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Stability and topological conjugacy for affine differential equations

Fritz Colonius & Alexandre J. Santana

abstract: This paper discusses stability properties of affine autonomous ordinary
differential equations and generalizes a classical result on topological conjugacy for
hyperbolic linear autonomous equations to the affine case.
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1. Introduction

For linear autonomous differential equations, stability theory and classification
with respect to topological conjugacy are classical topics in the theory of differential
equations; see e.g. Robinson [7], Hirsch, Smale, and Devaney [6] or the recent
lecture notes [4]. It is the purpose of this paper to expose analogous results for
affine autonomous differential equations of the form

ẋ = Ax + a, (1)

where A ∈ gl(d, R) and a ∈ A. We characterize different stability notions for a
corresponding equilibrium, which here, in contrast to the homogenous case a = 0,
is, in general, different from the origin. Furthermore, we characterize when for two
systems of the form (1) the associated affine flows are topologically conjugate. For
hyperbolic matrices A (i.e., there are no eigenvalues on the imaginary axis) this is
the case, iff the dimensions of the stable subspaces coincide.

In Section 2, we discuss basic properties of affine differential equations and via
transformation to Jordan canonical form, their stability properties in relation to
their eigenvalues. Section 3 characterizes topological conjugacy under the assump-
tion that the matrix A is hyperbolic.
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2. Affine differential equation

In this section we prove that the real part of the eigenvectors determines the
exponential behavior of the solutions of an affine differential equation, described
by the Lyapunov exponents.

We begin by recalling some facts about affine differential equations. A dif-
ferentiable function x : R → R

d such that ẋ(t) = Ax(t) + a for all t ∈ R is
called a solution of (1). The initial value problem for a linear differential equation
ẋ = Ax + a consists in finding, for a given initial value x0 ∈ R

d, a solution x(·, x0)
such that x(0, x0) = x0.

It is well known (see, e.g., Lecture 16 of Agarwal and Gupta [1]) that for each
initial value problem given by (A, a) ∈ gl(d, R) × R

d and x0 ∈ R
d, the solution

x(·, x0) is unique and given by

x(t, x0) = eAtx0 +

∫ t

0

eA(t−s)ads.

The distinct eigenvalues of A ∈ gl(d, R) will be denoted by µ1, µ2, . . . , µr ∈ C.
The real versions of the generalized eigenspaces are denoted by E(A,µk) ⊂ R

d or
simply Ek for k = 1, . . . , r ≤ d. A matrix A ∈ gl(d, R) is similar to a matrix in real
Jordan form denoted by JR

A. This means that there exists a matrix T ∈ Gl(d, R)
such that A = T−1JR

AT and JR

A is a block diagonal matrix,

J = blockdiag(J1, ..., Jl),

with real Jordan blocks given for a real eigenvalue λ by

Ji =

















λ 0 . . . 0
1 λ .

. . . .

. . . .

. . λ 0
0 1 λ

















,

and for a complex conjugate pair µ, µ̄ = λ ± iν, ν > 0, of eigenvalues by

Ji =

































λ −ν

ν λ
0 . . . 0

1 0
0 1

λ −ν

ν λ
.

. . . .

. . . .

. .
λ −ν

ν λ
0

0
1 0
0 1

λ −ν

ν λ

































.

See e.g. [4].
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Note that for A = T−1JR

AT and a ∈ R
d one has

eAt +

∫ t

0

eA(t−s)ads = T−1eJR

AtT +
∫ t

0
T−1eJR

AtT · T−1eJR

A(−s)Ta ds

= T−1eJR

AtT +
∫ t

0
T−1eJR

A(t−s)Ta ds.

We illustrate this result by looking at the following example. Consider a Jordan
block B of dimension 2m associated with the complex eigenvalue pair µ, µ̄ = λ± iν

of a matrix A ∈ gl(d, R). Let

=

(

λ −ν

ν λ

)

, I =

(

1 0
0 1

)

and D̂ =

(

cosνt −sinνt

sinνt cosνt

)

.

