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Stabilization of Navier-Stokes Equations
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abstract: We survey here a few recent stabilization results for Navier-Stokes
equations.
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1. Introduction

We are concerned here with the stabilization of steady state solutions to Navier-
Stokes equation

yt − ν∆y + (y · ∇)y = ∇p+mu+ fe in D ×R+

∇ · y = 0 in D ×R+

y = 0 on ∂D ×R+

y(0) = y0 in D

(1)

where D is a bounded and smooth domain of Rd, d = 2, 3 and fe ∈ (L2(D))d. Here
m ∈ C1

0 (O) and m > 1 on O1 ⊂⊂ O where O1,O are open subdomains of D.
There is a large number of recent works devoted to feedback stabilization of

Navier-Stokes equations of the form (1) with internal and boundary controllers.
Let ye be a solution to stationary equation

−ν∆ye + (ye · ∇)ye = ∇pe + fe in D
∇ · ye = 0 in D
ye = 0 on ∂D.

(2)

The main result established in [4] (see also [1], [5], [6]) is that there is a

stabilizing feedback controller u = u(t, x) of the form

u(t, x) = −
M∑

i=1

ψi(x)

∫

D

R(y − ye)ψimdx (3)
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where R is a self-adjoint operator to be precised below and {ψi}
M
i=1 is a given

system of functions.
We set y − ye =⇒ y, H = {y ∈ (L2(D))d; ∇ · y = 0, y · n = 0 on ∂D},

P : (L2(D))d → H is the Leray projector and

Ay = P∆y, By = P (y · ∇)y,

with D(A) = {y ∈ H ∩ (H1
0 (D))d; ∆y ∈ (L2(D))d}. Then we may write equation

for y =⇒ y − ye as

dy

dt
(t) + νAy(t) +A0y(t) +By(t) = Fu

y(0) = y0 − ye = x

(4)

where A0y = P ((ye ·∇)y+(y ·∇)ye) and Fu =
M∑

i=1

P (mψi)ui, {ψi}
M
i=1 ⊂ D(A). We

shall denote by | · | the norm of H, (·, ·) the scalar product and by Aα, 0 < α < 1,
the fractional power of order α of operator Aα. We set also |u|α = |A

α

2 u| for all
α ∈ (0, 1).

The operator R arising in (3) is the symmetric solution to Riccati equation

((νA+A0)y,Ry) +
1

2
|F ∗Ry|2 =

1

2
|A

3

4 y|2, ∀y ∈ D(A
3

4 ) (5)

and has the following properties (see [4])

R ∈ L(D(A
1

4 ), (D(A
1

4 ))′) ∩ L(D(A
1

2 ), H) (6)

(Ry, y) ≥ δ|A
1

4 y|2, ∀y ∈ D(A
1

4 ). (7)

Here {ψi}
M
i=1 is a system of functions which belongs to space lin{ϕj}

N
j=1 of eigen-

functions farA = νA + A0 (N is the number of unstable eigenvalues) and the
dimension M of the system is given by spectral properties of A (M = 2 if all
unstable eigenvalues are simple and is maximum 2N in general case). As shown
in [4], the feedback operator (3) exponentially stabilizes zero solution of (4) in a
neighborhood

Uρ = {x ∈ D(A
1

4 ); |x| 1
2

< ρ}. (8)

The optimal radius ρ of stability domain Uρ is determined by formula

max
|y| 1

2

≤ρ

2|b(y, y,Ry)|

|y|23
2

< 1 (9)

where b(y, z, w) =
∫

D
(y · ∇)zw dx, ∀y, z, w ∈ D(A

1

2 ). It follows that for d = 3,
ρ might be taken as

0 < ρ <
1

2
‖R‖

L(D(A
1

2 ),H)
. (10)
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This result is of course not optimal because it uses a linear stabilizing feedback
for the linearized equation in nonlinear equation (4) and so our aim here is to find
the maximal domain of stability via a nonlinear feedback control.

