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Local structural stability of actions of R
n on n-manifolds ∗†

J. L. Arraut and Carlos Maquera

abstract: Let Mm be a compact m-manifold and ϕ : R
n × Mm → Mm a

Cr, r ≥ 1, action with infinitesimal generators of class Cr . We introduce the
concept of transversally hyperbolic singular orbit for an action ϕ and explore this
concept in its relations to stability. Our main result says that if m = n and Op is a
compact singular orbit of ϕ that is transversally hyperbolic, then ϕ is C1 locally
structurally stable at Op .
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1. Introduction

Let M (resp. N) denote a compact orientable m-manifold (resp. n-manifold)
and Ar(Rn,M), r ≥ 1, the space of Cr-actions of R

n on M with infinitesimal
generators of class Cr and the topology defined by saying that two actions are C1-
close if its infinitesimal generators are C1-close. Take ϕ ∈ Ar(Rn,M) and p ∈ M.
The ϕ-orbit of p will be denoted by Op(ϕ) or simply by Op . If dimOp < n,
then Op is called a singular orbit of ϕ and when dimOp = 0 p is called a fixed

point of ϕ and Op a point orbit. An action ϕ is called singular if every ϕ-orbit
is singular. The possible topological types of the orbits of ϕ are T k × R

ℓ, with
0 ≤ k + ℓ ≤ n, where T k = S1 × · · · × S1 k-times. Very little is known about
actions of R

n, n ≥ 2, compare to what is known when n = 1. Camacho, in [4],
defined the concept of hyperbolic fixed point of an action ϕ and proved that if p is
a hyperbolic fixed point of ϕ, then ϕ is locally C1 structurally stable at p. Here
we introduce the concept of transversally hyperbolic singular orbit of an action ϕ;
this concept coincides with Camacho’s definition of hyperbolic fixed point when
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Op is a point orbit. Next, we explore this concept in the particular case m = n
and prove the following theorem:

Theorem 1.1 If Op is a transversally hyperbolic compact singular orbit of ϕ ∈
Ar(Rn, N), r ≥ 1, then ϕ is locally C1 structurally stable at Op .

We also show, see Example 3.1, that Theorem 1.1 is not necessarily true when
n < m. It is natural to ask if the reciprocal of Theorem 1.1 is true. In [1] we
answered this question negatively in the case of real analytic actions. In fact, for
each n ≥ 2, we exhibited a family Cn ⊂ Aω(Rn, N) of singular actions such that
each ϕ ∈ Cn has a first integral and besides ϕ is C1 structurally stable. But
a compact singular orbit of ϕ ∈ Cn can never be transversally hyperbolic. With
regard to global stability, it seems reasonable to conjeture that if every compact
singular orbit of ϕ ∈ Ar(Rn, N) is transversally hyperbolic, then ϕ is C1 struc-
turally stable. Up to now, we can prove this conjecture for n = 2 and also for
n > 2 in some particular cases. This topic will be considered in a future paper.
The problem of characterizing the local structural stability of a compact singular
orbit of a ϕ ∈ Ar(Rn,M) is far from been solved.

2. Transversally hyperbolic singular orbits

M will denote a closed connected and orientable differentiable manifold. A
Cr-action of Lie group G on M is a Cr-map ϕ : G × M → M, 1 ≤ r ≤ ω,
such that ϕ(e, p) = p and ϕ(gh, p) = ϕ(g, ϕ(h, p)), for each g, h ∈ G and p ∈ M,
where e is the identity in G. Op = {ϕ(g, p); g ∈ G} is called the ϕ-orbit of p.
Gp = {g ∈ G; ϕ(g, p) = p} is called the isotropy group of p. For each p ∈ M
the map g 7→ ϕ(g, p) induce an injective immersion of the homogeneous space
G/Gp in M with image Op. When G = R

n, the possible ϕ-orbits are injective
immersions of T k × R

ℓ, 0 ≤ k + l ≤ n, where T k = S1 × · · · × S1, k times.
For each 0 ≤ i ≤ n − 1 let Singi(ϕ) = {p ∈ M ; dimOp = i} and Sing(ϕ) =

∪n−1
i=0 Singi(ϕ). If p ∈ Sing(ϕ), Op is called a singular orbit and when p ∈

Sing0(ϕ), Op is also called a point orbit and p a fixed point by ϕ. We also
write p ∈ Singc

i (ϕ), i = 1, . . . , n− 1, when Op is a T i-orbit. If Sing(ϕ) = M, we
call ϕ a singular action.

For each w ∈ R
n \ {0} ϕ induz a Cr-flow (ϕt

w)t∈R given by ϕt
w(p) = ϕ(tw, p)

and its corresponding Cr−1-vector field Xw is given by Xw(p) = D1ϕ(0, p) ·w. If
{w1, . . . , wn} is a base of R

n the associated vector fields Xw1
, . . . ,Xwn

determine
completely the action ϕ and are called a set of infinitesimal generators of ϕ.
Note that [Xwi

,Xwj
] = 0 for any two of them. We denote by X1, . . . ,Xn the

infinitesimal generators of ϕ associated to the canonical base of R
n.