Then for

B =

















D I

· ·
· ·

· ·
· I

D

















one has eBt = eλt



















D̂ tD̂ t2

2! D̂ · · tm−1

(m−1)!D̂

· · · · ·
· · · ·

· · t2

2! D̂

· tD̂

D̂



















.

More explicitly, consider the solution y(t, y0) of

ẏ(t) = By(t) + b, y(0) = y0,

where y0 = [y1, z1, . . . , ym, zm]t ∈ E(A,µ, µ̄) and b = [a1, b1, . . . , am, bm]t.
Then for j = 1, . . . ,m the j-th components given by

yj(t, y0) = eλt
∑m

k=j
tk−j

(k−j)! (ykcosνt − zksinνt)

+
∫ t

0
eλ(t−s)

∑m
k=j

(t−s)k−j

(k−j)! [akcosν(t − s) − bksinν(t − s)]ds

and

zj(t, y0) = eλt
∑m

k=j
tk−j

(k−j)! (zkcosνt + yksinνt)

+
∫ t

0
eλ(t−s)

∑m

k=j
(t−s)k−j

(k−j)! [akcosν(t − s) + bksinν(t − s)]ds.

For a better illustration we take m = 2. Then

y1(t, y0) = eλt[y1cosνt − z1sinνt) + t(y2cosνt − z2sinνt)]

+
∫ t

0
eλ(t−s)[a1cosν(t − s) − b1sinν(t − s)]ds

+
∫ t

0
eλ(t−s)(t − s)[a2cosν(t − s) − b2sinν(t − s)]ds

and

z1(t, y0) = eλt[y1cosνt + z1sinνt + t(y2cosνt + z2sinνt)]

+
∫ t

0
eλ(t−s)[a1cosν(t − s) + b1sinν(t − s)]ds

+
∫ t

0
eλ(t−s)(t − s)[a2cosν(t − s) + b2sinν(t − s)]ds.
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Similarly,

y2(t, y0) = eλt[y2cosνt − z2sinνt] +

∫ t

0

eλ(t−s)[a2cosν(t − s) − b2sinν(t − s)]ds

and

z2(t, y0) = eλt[y2cosνt + z2sinνt) +

∫ t

0

eλ(t−s)[y2cosν(t − s) + z2sinν(t − s)]ds.

Then using mathematical software or direct computation, we get

y1(t, y0) = eλt[fy
1 (t) + tg

y
1 (t)] + C

y
1 ,

z1(t, y0) = eλt(fz
1 (t) + tgz

1(t)) + Cz
1 ,

y2(t, y0) = eλtf
y
2 (t) + C

y
2 ,

z2(t, y0) = eλtfz
2 (t) + Cz

2 ;

here for i = 1, 2, the functions f
y
i , g

y
i , fz

1 , gz
1 are bounded R and C

y
i , fz

i are constants.

We proceed to analyze stability properties.

Definition 2.1 A point e0 ∈ R
d is a fixed point of the affine differential equation

ẋ(t) = Ax(t) + a if x(t, e0) = e0 for all t ∈ R.

Recall that for the linear equation ẋ = Ax, every solution tends for t → ∞
to the origin, if the spectrum σ(A) is contained in the negative complex halfplane
C− := {z ∈ C,Rez < 0}, i.e., if all eigenvalues of A have negative real parts. The
following proposition gives an analogous result for affine differential equations.

Proposition 2.1 Suppose A stable, that is, Reλ < 0 for all λ ∈ σ(A). Then

i) There exists a unique fixed point for ẋ(t) = Ax(t) + a,

ii) For all x0 ∈ R
d, x(t, x0) → e0 if t → ∞.

