Bol. Soc. Paran. Mat.
(35.) v. 24 1-2 (2006): 9-18.
©SPM -ISNN-00378712

Local structural stability of actions of R” on n-manifolds *1

J. L. Arraut and Carlos Maquera

ABSTRACT: Let M™ be a compact m-manifold and ¢ : R® x M™ — M™ a
C", r > 1, action with infinitesimal generators of class C” . We introduce the
concept of transversally hyperbolic singular orbit for an action ¢ and explore this
concept in its relations to stability. Our main result says that if m =n and Op is a
compact singular orbit of ¢ that is transversally hyperbolic, then ¢ is C! locally
structurally stable at O, .
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1. Introduction

Let M (resp. N) denote a compact orientable m-manifold (resp. n-manifold)
and A"(R™, M), r > 1, the space of C"-actions of R™ on M with infinitesimal
generators of class C” and the topology defined by saying that two actions are C'-
close if its infinitesimal generators are C'-close. Take ¢ € A"(R", M) and p € M.
The @-orbit of p will be denoted by O,(¢) or simply by O,. If dimO, < n,
then O, is called a singular orbit of ¢ and when dimO, =0 p is called a fired
point of ¢ and O, a point orbit. An action ¢ is called singular if every ¢-orbit
is singular. The possible topological types of the orbits of ¢ are T* x Rf, with
0<k+¢<n, where TF = S* x --- x ST k-times. Very little is known about
actions of R™, n > 2, compare to what is known when n = 1. Camacho, in [4],
defined the concept of hyperbolic fixed point of an action ¢ and proved that if p is
a hyperbolic fixed point of ¢, then ¢ is locally C' structurally stable at p. Here
we introduce the concept of transversally hyperbolic singular orbit of an action ¢;
this concept coincides with Camacho’s definition of hyperbolic fixed point when
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O, is a point orbit. Next, we explore this concept in the particular case m = n
and prove the following theorem:

Theorem 1.1 If O, is a transversally hyperbolic compact singular orbit of ¢ €
A"™(R™,N), r > 1, then ¢ is locally C' structurally stable at O, .

We also show, see Example 3.1, that Theorem 1.1 is not necessarily true when
n < m. It is natural to ask if the reciprocal of Theorem 1.1 is true. In [1] we
answered this question negatively in the case of real analytic actions. In fact, for
each n > 2, we exhibited a family %, C A“(R™, N) of singular actions such that
each ¢ € %, has a first integral and besides ¢ is C! structurally stable. But
a compact singular orbit of ¢ € %, can never be transversally hyperbolic. With
regard to global stability, it seems reasonable to conjeture that if every compact
singular orbit of ¢ € A"(R™, N) is transversally hyperbolic, then ¢ is C! struc-
turally stable. Up to now, we can prove this conjecture for n = 2 and also for
n > 2 in some particular cases. This topic will be considered in a future paper.
The problem of characterizing the local structural stability of a compact singular
orbit of a ¢ € A"(R™, M) is far from been solved.

2. Transversally hyperbolic singular orbits

M will denote a closed connected and orientable differentiable manifold. A
CT-action of Lie group G on M isa C™-map ¢ : GxM — M, 1 <r < w,
such that ¢(e,p) = p and p(gh,p) = ©(g, ¢(h,p)), for each g,h € G and p € M,
where e is the identity in G. O, = {¢(g,p); g € G} is called the @-orbit of p.
Gp, = {9 € G; p(g,p) = p} is called the isotropy group of p. For each p € M
the map ¢ — ¢(g,p) induce an injective immersion of the homogeneous space
G/G, in M with image O,. When G = R", the possible @-orbits are injective
immersions of T* x RZ, 0<k+4+1<n, where TF = 5* x --- x 81, k times.

For each 0 < i <n—1 let Sing;(¢) = {p € M;dim O, = i} and Sing(yp) =
Ul4'Sing; (). If p € Sing(p), O, is called a singular orbit and when p €
Singy(¢), O, is also called a point orbit and p a fized point by ¢. We also
write p € Sing{(¢), i =1,...,n—1, when O, is a T"orbit. If Sing(¢) = M, we
call ¢ a singular action.