One might speculate that an optimal control feedback for equation (4) with
cost functional

J(y, u) =
1

2

∫ ∞

0

(|y(t)|23
2

+ |u(t)|2M )dt (11)

has a wider domain of stability. The construction of such a feedback law is our
aim. Here | · |M is the norm in RM .

We shall denote by A : D(A) = D(A) → H the operator

Ay = νAy +A0y, D(A) = D(A) (12)

and by B : D(B) ⊂ H → H the operator defined by

(By,w) = b(y, y, w), ∀w ∈ D(A
1

2 ). (13)

We shall denote by W the space D(A
1

4 ) with the norm denoted | · | 1
2

.

In Section 2 below we shall develop this approach and refer to [2] for com-
plete proofs. Section 3 is devoted to a different technique, stabilization by noise
developed in forth-coming paper [3].

2. The nonlinear optimal control problem

Consider the control system (4), i.e.,

dy

dt
+ Ay +By = Fu, ∀t ≥ 0,

y(0) = x,

(14)

where u(t) = {ui(t)}
M
i=1 and Fu =

M∑

i=1

uiP (mψi)(x). By solution to (14) on [0, T ] we

mean a function y ∈ C([0, T ];H) ∩ L2(0, T ;D(A
1

2 )) with
dy

dt
∈ L2(0, T ; (D(A

1

2 ))′)

which satisfies a.e. the equation. For d = 2 and x ∈ H there is a unique such a
solution while for d = 3 it exists only locally or globally (in time) for x in a suitable
chosen neighborhood of origin. We shall denote by D the stabilizability domain of
(14) with respect to cost functional (11), i.e.,

D={x∈W ; ∃(y, u)∈L2(0,∞;D(A
3

4 ))×L2(0,∞;RM ) satisfying (14)}. (15)

As mentioned earlier D 6= ∅ and it contains Uρ given by (8).
Define the function ϕ : D → R,

ϕ(x) = inf
(y,u)

{J(y, u)}, ∀x ∈ D. (16)

We have
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Proposition 1 For each x ∈ D there is at least one pair (y∗, u∗) such that

ϕ(x) = J(y∗, u∗). (17)

Moreover, y∗(t) ∈ D, ∀t ≥ 0.

Proof. Existence is standard and so it will be omitted.

Theorem 2 below is a maximum principle type result for problem (16). For the
sake of simplicity we shall assume from now on that d = 2. The extension to d = 3
is however straightforward.

Theorem 2 Let (y∗, u∗) be optimal in problem (16). Then

u∗(t) = F ∗p(t) =

{∫

D

m(x)ψi(x)p(t, x)dx

}M

i=1

, ∀t > 0, (18)

where p ∈ L2(0,∞;H)∩C([0,∞);H)∩L∞(0,∞;D(A
1

4 ))∩L2(0,∞;D(A
3

4 )) is the

solution to equation

dp

dt
−A∗p− (B′(y∗))∗p = A

3

2 y∗ a.e. t ≥ 0. (19)

Here A∗ is the adjoint of A in H and (B′(y∗))∗ is defined by

((B′(y∗))∗p, w) = b(y∗, w, p) + b(w, y∗, p), ∀w ∈ D(A
1

2 ). (20)

Proof: If (y∗, u∗) is optimal in (16), then it is also optimal for problem

Min
{∫ ∞

0

(|y(t)|23
2

+ |v(t) − F ∗Ry(t)|2)dt;

dy

dt
+ A + FF ∗Ry +By = Fv, y(0) = x, v ∈ L2(0,∞;RM )

}
,

(21)

too, where R ∈ L(D(A
1

4 ), (D(A
1

4 )) ∩ L(D(A
1

2 ), H) is the solution to the algebraic
Riccati equation (5).