Proof: Since 0 6∈ σ(A), the matrix A is invertible and the equation 0 = Ae0 + a

has the unique solution e0 = −A−1a. Since e0 = eAte0 +
∫ t

0
eA(t−s)ads, it follows

for all x0 ∈ R
d that

‖x(t, x0) − e0‖

= ‖eAtx0 +
∫ t

0
eA(t−s)ads − eAte0 −

∫ t

0
eA(t−s)ads‖

= ‖eAt(x0 − e0)‖ → 0

if t → ∞. 2

Next we discuss, how fast the solutions approach the equilibrium and define
Lyapunov exponents, which measure exponential growth rates.
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Definition 2.2 Let x(·, x0) be a solution of the affine differential equation ẋ(t) =
Ax(t) + a. Suppose that A is invertible and hence A has a unique fixed point e0.
The Lyapunov exponent for x0 is defined as

λ(x0) = lim supt→∞

1

t
ln‖x(t, x0) − e0‖.

The Lyapunov exponents are determined by the Jordan structure of the matrix A.

Theorem 2.1 Suppose that A is invertible and denote by e0 its unique fixed point.
Define L(λj) as the sum of the real generalized eigenspaces for all eigenvalues of
A with real parts equal to λj. Then the Lyapunov exponent λ(x0) of a solution
x(·, x0) of ẋ(t) = Ax(t) + a satisfies λ(x0) = limt→±∞

1
t
ln‖x(t, x0) − e0‖ = λj if

and only if x0 − e0 ∈ L(λj).

Proof: Recall that for any matrix A there is a matrix T ∈ Gl(d, R) such that
A = T−1JR

AT , where JR

A is the real Jordan canonical form of A. Hence we can
consider A in the real Jordan form. Then the assertions of the theorem follow from
the solution formulas. We give an idea of these computations for a Jordan block
corresponding to a complex-conjugate pair of eigenvalues with m = 2, as in the
above. Take the above solutions y1(t, y0), z1(t, y0), y2(t, y0), z2(t, y0) and note that

‖y(t, y0)‖ =
√

y2
1 + z2

1 + y2
2 + z2

2 =

√

(eλt(fy
1 +tg

y
1 )+C

y
1 )2+(eλt(fz

1 +tgz
1)+Cz

1 )2+(eλtf
y
2 +C

y
2 )2+(eλtfz

2 +Cz
2 )2.

Then isolating (eλt)2 inside the root, the last expression can be written as

‖y(t, y0)‖ =
√

(eλt)2f(t).

Hence
1

t
ln‖y(t, y0)‖ =

1

t
ln

√

(eλt)2f(t) =
1

t
ln

√

(eλt)2 +
1

t
ln

√

f(t),

where 1
t
ln

√

f(t) → 0 for t → ∞.
Therefore, limt→∞

1
t
ln‖y(t, y0)‖ = λ. By this computation, it is easy to see that

limt→±∞
1
t
ln‖y(t, y0) − e0‖ = λ. 2

With the next lemma, some of our results in affine differential equation will be
an immediate consequence of the correspondent result in the linear context.

Lemma 2.1 Let x(t, x0), t ∈ R, be the solution of the system ẋ(t) = Ax(t)+a and
e0 its fixed point. Then x(t, x0) − e0, t ∈ R, is a solution of ẋ(t) = Ax(t), that is,
d
dt

[x(t, x0) − e0] = A[x(t, x0) − e0].

Proof: Note that d
dt

[x(t, x0)−e0) = Ax(t, x0)+a. On the other hand, 0 = Ae0+a.
Then a = −Ae0. Hence Ax(t, x0) + a = Ax(t, x0) − Ae0 = A[x(t, x0) − e0]. 2

As in case of linear differential equation (see [4]), in the following result we
characterize asymptotic and exponential stability in terms of the eigenvalue of A.
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Theorem 2.2 For an affine differential equation ẋ(t) = Ax(t) + a in R
d the fol-

lowing statements are equivalent:
i) The fixed point e0 ∈ R

d is asymptotically stable.
ii) The fixed point e0 ∈ R

d is exponentially stable.
iii) All Lyapunov exponents (hence all real parts of the eigenvalues) are negative.
iv) The stable subspace L− satisfies L− = R

d.