For each w € R™\ {0} ¢ induz a C"-flow (¢!,))icr given by ¢!, (p) = p(tw, p)
and its corresponding C"~!-vector field X,, is given by X, (p) = D1p(0,p) - w. If
{wi,...,wy} is a base of R™ the associated vector fields X, , ..., Xy, determine
completely the action ¢ and are called a set of infinitesimal generators of .
Note that [X.,,Xy;] = 0 for any two of them. We denote by Xi,..., X, the
infinitesimal generators of ¢ associated to the canonical base of R™.

Denote by A"(R™, M) the set of C"-actions, r > 1, of R™ on M such that
their canonical infinitesimal generators are also C" vector fields. Given two ac-
tions {p; X1,...,Xn} and {¢;Y1,...,Y,} define dip(p,¢) = 112?<XnHXi = Yillx -

A"(R™, M) is a metric space and the corresponding topology is the C*-topology.
The notions of topological equivalence and C* structural stability that we use
here for actions are the standard one’s.
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2.1. CAMACHO’S RESULTS ON HYPERBOLIC FIXED POINTS. In this subsection we
give the definition of hyperbolic fixed point due to Camacho [4] and enunciate
without proof his results that we shall use in this paper. Let E be a m-dimensional
real vector space and Aut(FE) the group of its linear automorphisms. Consider Lie
groups G, H of the form R* x Z*. A homomorphism o : G = R* x Z* — Aut(E),
is called a linear action of G on E. By definition rank(G) =k + £.

Definition 2.1 A linear action g is said to be hyperbolic if it satisfies the following
properties:

(a) if k+¢ =1, then for each s € G, s # 0, all eigenvalues of p(s) have modulus
different from 1;

(b) if K4+ ¢ > 2, we give the definition by induction on k + ¢. Assume that
we already defined hyperbolicity for linear actions of groups H such that
rank(H) < k + £. Then, o is hyperbolic if:

(b.1) There exists a decomposition E = P, E;, o-invariant, such that o is
transitive on each connected component of E; \ {0} for each t.

(b.2) The action x: = 0|, (o) * Gv(0) = Aut(D, 4 Ev), v € E¢ is hyper-
bolic for each ¢t. This makes sense since from (b.1) rank(G,(0)) = rank(G) —
1.

A fixed point p of ¢ € A"(R* x Z’, M) is said to be hyperbolic if the induced
linear action g :R* x Z¢ — Aut(T,M) given by o(g) = Dy, (p) is hyperbolic.

Example 2.2 Each linear action o : R? — Aut(R?) is of the form o(t,t2) =
exp(t1 Ay + taAs), where A;, i = 1,2, is a (2 x 2)-matrix and A; A = AzA; .
Assume that o is hyperbolic, then except for a linear change of coordinates, there
are two cases:

(i) if A; = (g; - ) i =1,2, then a1 — Bras # 0. The orbit structure is
like in Figure 1(a).

(i) if A; = (Ao'i l?'i) ,4=1,2, then \jus — p1dg # 0. The orbit structure is like
in Figure 1(b) .

Eo
I RBorbit | F-orbit
Eq
% 0

R2-orbit R2-orbit

Figure 1:
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We shall make use of the following results on hyperbolic fixed points whose proof
can be found in [4].

2.1.1. Let p be a hyperbolic fized point of an action ¢ : (RF x Z°) x M™ — M™
with m < k+1 and ¢: R¥ x Z* — Aut(T,M) the induced linear action of ¢ at
p. Then,

(i) there exists a neighborhood V' of p, and a homeomorphism h :V — T,M
such that ho gy = o(g) o h.

(i) ¢ is C' locally structurally stable at p.

For each g € R™ put R"(g) = {tg;t € R} e R} (g9) = {tg;t > 0}. A cone on
R™ is a set C = UgeypyR% (g), where i: D — R™ — {0} is an affine embedding of
a d-disk D, 0 <d < n.

Let p be a hyperbolic fixed point of ¢ € A"(R™, M™). There exists a decompo-
sition T,M™ = P, E; invariant under the induced linear action ¢ : R" x T, M™ —
T,M™, where either E is straight line and E; — {p} is the union of two R-orbits
or F; is a plane and E; —{p} is a S'x R-orbit of . The isotropy subgroup G;(v)
of a point v € E; — {0} does not depend on the v and G; = R*1 (R""! x Z) if
E, is a straight line (a plane).

