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Well and ill-posed problems for the KdV and Kawahara equations

Gleb G. Doronin & Nikolai A. Larkin

abstract: Well and ill-posedness of initial-boundary value problems for the KdV
and Kawahara equations posed on a finite interval are discussed. Non-existence of
solutions to ill-posed problem for the KdV equation is proved as well as solvability,
uniqueness, exponential decay and asymptotics of regular solutions to the Kawahara
equation subject to reasonable boundary conditions.
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1. Introduction

Current discussion mainly concerns the existence and uniqueness of global-in-
time regular solutions to the scaled Kawahara equation

ut + uux − uxxxxx + uxxx = 0,

posed on a bounded interval. Our study is motivated by physics and numerics: the
general nonlinear relation known as the Kawahara equation is a fifth-order disper-
sive partial differential equation describing one-dimensional propagation of small-
amplitude long waves in various problems of fluid dynamics and plasma physics,
[5]. The Kawahara equation is also known as the fifth-order KdV or a special
version of the Benney-Lin equation, [1]. This model was originally developed for
unbounded regions of wave propagation when the coefficient of the third derivative
in the generalised KdV equation is close to zero. If, however, one is interested in
implementing a numerical scheme to calculate solutions to the KdV and/or Kawa-
hara equations in infinite regions, the issue of cutting off the spatial domain arises.
In this situation some boundary conditions are needed to specify the solution, [2].
Therefore, precise mathematical analysis of boundary value problems in bounded
domains for the KdV and Kawahara equations is to be welcomed.
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2. Ill-posedness example

Initial-boundary value problems in bounded domains for odd-order dispersive
equations are also interesting from the purely mathematical point of view: a type
of the boundary conditions, needed to ensure the well-posedness of a problem,
depends on a sign of the higher derivative coefficient, [6]. The KdV equation is
probably one of the most studied dispersive models in this context. However, the
results treating the KdV equation posed on bounded intervals usually deal with
“well-chosen” problems when one condition at the left boundary and two conditions
at the right-hand endpoint are imposed. This is explained commonly by physical
arguments. On the other hand, it is not clear what happens if the boundary
data are “wrongly-chosen”. Above situation is typical for odd-order differential
equations. To clarify these questions, we show below an example which classifies
the type of ill-posedness for a “wrongly-posed” problem, and brings a reason for
results provided in the next section.

Consider the following IBVP for the nonlinear dimensionless KdV equation:

ut + uux + uxxx = 0, x ∈ (0, 1) ⊂ R, t > 0;

u(0, t) = ux(0, t) = 0, u(1, t) = 0, t > 0;

u(x, 0) = u0(x), x ∈ (0, 1).

Suppose this problem has solution u = u(x, t), sufficiently regular. Then u satisfies
the linear equation

ut + uxxx = f(x, t) ≡ −u(x, t)ux(x, t)

with the same conditions as above. Taking the Laplace transform, say L, in t ≥ 0
with a real parameter p > 0, we get the following BVP:

pv + v′′′ = F (x), x ∈ (0, 1),

v(0) = v′(0) = 0, v(1) = 0,

where v(x) = Lu and F depends on u0 and Lf .
This problem is ill-posed by non-existence of solution. In fact, a general solution

for homogeneous equation pv + v′′′ = 0 is

v0(x) = C1e
−ax + C2e

ax/2 cos bx + C3e
ax/2 sin bx

with a = 3
√

p and b = a
√

3/2. Hence,

v(x) = v0(x) +
1

W0

∫ x

0

F (s)

3
∑

k=1

Wk(s) ds

where W0 6= 0 and Wk(x) are the Wronskian and related matrixes depending on
a > 0. Boundary conditions and simple computations give

A · (C1, C2, C3) = (0, F2, F3) 6≡ (0, 0, 0)
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with

A =





1 1 0
−a a/2 b
e−a ea/2 cos b ea/2 sin b



 .

The hypothesis of an existence of v(x) then implies

det A =
a
√

3

2
ea/2

[

2 cos

(

a
√

3

2
+

π

3

)

− e−3a/2

]

6= 0.