Proof: Take Φ as solution of the system ẋ(t) = Ax(t) + a. By above lemma,
Φ(t, y0) − e0 is a solution of the linear system ẋ(t) = Ax(t), where x − e0 is the
initial value of the solution Φ(t, y0) − e0. Then this theorem is an immediate
consequence of Theorem 2.15 in [4]. 2

3. Conjugacy for affine differential equations

In this section we study the affine differential equation ẋ(t) = Ax(t) + a, with
(A, a) ∈ gl(d, R)×R

d, from the point of view of dynamical systems, or flows in R
d.

First we introduce the affine flow associated to this differential equation.

Lemma 3.1 For A ∈ gl(d, R) and a ∈ R
d, the solutions of ẋ(t) = Ax(t) + a form

a continuous dynamical system with time set R and state space M = R
d.

Proof: The map Φ : R × R
d → R

d defined by

Φ(t, x) = x(t, x) = eAtx +

∫ t

0

eA(t−s)ads

has, as claimed, the following properties:
(i) Φ(0, x) = x, for all x ∈ R

d,
(ii) Φ(u + t, x) = Φ(u,Φ(t, x)) for all u, t ∈ R and x ∈ R

d. In fact,

Φ(u,Φ(t, x)) = eA(u+t)x +

∫ t

0

eA(u+t−s)ads +

∫ u

0

eA(u−s)ads.

But
∫ u

0

eA(u−s)ads =

∫ u+t

0

eA(u+t−s)ads.

In fact, call t − s = −v then s = t + v. Hence ds = dv and, if s = t then v = 0,
and, if s = u + t then v = u. This implies

∫ u+t

0
eA(u+t−s)ads =

∫ u

0
eA(u−v)adv and

therefore
Φ(u + t, x) = Φ(u,Φ(t, x)).

(iii) Φ(t, x) is continuous by its definition. 2

Recall that two Ck flows Φ and Ψ, k ≥ 0, are Ck conjugate if there is a Ck

map h with Ck inverse such that for t ∈ R

h ◦ Φ(t, ·) = Ψ(t, h(·)).

The flows are called topologically conjugate if k = 0, and they are called linearly
conjugate, if the conjugation map h is linear.



Stability and topological conjugacy for affine differential equations 147

Theorem 3.1 Consider the dynamical systems Φ and Ψ associated with ẋ(t) =
Ax(t) + a and ẋ(t) = Bx(t) + b, respectively, where A,B ∈ gl(d, R) and a, b ∈ R

d.
Assume that A and B are invertible, hence there are unique equilibria eA and eB,
respectively. Then the following statements are equivalent:

(i) the flows Φ and Ψ are Ck conjugate for k ≥ 1;
(ii) the flows Φ and Ψ are linearly conjugate;
(iii) the flows Φ and Ψ are affinely similar, that is, A = TBT−1 and Ta = b

for some T ∈ Gl(d, R).

Proof: The flows are given by

Φ(t, x) = eAtx +

∫ t

0

eA(t−s)a ds and Ψ(t, x) = eBtx +

∫ t

0

eB(t−s)b ds.

Hence, for a conjugation map h satisfies for all t and all x

h(eAtx +

∫ t

0

eA(t−s)a ds) = eBth(x) +

∫ t

0

eB(t−s)b ds.

Observe that (ii) obviously implies (i). Next we prove that (iii) implies (ii). Note
the equivalences

A = TBT−1 ⇔ etA = TetBT−1 ⇔ T−1etA = etBT−1 (2)

(here ⇐= is seen by differentiating and evaluating in t = 0). Then define a linear
map h : R

d → R
d as h(z) = T−1z. Then the conjugation property follows from

h(eAtx +

∫ t

0

eA(t−s)ads) = T−1(eAtx +

∫ t

0

eA(t−s)a ds)

= T−1eAtx + T−1

∫ t

0

eA(t−s)a ds = eBtT−1x +

∫ t

0

T−1eA(t−s)a ds

= eBtT−1x +

∫ t

0

eB(t−s)T−1a ds = eBth(x) +

∫ t

0

eB(t−s)b ds.