2.1.2. Let p a hyperbolic fixed point of ¢ € A"(R™, M™), r > 1, and o :
R™ x T,M™ — T,M™ the induced linear action. Let G be a closed subgroup
of R", E¢ = Fix(g|g) and Vg = Fix(¢|g). Then Vg is a C" submanifold of M
tangent to Eg em p and for any cone C C G — UGy with G ¢ Gy the subsets

We(Ve) ={q € M™;limy_. »(g,9) € Va,g €C},
W (Ve) ={qg € M™;limg_.oc p(—g,q) € Ve, 9 € C}

are C"-submanifolds that intersect transversally along Vg and also ¢y, is normally
hyperbolic in Vg, for every h € C.

It follows from 2.1.2 that there exist p-invariant submanifolds V; diffeomorphic
to E; and tangent to E; at p, were V; = Fix(¢|g,)-

2.2. TRANSVERSALLY HYPERBOLIC COMPACT SINGULAR ORBITS. Before giving
the definition of transversally hyperbolic singular orbit we need two trivializa-
tion lemmas. Let D™ = {(21,...,2,) € R™; |z;] < €}, ¢ > 0, and 2 =

ox;
(0,...,0,1,0,...,0) the constant vector field.

Lemma 2.3 (k-flow box) Let ¢ € A"(R* M™) with infinitesimal generators
Xi,..., Xk, and Op a k-dimensional orbit. There exists a C"- diffeomorphism
h:Vy, — DI, where V), is a neighborhood of p, such that h.X; = % mn DT,

foreach i=1,... k.

Proof: Let p: U — Uy be a chart of M™ with p(p) =0 and Y; = p. X, i =
1,..., k. There exists a neighborhood V{, C Uy where the local flows Yit define a
local C"-action ¢ : DF x Vo — Uy dada por ¢(7i,..., Tk, @) = Y7 00V, *(z).
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Let H be a subspace of R™ orthogonal to subspace generated by the vectors
Y1(0),...,Yx(0), Wo = HNV, and ¢ : DF x Wy — Uy the restriction of ¢.
Take a base {ej,...,en} de R™ such that {ej,...,ex} is the canonical base of
R* and {egy1,-..,em} is a base of {0} x H. Since D(0,0) : R* x H — R™ is
an isomorphism, there exists an € > 0 such that the restriction of ¢ to DI* =
DF x D™k is a diffeomorphism onto its image. Put V, = p~(1)(D™)), then
h =1~' o p is the desired chart. g

Remark 2.4 Note that the diffeomorphism h = h(p) : V, — DI* depends contin-
uously on ¢ in the following sense: given n > 0, there exists § > 0 such that if
P e A" (R, M) is § Cl-close to ¢, then h(@):V, — D™ is n C*-close to h(yp)
m VpN 17p .

A pair (V,,h) as in Lemma 2.3 will be called a k-flow box at p. If ¢ € O,
with ¢ # p, then there exists u € R¥ such that X!(p) = ¢q. We shall call v =
{Xt(p);0 <t <1} an arc of ¢ in O,. By using Lemma 2.3 one can also prove:

Lemma 2.5 (Long k-flow box) Let ¢ € A"(R*, M), O, a k-dimensional orbit
of ¢ and v C Op an arc of ¢ in Op. Then, there exists k-flow box (V,,h),
where V., s a neighborhood of .

Let O, be singular k-dimensional orbit of ¢ € A"(R",M™) and G, its
isotropy group. Call Gg the connected component of G, that contains the ori-
gin and let H be a k-dimensional subspace of R™ such that R" = H & GZO,.
Let {wy,...,w,} be a base of R™ such that {wi,...,w;} is a base of H and

{wry1,. .., wy} is abase of G, and {X; = Xy, ;i =1,...,n} the corresponding
set of infinitesimal generators. Note that Xj11(¢) = -+ = X,(q) = 0 for every
q € Op. We shall say that Xi,..., X, is aset of infinitesimal generators adapted
to O,.

Applying Lemma 2.3 to the action ¢ restricted to H we obtain a chart A :
V, — D™ of M™ such that if (0,z) € D™ = D¥ x D™~*  then the vector fields
X, in this chart can be written

o
() Xl(a,l') = 8797;, Z—l,...,k
* k m
0 o
Xiti(0,2) = Zaji(x)%—F,Z aji(ac)%, i=1,....,n—k
J=1 T =kt J

A chart like above is called adapted to O, at p. The vector fields

- i a .
Xi:‘z aji(x)a—xj, 2:17...,n—k,
j=k+1

define a local action ¢, of R"™* on D™~* having 0 € D™ % as a fixed point.
When p is a fixed point of ¢ then a chart adapted to O, at p will be any chart
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of M which contains p. In this case )?1 = X;, 1 =1,...,n. It can be verified
that ¢, has the following two properties:

(1) Although ¢, depends on the chart (V,,h) which in turn depends on H,
the fact that 0 € D™~* be a hyperbolic fixed point of ¢,. does not depend on the
chart.