By the other hand, det A vanishes at a countable set of values of a > 0. Contradic-
tion. �

3. Main results

For real T > 0 denote QT = {(x, t) ∈ R
2 : x ∈ (0, 1) ⊂ R, t ∈ (0, T )}. In QT

there considered is a nonlinear equation

ut + uDu − D5u + D3u = 0 (1)

subject to initial and boundary conditions

u(x, 0) = u0(x), x ∈ (0, 1); (2)

Diu(0, t) = Diu(1, t) = D2u(1, t) = 0, i = 0, 1; t ∈ (0, T ). (3)

Here and henceforth u : (0, 1)× (0, T ) → R is the unknown function, ut denotes
its partial derivative with respect to t > 0, Dj = ∂j/∂xj are the derivatives with
respect to x of order j ∈ N, D0u := u and u0(x) ∈ H5(0, 1) is the given function
satisfying

Diu0(0) = Diu0(1) = D2u0(1) = 0, i = 0, 1. (4)

We adopt the usual notations ‖ · ‖ and (·, ·) for the norm and inner product in
L2(0, 1).

The main results are the following theorems.

Theorem 1 Let u0 ∈ H5(0, 1) satisfy (4). Then for all finite T > 0 problem
(1)-(3) has a unique regular solution u(x, t) :

u ∈ L∞(0, T ;H5(0, 1)) ∩ L2(0, T ;H7(0, 1)),

ut ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H2(0, 1)).

Theorem 2 Let

11 − 2

3
‖u0‖ = κ > 0.

Then for all t > 0 the regular solution given by Theorem 1 satisfies the following
inequality

‖u‖2(t) ≤ 4‖u0‖2e−κt. (5)
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To formulate the next theorem, for real µ > 0 and for a fixed m ∈ N we consider
in QT the following problems:

uµ
t + uµDuµ + D3uµ − µD5uµ = 0, (x, t) ∈ QT ; (6)

Diuµ(0, t) = Diuµ(1, t) = D2uµ(1, t) = 0, i = 0, 1; (7)

uµ(x, 0) = um
0 (x), x ∈ (0, 1) (8)

and

ut + uDu + D3u = 0, (x, t) ∈ QT ; (9)

u(0, t) = u(1, t) = Du(1, t) = 0, t ∈ (0, T ); (10)

u(x, 0) = u0(x), x ∈ (0, 1). (11)

Theorem 3 Let um
0 ∈ H5(0, 1) and u0 ∈ H3(0, 1) satisfy the consistency condi-

tions related to (7) and (10) correspondingly. Suppose

‖um
0 − u0‖H3(0,1) → 0 as m → ∞.

Then for all finite T > 0 there exists a unique solution u(x, t) to (9)-(11) such that

u ∈ L∞(0, T ;H3(0, 1)) ∩ L2(0, T ;H4(0, 1)),

ut ∈ L∞(0, T ;L2(0, 1)) ∩ L2(0, T ;H1(0, 1)).

Moreover, if µ → 0, and m → ∞, then solutions uµ,m(x, t) of (6)-(8) given by
Theorem 1 satisfy

uµ,m → u ∗weak in L∞(0, T ;L2(0, 1)) and weakly in L2(0, T ;H1(0, 1)),

uµ,m
t → ut

∗weak in L∞(0, T ;L2(0, 1)) and weakly in L2(0, T ;H1(0, 1)).

Proof. First, we treat the stationary case: an explicit representation for a solution
to a linear stationary problem is used in order to solve a nonlinear stationary
equation by the method of continuation with respect to a parameter. Then, we
construct regular solutions to a linear evolution problem exploiting the method of
semi-discretization with respect to t. In the sequel, the existence and uniqueness
of a local regular solution to the nonlinear evolution problem are proved by using
the contraction mapping arguments. Necessary a priori estimates are obtained in
the following to extend the local solution to the whole time interval (0, T ) with
arbitrary T > 0. Finally, we prove Theorems 2 and 3 dealing with L2-stability as
t → ∞ and asymptotics of obtained solutions while the coefficient of the higher
derivative approaches zero. For the detailed proof, see [3] and [4]. �
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Universidade Estadual de Maringá,
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