Next we consider the operator L : L2(0,∞;H) → L2(0,∞;H) defined by

(Lz)(t) =
dz

dt
+ Az(t) +B′((y∗(t))z(t) + FF ∗Rz(t)), ∀z ∈ D(L) (22)

D(L) =
{
z ∈ L2(0,∞;D(A

3

4 )) ∩ C([0,∞);D(A
1

4 ));

dz

dt
∈ L2(0,∞; (D(A

3

4 ))′),

dz

dt
+ Az ∈ L2(0,∞;H), z(0) = 0

}
.

(23)



Stabilization of Navier-Stokes Equations 111

We have also that, if z ∈ D(L), then z ∈ L2
loc(0,∞;D(A)),

dz

dt
∈ L2

loc(0,∞;H).

(By L2
loc(0,∞;X) we mean the space of measurable functions u : (0,∞) → X such

that u ∈ L2(δ, T ;X) for all 0 < δ < T <∞.) We set

W 1,2(0,∞;H) = {z ∈ L2
loc(0,∞;H);

dz

dt
∈ L2

loc(0,∞;H)}.

and it turns out that (see [2]) the operator L is surjective. �

Proof of Theorem 2. For each f ∈ L2(0,∞;H), the solution q ∈ L2(0, H;H) to
equation

dq

dt
−A∗q − (B′(y∗))∗q − (FF ∗R)∗q = f, t ≥ 0 (24)

is defined by

〈q, ψ〉L2(0,∞;H) = −〈f,L−1ψ〉L2(0,∞;H), ∀ψ∈L
2(0,∞;H) (25)

and so L∗(q) = −f where L∗ is the adjoint of L.
According to this definition, the solution p to equation (19) is defined by

〈p, ψ〉L2(0,∞;H) = (A
3

2 y∗ −RFF ∗p,L−1ψ)L2(0,∞;H), ∀ψ ∈ L2(0,∞;H). (26)

Since, as seen earlier, FF ∗Rz = FF ∗RL−1ψ ∈ L2(0,∞;H), (26) makes sense.
Now, coming back to problem (21), we see that for v∗(t) = u∗(t) + F ∗Ry∗(t)

(optimal) we have

∫ ∞

0

((y∗(t), z(t)) 3

2

+(v∗(t)−F ∗Ry∗(t), v(t)−F ∗Rz(t)))dt=0 (27)

for all v ∈ L2(0,∞;RM ), where z is the solution to equation

L(z) = Fv. (28)

(Here (·, ·) 3

2

is the scalar product in D(A
3

4 ).) Then, if p is the solution to equation

Lp∗ = −(A
3

2 y∗ −RFu∗), (29)

we obtain by (27) that

〈L∗p, z〉L2(0,∞;H) − 〈u∗, v〉L2(0,∞;H) = 0, ∀v ∈ L2(0,∞;H)

and we get (18) as claimed.

Theorem 3 For x ∈ Uρ and ρ sufficiently small the solution (y∗, u∗) to problem

(16) is unique and ϕ : W → R is Gâteaux differentiable on Uρ. Moreover, the

semigroup t→ y∗(t, x) leaves invariant the set Uρ and

u∗(t) = −F ∗∇ϕ(y∗(t)), ∀t ≥ 0. (30)
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Proof. The proof of uniqueness for solution (y∗, p) to system (14), (19), (20) for
x ∈ Uρ with ρ small enough follows as in [7] by standard estimates of the type used
above for the solutions to system (4), (20). Moreover, by (18) we see that for all
h ∈ Uρ,

lim
λ↓0

ϕ(x) + λh) − ϕ(x)

h
=

∫ ∞

0

(〈y∗(t), z(t)〉 3

2

+ (u∗(t), v(t))RM )dt

where (z, v) is the solution to system

dz

dt
+ Az +B′(y∗)z = Fv, t ≥ 0

z(0) = h.

Then, we obtain that

− (p(0), h) = lim
h↓0

1

h
(ϕ(x+ λh) − ϕ(x)). (31)

Hence −p(0) = ∇ϕ(x), where p is the solution to equation (20). By the dynamic
programming principle the latter implies also that (30) holds and the flow t →
y∗(t, x) leaves invariant Uρ.