(2) If ¢ € O, and ¢ # p, the there exists a chart (V,,h) adapted to O, such
that g € V.

It follows from the two properties above that the following concept is well
defined.

Definition 2.6 Let O, be singular k-dimensional orbit of ¢. O, is transversally
hyperbolic if there exist a chart adapted to O, at p such that 0 € D;”’k is a
hyperbolic fixed point of the action ¢,..

Remark 2.7 Note that when k=mn—1, @, is the local flow of the vector field
X, (2) = ian(sc)i = (Tp,...,&,) € DI
=~ ] allfj’ ) )

Therefore, O, is transversally hyperbolic if and only if 0 € D™~ "+ is a hyperbolic
singularity of X, .

Remark 2.8 Note that {X1,... Xk,)A(l, ... ,)?n,k} define a local R™-action @ on
D and that O 4)(P) = Og.z)(hopoh™) for each (0,x) € DI

3. Local structural stability

Let O, be a transversally hyperbolic compact singular orbit of ¢ € A™(R™, M), n <
m. It is not difficult to prove, from Remark 2.4, that O, is C'-persistent, i. e.,
given a neighborhood V of O, there exists 6 > 0 such that if di(¢,¢) < 6,
then ¢ has a compact orbit O diffeomorphic to O, inside V. The following
example shows that local structural stability is not a consequence of transversal
hyperbolicity when n < m.

Example 3.1 Let S? = {(z,y,2) € R%2? +y? + 22 =1}, N = (0,0,1), S =
(0,0,-1), Xy = 29/0z + yd/dy on R? = {(z,y,0) € R3}, Py : R* — S? (Ps :
R? — S?) the projection with focus in N (S) and X the tangent vector field to
52 defined by

X(p) = { (()I,DN)*XO’ Zi%

It is clear that X is the meridian vector field on S? and that in a neighborhood
of S (N) using the coordinate system Py' (Pg') X = 29/0x + yd/dy (X =
—20/0x — yd/dy). Now, consider on R x S? the vector fields X; = 9/0t and
Xo(t,p) = X(p) and the diffeomorphism

P:RxS*—RxS% ®tp) =(t—1,p)
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It is clear that ®.X; = X; and ®.X5 = X5. Thus X; and X5 induce vector
fields Y7 and Ys on S' x S?, the quotient manifold of R x S? under the action
of Z generated by ®, such that [V, Y] =0. Call ¢ the action of R? on S! x S?
with infinitesimal generators Yi,Ya, Og (Ox) the S'-orbit of ¢ induced by
R x {S} (R x {N}). By construction Og is a transversally hyperbolic compact
singular orbit of ¢ surrounded by cylindrical orbits. If instead of ® we consider
the diffeomorphism &, given by @,(t,p) = (t — 1, Ry(p)), where R, is a small
rotation of S? leaving the z-axis fixed and of an irrational angle o we obtain
an action ¢, C'-close to ¢ which is not topologically equivalent to ¢ in any
neighborhood of Og. Thus ¢ is not locally C' structurally stable at Og .

Let O, be a compact singular orbit of ¢ € A"(R", N) and O a @-orbit such
that cl(O) D O,. Then Gp, the isotropy group of O, is a subgroup of G, .
When O, is transversally hyperbolic one can obtain additional information about
the relation between Go and Gy .

Proposition 3.2 Let O, be a transversally hyperbolic Tk-orbit, 0 < k < n, of
p € A"(R",N). Then, there exist a linear k-subspace H of R™ transversal to G,
and T' C H isomorphic to ZF such that

1.TF=Hn G, is isomorphic to VA
2. T' is a subgroup of T'*;
3. T =GoNH for each orbit O with O, C cl(O).

Lemma 3.3 Let O, be a T*-orbit, 0 < k < n, of ¢ € A"(R",N) and O a
T x REEF=Lorbit, k+1 < € < n, such that O, C cl(O). Then, Go N Gg 18
isomorphic to R" ¢ x 7.