Next, supposing (ii) we prove that (iii) holds. By (ii) there is a linear conjugacy h

such that for all t and all x

h(eAtx +

∫ t

0

eA(t−s)a ds) = eBth(x) +

∫ t

0

eB(t−s)b ds. (3)

Differentiating with respect to x, we find for all t

Dh(eAtx +

∫ t

0

eA(t−s)a ds)eAt = eBtDh(x). (4)

Observing that h is linear, we see with T−1 := Dh(0)

T−1eAt = Dh(0)eAt = eBtDh(0) = eBtT−1 (5)
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and hence, by (2),
A = TBT−1.

Inserting into (3), we find for all t and all x

T−1(eAtx +

∫ t

0

eA(t−s)a ds) = eBtT−1x +

∫ t

0

eB(t−s)b ds,

which, with (5), implies for all t

T−1

∫ t

0

eA(t−s)a ds = eBtT−1x − T−1eAtx +

∫ t

0

eB(t−s)b ds =

∫ t

0

eB(t−s)b ds.

Then using (5) again, one finds for all t

eBt

∫ t

0

e−Bsb ds =

∫ t

0

eB(t−s)b ds = T−1

∫ t

0

eA(t−s)a ds = T−1eAt

∫ t

0

e−Asa ds

= eBtT−1

∫ t

0

e−Asa ds = eBt

∫ t

0

T−1e−Asa ds = eBt

∫ t

0

e−BsT−1a ds.

This implies that e−Btb = e−BtT−1a for all t and hence b = T−1a.

Suppose that (i) holds. In order to show (iii), let h : R
d → R

d be a Ck-
conjugacy, k ≥ 1. Thus for all x ∈ R

d and t > 0

h(Φ(t, x)) = h(eAtx) = eBth(x) = Ψ(h(x)).

Differentiating with respect to x we find as in (4)

Dh(eAtx +

∫ t

0

eA(t−s)ads)eAt = eBtDh(x).

Evaluating this at x = e0 we get with H := Dh(e0)

HeAt = eBtH for all t ∈ R.

Differentiation with respect to t in t = 0 finally gives HA = BH. Then similar
computations as in the proof above yield (ii). Since h is a diffeomorphism, the
linear map H = Dh(0) is invertible and hence defines a linear conjugacy. 2

In particular, Theorem 3.1, shows a conjugacy relation for the dynamical system
obtained when we replace the matrix A by its real Jordan matrix.

Corollary 3.1A Consider ẋ(t) = Ax(t) + a, with A ∈ gl(d, R), and let Φ its
associated dynamical system. Let Ψ be the dynamical system for

ẋ = JR

Ax + T−1a,

where A = TJR

AT 1, T ∈ Gl(d, R), is the associated matrix in real Jordan normal
form. Then there is a linear conjugacy h for Φ and Ψ.
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Proof: This follows from the equivalence of conditions (ii) and (iii) in Theorem
3.1. 2

We note the following result on existence of an adapted norm.

Proposition 3.1 Denote the dynamical system associated to ẋ = Ax + a, A ∈
gl(d, R), a ∈ R

d, by Φ, and assume that A is invertible. Then there exists a unique
equilibrium e0 = −A−1a and the following properties are equivalent:

(i) there are a norm ‖ · ‖∗ on R
d and α > 0 such that for all x ∈ R

d

‖Φ(t, x) − e0‖∗ ≤ e−αt‖x − e0‖∗ for all t ≥ 0;

(ii) for every norm ‖ · ‖ on R
d there are α > 0 and C > 0 such that for all

x ∈ R
d

‖Φ(t, x) − e0‖ ≤ Ce−αt‖x − e0‖ for all t ≥ 0;

(iii) for every eigenvalue λ of A one has Reλ < 0.

Proof: The assertion for e0 is immediate. Item (i) implies (ii), since all norms on
R

d are equivalent. Items (ii) and (iii) are equivalent by Theorem 2.2. It remains to
show that (ii) implies (i). Clearly, Φ(t, x0)−e0 is the solution of the linear equation
ẋ(t) = Ax(t) with initial condition x(0) = x0 − e0. Hence Proposition 3.17 in [4]
shows that there exist a norm ‖ · ‖∗ on R

d and α > 0 satisfying (i). 2

Next we prove existence of topological conjugacies for stable affine systems.