Corollary 1 The function ϕ is the unique solution on Uρ to operatorial (Hamilton–

Jacobi) equation

(Ax+Bx,∇ϕ(x))+
1

2
|F ∗∇ϕ(x)|2=

1

2
|x|23

2

, ∀x∈Uρ∩D(A). (32)

Moreover, ϕ is convex for a sufficiently small ρ, ϕ(x) ≥ γ|x|21
2

, ∀x ∈ Uρ and

(D2ϕ(0)h, h) = (Rh, h) ≥ γ|h|21
2

, ∀h ∈W, where γ is a positive constant.

Proof. Equation (32) follows by (30) and the obvious relation

ϕ(y∗(t)) =
1

2

∫ ∞

t

(|y∗(s)|23
2

+ |u∗(s)|2M )ds, ∀t ≥ 0. (33)

Conversely, if ϕ is a solution to (32), then (33) holds and this proves uniqueness of
solution ϕ to (32).

We note also that D2ϕ(0) = R ∈ L(W,W ′) ∩ L(D(A
1

2 ), H) is the solution to

the algebraic Riccati equation (5) and D2ϕ ∈ Cb(Uρ;L(D(A
1

2 ), H). In particular
this implies that ϕ is convex in the neighborhood Uρ of the origin for ρ sufficiently
small.

3. Stabilization by noise

Throughout in the following βi, i = 1, ..., are independent Brownian motions in
a probability space {Ω,P,F ,Ft}t>0.
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Consider the Navier-Stokes equation (1), i.e.,

Xt − ν∆X + (X · ∇)X = fe + ∇p in D × (0,∞)

∇ ·X = 0, X
∣∣
∂D

= 0

X(0) = x, D ⊂ Rd, d ≥ 2.

(34)

Let Xe be a steady-state to (34), i.e. (see (2)),

−ν∆Xe + (Xe · ∇)Xe = fe + ∇pe in D

∇ ·Xe = 0, Xe

∣∣
∂D

= 0.
(35)

If X =⇒ X −Xe, equation (34) reduces to

Xt−ν∆X+(X · ∇)Xe+(Xe · ∇)X+(X · ∇)X = ∇p

∇ ·X = 0, X
∣∣
∂D

= 0

X(0) = x

(36)

where X is x−Xe.

Or, in the space H,

Ẋ(t) + AX(t) +BX(t) = 0, t ≥ 0,

X(0) = x.
(37)

To stabilize the linearized part of (37), we associate the control stochastic prob-
lem

dX + AX dt = v dWt

X(0) = x
(38)

where Wt is a Wiener process in a probability space {Ω,P,F ,Ft}t>0 and v a control
input to be precised below.

We recall a few properties of the Stokes–Oseen operator A defined above.
We shall denote by H̃ the complexified spaceH+iH with scalar product denoted

〈·, ·〉 and norm | · |
H̃

. Denote again A the extension of A to this space. The operator
A has a compact resolvent (λI +A)−1 and −A generates a C0-analytic semigroup

e−At in H̃. Consequently, it has a countable number of eigenvalues {λj}j=1 with
corresponding eigenfunctions ϕj each with finite algebraic multiplicity mj .

We shall denote by N the number of eigenvalues λj with Reλj ≤ −γ, j =
1, ..., N, where γ is a fixed positive number.

Denote by P̃N the projector on the finite dimensional space

X̃u = lin span{ϕj}
N
j=1. (39)

We have X̃u = P̃N H̃ and

P̃N =
1

2πi

∫

Γ

(λI + A)−1dλ,
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where Γ is a closed smooth curve in C which is the boundary of a domain containing
in interior the eigenvalues {λj}

N
j=1.

