z) = Fu. (28)

3

(Here (-,-)3 is the scalar product in D(A%).) Then, if p is the solution to equation
Lp* = —(A%y* — RFu"), (29)
we obtain by (27) that
(L*p, 2) 12(0,00:1) — (W5, V) 12(0,00:11) = 0, Vv € L*(0, 00; H)
and we get (18) as claimed.

Theorem 3 For x € U, and p sufficiently small the solution (y*,u*) to problem
(16) is unique and ¢ : W — R is Gateaux differentiable on U,. Moreover, the
semigroup t — y*(t,x) leaves invariant the set U, and

u(t) = —F"Vo(y"(t), vi=0. (30)
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Proof. The proof of uniqueness for solution (y*,p) to system (14), (19), (20) for
x € U, with p small enough follows as in [7] by standard estimates of the type used
above for the solutions to system (4), (20). Moreover, by (18) we see that for all
hel,,

i LI 7 (40,200 + 000, w0
0

210

where (z,v) is the solution to system

% +Az+ B'(y*)z = Fv, t>0
z(0) = h.
Then, we obtain that
.1
— (p(0),h) =lim 5 (p(x + Ah) — p(2)). (31)

Hence —p(0) = V(x), where p is the solution to equation (20). By the dynamic
programming principle the latter implies also that (30) holds and the flow ¢ —
y*(t,x) leaves invariant U,. "

Corollary 1 The function ¢ is the unique solution onlU, to operatorial (Hamilton—
Jacobi) equation

1 1
(Az + Bz, Vgo(x))+§ |F*V<p(x)|2:§ |x|2%, Veeld,ND(A). (32)

Moreover, ¢ is convex for a sufficiently small p, ¢(z) > ~|z|3, Vo € U, and
2
(D2p(0)h, h) = (Rh,h) > v|h|%, Vh € W, where v is a positive constant.
2

Proof. Equation (32) follows by (30) and the obvious relation

o) =5 [ e

?'% + [u*(s)|3,)ds, Yt > 0. (33)

Conversely, if ¢ is a solution to (32), then (33) holds and this proves uniqueness of
solution ¢ to (32).

We note also that D2p(0) = R € L(W,W') N L(D(Az), H) is the solution to
the algebraic Riccati equation (5) and D?*p € Cy(U,; L(D(Az2),H). In particular
this implies that ¢ is convex in the neighborhood U, of the origin for p sufficiently
small. n

3. Stabilization by noise

Throughout in the following 3;, i = 1, ..., are independent Brownian motions in
a probability space {Q,P, F, Fi}i~0-
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Consider the Navier-Stokes equation (1), i.e.,

X —VvAX +(X-V)X =f.+Vp inD x(0,00)
V-X=0, X|,,=0 (34)
X(0) =, DC R d>2.

Let X, be a steady-state to (34), i.e. (see (2)),

—vAX. + (X, -V)Xe=fe+Vpe inD

(35)
V-X.=0, Xc|,,=0.
If X = X — X,, equation (34) reduces to
Xi—VvAX+H(X - V)X 4+ (X - V)X+H(X - V)X =Vp
V-X=0, X|,,=0 (36)
X(0)==x
where X is ¢ — X,.
Or, in the space H,
X(t)+ AX(t)+BX(t) =0, t >0, (37)

X(0) = x.

To stabilize the linearized part of (37), we associate the control stochastic prob-
lem

dX + AX dt = vdW;

X(0) == (38)

where W, is a Wiener process in a probability space {Q, P, F, F; }+~0 and v a control
input to be precised below.

We recall a few properties of the Stokes-Oseen operator A defined above.

We shall denote by H the complexified space H+iH with scalar product denoted
(-,-) and norm |-| 7. Denote again A the extension of A to this space. The operator
A has a compact resolvent (A + A)~! and —A generates a Cp-analytic semigroup
e~Atin H. Consequently, it has a countable number of eigenvalues {\;},;=1 with
corresponding eigenfunctions ¢; each with finite algebraic multiplicity m;.

We shall denote by N the number of eigenvalues A; with ReA; < —v, j =
1,...,N, where 7 is a fixed positive number.

Denote by Py the projector on the finite dimensional space

X, = lin span{y; }jvzl (39)

We have /'?u = ﬁNﬁ and

~ 1
Pv=— [ O\T+A) "\
21 T
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where I is a closed smooth curve in C which is the boundary of a domain containing
in interior the eigenvalues {)\;}7 .

Let .Au~ =PnA, As= (- ﬁN).A. Then A, A, leave invariant spaces X, Xs =
(I — Py)H and the spectra o(A,), o(A;) are given by (see [9])

o(Ay) = {)‘j}é'v:h o(As) = {)\j};o:NJrl'

Since o(As) C {A € C; ReX > —v} and A, generates an analytic Cp-semigroup
on H, we have B
le~Asta|; < CeMaly, Yo e H, t>0. (40)

We set
Yj =Reg;, ¥j =Img;, j=1,...N, (1)

and
X, = lin span{{w;—} U {1/)?}}?’11

Xs = lin span{{yj} U {2 }}52 vy

Clearly, A leaves invariant the real spaces X, and X;. More precisely, we have
Xy, =X, +iXy, Xs=Xs+iXs

and therefore, H = X,, ® X, the direct sum of X,, and X (see, e.g., [9]). Since the
system {\;}, is of the form

{fjﬁ:i??j ?i/[lv {5j}§\4:01’ 2M+M0:N7 €j7nja5j €ER

it follows that
X, = lin span{¢y; };-V:l, (42)
where

g (43)
Y; = ¢; (real eigenfunctions), 2M < j < N.

The infinite dimensional space X is similarly generated and estimate (40) remains
valid in the | - |y-norm for A, defined on X5 C H. We shall denote by Py the
projector corresponding to the decomposition H = X, & X, i.e.,

X, = PyH, X, = (I — Py)H.

Consider the orthonormal system {¢; ;V:I obtained from {v; }é\le by the Schmidt
orthogonalization procedure.
Consider the following stochastic perturbation of the linearized system (5) (see

(6))
N
AX + AX dt=n}_ (X(1), 6:) P(mo:)dfi(t) (44)
X(0) = x, -
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where n € R and m = xo, is the characteristic of the open subset Og C D.
Equation (44) can be seen as a closed loop system associated to the controlled
equation

N
dX + AX dt =n» vi(t)P(me;)dBi(t), t >0,

=1

(45)
X(0) = x,
with the feedback controller v; = (X (t), ¢;), i = 1,..., N.

Theorem 4 Let X = X(t,x) be the solution to (45). Then, for |n| sufficiently
large, we have

]P’{tlim X (1) = 0} =1, VaeH, (46)
The closed loop system (44) can be equivalently written as
dX(t) —vAX(t)dt + (X (t) - V) Xdt + (X - V)X (t)dt

N
= an(X(t), ¢i)pidPB;(t) + Vp(t)dt in (0,00) x D .
V-X(t) = 0,_X(t

X(0)==xin D.

)|8D:0

In particular, it follows by Theorem 4 that the feedback controller u; = nm(X —
Xe, 0i)di, i = 1,..., N, stabilizes exponentially the stationary solution X., i.e., we
have

Corollary 2.1. The solution X to closed loop system

N
dX (t) — vAX (t)dt = npm» (X (t) = Xe, ¢i)¢idB;(t) + Vpdt, t >0

i=1 48
V-X=0, X|,,=0 (48)
X(0) =2
satisfies
P { Tim (X(t) = X,)e! = 0] =1, Vze . (49)

The proof of Theorem 4 follows from same sharp arguments involving the mar-
tingale theory and is given in [3].
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