Proposition 3.2 Consider the dynamical systems Φ and Ψ associated with ẋ(t) =
Ax(t) + a and ẋ(t) = Bx(t) + b, respectively, where A,B ∈ gl(d, R) and a, b ∈ R

d.
If all eigenvalues of A and of B have negative real parts, then the flows Φ and Ψ
are topologically conjugate.

Proof: Recall that the flows Φ and Ψ are given by

Φ(t, x) = eAtx +

∫ t

0

eA(t−s)ads and Ψ(t, x) = eBtx +

∫ t

0

eB(t−s)bds.

If all eigenvalues of A and B have negative real parts, then by Proposition 3.19
in [4] there exists a homeomorphism h with h(eAtx) = eBth(x) for all t and all x.
Furthermore, there are unique equilibria eA and eB , respectively.

Note that Φ(t, x)− eA is the solution of ẋ(t) = Ax(t) with initial value x− eA;
analogously, Ψ(t, x) − eB is the solution of ẋ(t) = Bx(t) with initial value x − eB

and it follows that

Φ(t, x) − eA = eAt(x − eA) and Ψ(t, x) − eB = eBt(x − eB). (6)

The conjugation property of h implies that

h(eAt(x − eA)) = eBth(x − eA) = eBt(h(x − eA) + eB − eB).
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Using (6) we can write this as

h(Φ(t, x) − eA) = Ψ(t, h(x − eA) + eB) − eB . (7)

Define H(x) = h(x − eA) + eB . Then by (7) this map satisfies the conjugation
property H(Φ(t, x)) = Ψ(t,H(x)).

Since h is bijective, continuous, invertible and with continuous inverse, the same
is true for H. Therefore H is a topological conjugacy. 2

The next theorem presents the main result of this paper. It shows that for
affine differential equations with hyperbolic matrices having the same dimension of
the stable subspace, topological conjugacy follows.

Theorem 3.2 Consider the dynamical systems Φ and Ψ associated with ẋ = Ax+a

and ẋ = Bx + b, respectively, where A,B ∈ gl(d, R) and a, b ∈ R
d. Suppose A

and B are hyperbolic. Then Φ and Ψ are topologically conjugate if and only if
the dimensions of the stable subspaces (and hence the dimensions of the unstable
subspaces) of A and B agree.

Proof: If A and B are hyperbolic then A and B has no eigenvalues with zero real
part. Then we can decompose R

d as R
d = E

s
A ⊕ E

u
A and R

d = E
s
B ⊕ E

u
B ; here E

s
A

and E
u
A denote the stable and unstable subspace associated with A and analogously

for B. Denote the natural projections by πs
A : R

d → E
s
A and πu

A : R
d → E

u
A and

analogously for B.
These stable and unstable subspaces are invariant under eAt and eBt, respec-

tively. Consider the affine differential equations

ẋ = A|
E

s
A

x + πs
Aa in E

s
A, ẋ = A|

E
u
A

x + πu
Aa in E

u
A, (8)

and
ẋ = B|

E
s
B

x + πs
Bb in E

s
B , ẋ = B|

E
u
B

x + πu
Bb in E

u
A (9)

Note that solutions of ẋ = Ax + a can uniquely be written as the sum of solutions
of the equations in (8) and analogously for B.

As the stable subspaces have the same dimension, by Proposition 3.2 there is a
conjugation for the stable systems

Hs : E
s
A → E

s
B .

Inverting time one also finds a conjugation for the unstable systems

Hu : E
u
A → E

u
B .

Hence we define a topological conjugation of Φ and Ψ as

H(x) = Hs(πs(x)) + Hu(πu(x)).

2

Note that topological conjugacy of affine equations ẋ = Ax + a is determined
by the matrix A ∈ gl(n, R); it is independent of the affine term a ∈ R

d. As in case
of linear differential equation, if A ∈ gl(n, R) is hyperbolic and B is close enough
to A, then the corresponding affine flows are topologically conjugate.
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