Proof: It is known that G, and G are isomorphic to R"* x Z*F and R"¢ x
ZFF, respectively and that Go C G, and G% C Gg . Let {up ... up—p,v1,. .., Uk}
be a set of generators of the group Go such that {uj...,u,_,} is a base of GY%.
We will show that Ggﬂ{vl, ..., Ug+1+ has exactly [ elements, but this implies that
Gon Gg is isomorphic to R"~¢ x Z!, which is the desired conclusion. In fact, as-
sume that there exists 0 < k’ < k such that {vy,..., vk} C Gg and let & be the
action of R*~*" given by the vector fields Xy, i =14+k+1,...,l4+k Let ¢ € O,
such that ¢ ¢ O,(§). Since O, C cl(O), there are sequences {p; € O;j € N} and
{tij €[0,1];5=1,2...,k+1 and j € N} such that

k-+1
lim p; =p and lim @(Ztijvi,pj) =gq.
j—00 jmoo t N
For each ¢ = 1,...,k + [, we can assume, extracting a subsequence if necessary,
that tij —1; € [0, 1}. Then
k+1 Ik I+k’ k+1
q= w(Ztm,p) = sO( > tﬂ}m@( > tivi,p)) = 90( > tm,p)
i=1 i=l+k/+1 i=1 i=l+k+1
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which contradicts the fact that ¢ ¢ O,(&). O

Let O, be a transversally hyperbolic T*-orbit, 0 < k < n, of p € A"(R",N)
and O;, i =1,...,m, n-dimensional orbits such that cl(O;) D O, . It follows from
Definition 2.6 that there exists s € {0,...,n—k—1} suchthat O;,i=1,...,m, is
homeomorphic to 7% x R*~F=5_If G; is the isotropy group of O;, i =1,...,m,
then G, 2 R" % x ZF and G; 2 ZFFrs, i=1,...,m.

Lemma 3.4 Let O, be a transversally hyperbolic T*-orbit, 0 < k < n. There
exists a linear k-subspace H of R™ transversal to G, such that H NG, is a
subgroup of R™ isomorphic to ZF, and if O is a TFH xR =L orbit, k+1 < £ < n,
with c1(0) D O,, then Go N H s a subgroup of H NG, isomorphic to Z*.

Proof: Let W, be the linear subspace of R™ generated by G;. Then dim W, =
k+ s and W; is transversal to Gg. We first show that Wy, =W, , i =2,...,m.
Assume that there exists i € {2,...,m} such that Wy # W; and choose u; € G\
G;, us € G;\ Gy such that w =u; —ug € Gg. Let X, , Xy, , Xy, € X"(N) be the
associated vector fields. Then X, = X,,, — X, or equivalently X = X/ o X, I.
Take infinitesimal generators Xi,..., X, of ¢ adapted to O, so that X, = X,
and a chart (V,h) adapted to O, at p. It follows from X |0, =id = X} |o, that
DX, (p) =id, i =1,2. Thus, DX (p) = id, which is equivalent to DX, (p) = 0.
However, this contradicts the fact that O, is transversally hyperbolic and proves
that Wy =W, =W, ¢ =2,...,m. By Lemma 3.3 W N Gg is isomorphic to R®.
By taking H as a k-subspace of W such that W =H @ (W n Gg), it is easy to
check - for each orbit O with O, C cl(O)- that Go N H is a subgroup of HNG,
isomorphic to ZF. O

Under the same hypotheses of Lemma 3.4, we obtain:

Corollary 3.5 Let {uq,...,ur} be a set of generators of HNGo . If O C cl(0O;),
then there exist n%,...,nt € N such that {niui,...,ntuy} is a set of generators

of HNG; .

Remark 3.6 Assume that cl(O) > O, and that O C cl(O;) for some i =
1,...,m. Let {u1,..., Uk, Uks1, -+ Uktl,--.,ur} be a linearly independent sub-
set of R™ such that {ui,...,ur} is a set of generators of H NG and the vector
fields {Xy,,...,Xy,} arelinearly independent on O. Consider a segment L that is
transversal to O at go and such that at least one connected component of L\ {qo}
is contained in O; and call ¥ = 9(y) the locally free C' action of R’ with in-
finitesimal generators {X,,,...,Xy,} restricted to U = {X[! o---0 X/ (q);q €
L and (t1,...,t;) € R}, ¢ satisfies:

1. O is a y-orbit, its isotropy group G (1) is generated by {u1, ..., g, U1, ..
and HNGp(y)=HNGpe;

2. there exists 0 <!’ < ¢ — k such that O,(¢) is homeomorphic to Th+
RFV and HNG,(¢) = HNG; for each g € UNO;;

. ,’LLk+l}



LOCAL STRUCTURAL STABILITY OF ACTIONS OF R™ ON m-MANIFOLDS 17

Lemma 3.7 There exist a neighborhood Vi of qo in U and C" functions v; :
Vo — RE i =1,... k, such that v;(qo) = u; and HnNGqy(¥) = HNG; is generated
by (11(a)s- ., vk(a)} for cach q € Vo1 Oy

Proof: Let h: V,, CV — D1 with h(gp) = 0, be a ¢-flow box at qo. Let D; =
Di(e) = {(x1,...,2041) € DY 2y = 0} and %; = ¥;(e) = h~1(D;). The func-
tions 7; : Vi, — (—¢,¢) given by 7;,(¢) = —z;(q), where h(q) = (z1(q), - -, ze+1(q)),
are such that Xf(q)(q) €Y, for i =1,...,0. We know that X} (q) =qo, i =
1,...,k. Therefore, there exists 0 < § < e such that X (3;(6)) C Vi, @ =
L. k. Let By = ¥4, (6) = N'8i(5). By, is a transversal section to O at qq .

For each i =1,...,k, consider the function w; : £,, — R’ given by
i—1 4
vila) = Y 75(Xo,(@)uy + (L +7(X5 (@)us + Y (X0 @)y (3.1)
j=1 j=it1

It can be verified that every orbit of X,, (4 inside O4(v), q € ¥4,NO;, is periodic
of period one and v;(qy) = u;, i = 1,..., k. We can extend the functions v; to
the open set Vo = Uges, (O4(1)NVy,) by defining vi(q) = vi(X4, N Oy (3)). Thus,
HNGy(v) is generated by {v1(q),...,vk(g)} for each ¢ € Vo N O; and the proof
is completed. ([

Proof of Proposition 3.2. Let H be given by Lemma 3.4. The result follows from
Corollary 3.5 and Lemma 3.7. O
Proof of Theorem 1.1. There exist a neighborhood V,, of ¢ and a neighborhood
V of O, such that every ¢ € V, has an unique T*-orbit O(3) in V which is
transversally hyperbolic. We can assume without lost of generality that p € O(v),
or in other words, that O(v)) = Op(¢). Let {v1,...,v;} be a set of generators of
I'*(p) (T*(p) was defined in Proposition 3.2) and {X,..., X, } a set of infinites-
imal generators of ¢ adapted to O, such that X; = X,,, ¢ =1,...,k. Take a
chart h:V, — DI adapted to O, at p with h(p) =0 and let ¥ = h=1(D2~F).

Let {Y7,...,Y,} be a set of infinitesimal generators of ¢ € V,, adapted to
O,(1). Since (ENV)NFix(yr) = {p} = (ENV)NFix(pr), we have that T (1)) =
H N G,(¢) is isomorphic to Z*. Let {v1,...,0} be a set of generators of I'*(¢))
such that Y; = Y3, isclose to X; for ¢ =1,..., k. It follows that I'(¢)) is generated
by {77,1171, . ,nkﬁk}

By reducing the size of V, and V, if necessary, by Remark 2.4 and (ii) of
2.1.1, there exist a neighborhood X7 of p in ¥ and a topological equivalence
g:Yo— XNV between h=lop, . oh and h='o1,. oh at p. Let us consider the
C' actions g, : RF x N — N defined by ©o(t;q) = @(tinivy, ..., tkngve; q)
and g (t1,...,tk;q) = Y(t1n101, - . ., tknkUk; q), where t = (t1,...,tx). Note that
the @p-orbits (resp. p-orbits) by points in Xg (resp. X NV) are diffeomorphic to
T* and transversal to Xy (resp. XNV). The open sets S(¢) = Uyes,O4(po) and
S(¥) = UgesnvOq(tho) are neighborhoods of O,(y¢) and Op(¢), respectively. If
q € S(yp), there exists t € [0,1]* such that ¢o(t,q) € £9. The map H : S(¢) —
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S(1) defined by
F(q) = vo(—t,g(w0(t;q))))-

is a topological equivalence between ¢ and . (]
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