Let Au = PNA, As = (I− P̃N )A. Then Au, As leave invariant spaces X̃u, X̃s =

(I − P̃N )H̃ and the spectra σ(Au), σ(As) are given by (see [9])

σ(Au) = {λj}
N
j=1, σ(As) = {λj}

∞
j=N+1.

Since σ(As) ⊂ {λ ∈ C; Reλ > −γ} and As generates an analytic C0-semigroup

on H̃, we have
|e−Astx|

H̃
≤ Ce−γt|x|

H̃
, ∀x ∈ H̃, t ≥ 0. (40)

We set
ψ1

j = Reϕj , ψ
2
j = Imϕj , j = 1, ..., N, (41)

and
Xu = lin span{{ψ1

j } ∪ {ψ2
j }}

N
j=1

Xs = lin span{{ψ1
j } ∪ {ψ2

j }}
∞
j=N+1.

Clearly, A leaves invariant the real spaces Xu and Xs. More precisely, we have

X̃u = Xu + iXu, X̃s = Xs + iXs

and therefore, H = Xu ⊕Xs, the direct sum of Xu and Xs (see, e.g., [9]). Since the
system {λj}

N
j=1 is of the form

{ξj ± iηj}
2M
j=1, {δj}

M0

j=1, 2M +M0 = N, ξj , ηj , δj ∈ R

it follows that
Xu = lin span{ψj}

N
j=1, (42)

where
ψj = ψ1

j , 1 ≤ j ≤M, ψj = ψ2
j , M < j ≤ 2M,

ψj = ϕj (real eigenfunctions), 2M < j ≤ N.
(43)

The infinite dimensional space Xs is similarly generated and estimate (40) remains
valid in the | · |N -norm for As defined on Xs ⊂ H. We shall denote by PN the
projector corresponding to the decomposition H = Xu ⊕Xs, i.e.,

Xu = PNH, Xs = (I − PN )H.

Consider the orthonormal system {φj}
N
j=1 obtained from {ψj}

N
j=1 by the Schmidt

orthogonalization procedure.
Consider the following stochastic perturbation of the linearized system (5) (see

(6))

dX + AX dt = η

N∑

i=1

(X(t), φi)P (mφi)dβi(t)

X(0) = x,

(44)
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where η ∈ R and m = χO0
is the characteristic of the open subset O0 ⊂ D.

Equation (44) can be seen as a closed loop system associated to the controlled
equation

dX + AX dt = η

N∑

i=1

vi(t)P (mφi)dβi(t), t ≥ 0,

X(0) = x,

(45)

with the feedback controller vi = (X(t), φi), i = 1, ..., N.

Theorem 4 Let X = X(t, x) be the solution to (45). Then, for |η| sufficiently

large, we have

P

{
lim

t→∞
eγtX(t, x) = 0

}
= 1, ∀x ∈ H, (46)

The closed loop system (44) can be equivalently written as

dX(t) − ν∆X(t)dt+ (X(t) · ∇)Xedt+ (Xe · ∇)X(t)dt

= ηm

N∑

i=1

(X(t), φi)φidβi(t) + ∇p(t)dt in (0,∞) ×D

∇ ·X(t) = 0, X(t)
∣∣
∂D

= 0

X(0) = x in D.

(47)

In particular, it follows by Theorem 4 that the feedback controller ui = ηm(X −
Xe, φi)φi, i = 1, ..., N, stabilizes exponentially the stationary solution Xe, i.e., we
have
Corollary 2.1. The solution X to closed loop system

dX(t) − ν∆X(t)dt = ηm

N∑

i=1

(X(t) −Xe, φi)φidβi(t) + ∇pdt, t ≥ 0

∇ ·X = 0, X
∣∣
∂D

= 0

X(0) = x

(48)

satisfies

P

[
lim

t→∞
(X(t) −Xe)e

γt = 0
]

= 1, ∀x ∈ H. (49)

The proof of Theorem 4 follows from same sharp arguments involving the mar-
tingale theory and is given in [3].
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