Denote by Ar(Rn,M) the set of Cr-actions, r ≥ 1, of R
n on M such that

their canonical infinitesimal generators are also Cr vector fields. Given two ac-
tions {ϕ;X1, . . . ,Xn} and {ψ;Y1, . . . , Yn} define dk(ϕ,ψ) = max

1≤i≤n
‖Xi − Yi‖k .

Ar(Rn,M) is a metric space and the corresponding topology is the Ck-topology.
The notions of topological equivalence and Ck structural stability that we use

here for actions are the standard one’s.
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2.1. Camacho’s results on hyperbolic fixed points. In this subsection we
give the definition of hyperbolic fixed point due to Camacho [4] and enunciate
without proof his results that we shall use in this paper. Let E be a m-dimensional
real vector space and Aut(E) the group of its linear automorphisms. Consider Lie
groups G,H of the form R

k ×Z
ℓ. A homomorphism ̺ : G = R

k ×Z
ℓ → Aut(E),

is called a linear action of G on E. By definition rank(G) = k + ℓ.

Definition 2.1 A linear action ̺ is said to be hyperbolic if it satisfies the following
properties:

(a) if k+ℓ = 1, then for each s ∈ G, s 6= 0, all eigenvalues of ̺(s) have modulus
different from 1;

(b) if k + ℓ ≥ 2, we give the definition by induction on k + ℓ. Assume that
we already defined hyperbolicity for linear actions of groups H such that
rank(H) < k + ℓ. Then, ̺ is hyperbolic if:

(b.1) There exists a decomposition E =
⊕

t Et , ̺-invariant, such that ̺ is
transitive on each connected component of Et \ {0} for each t.

(b.2) The action χt = ̺|Gv(̺) : Gv(̺) → Aut(
⊕

t′ 6=t Et′), v ∈ Et is hyper-
bolic for each t. This makes sense since from (b.1) rank(Gv(̺)) = rank(G)−
1.

A fixed point p of ϕ ∈ Ar(Rk × Z
ℓ,M) is said to be hyperbolic if the induced

linear action ̺ : R
k × Z

ℓ → Aut(TpM) given by ̺(g) = Dϕg(p) is hyperbolic.

Example 2.2 Each linear action ̺ : R
2 → Aut(R2) is of the form ̺(t1, t2) =

exp(t1A1 + t2A2), where Ai , i = 1, 2, is a (2 × 2)-matrix and A1A2 = A2A1 .
Assume that ̺ is hyperbolic, then except for a linear change of coordinates, there
are two cases:

(i) if Ai =
(

αi −βi

βi αi

)
, i = 1, 2, then α1β2 − β1α2 6= 0. The orbit structure is

like in Figure 1(a).
(ii) if Ai =

(
λi 0
0 µi

)
, i = 1, 2, then λ1µ2 −µ1λ2 6= 0. The orbit structure is like

in Figure 1(b) .

0 0

R
2
-orbit R

2
-orbit

R
2
-orbitR

2
-orbit

S1
×R-orbit

E1

E2

(a) (b)

Figure 1:



12 J. L. Arraut and Carlos Maquera

We shall make use of the following results on hyperbolic fixed points whose proof
can be found in [4].

2.1.1. Let p be a hyperbolic fixed point of an action ϕ : (Rk × Z
ℓ)×Mm → Mm

with m ≤ k + 1 and ̺ : R
k × Z

ℓ → Aut(TpM) the induced linear action of ϕ at

p. Then,

(i) there exists a neighborhood V of p, and a homeomorphism h : V → TpM
such that h ◦ ϕg = ̺(g) ◦ h.

(ii) ϕ is C1 locally structurally stable at p.

For each g ∈ R
n put R

n(g) = {tg; t ∈ R} e R
n
+(g) = {tg; t > 0}. A cone on

R
n is a set C = ∪g∈i(D)R

n
+(g), where i : D → R

n − {0} is an affine embedding of
a d-disk D, 0 ≤ d ≤ n.

Let p be a hyperbolic fixed point of ϕ ∈ Ar(Rn,Mm). There exists a decompo-
sition TpM

m =
⊕

t Et invariant under the induced linear action ̺ : R
n×TpM

m →
TpM

m, where either Et is straight line and Et −{p} is the union of two R-orbits
or Et is a plane and Et−{p} is a S1×R-orbit of ̺. The isotropy subgroup Gt(v)
of a point v ∈ Et − {0} does not depend on the v and Gt = R

n−1 (Rn−1 × Z) if
Et is a straight line (a plane).

2.1.2. Let p a hyperbolic fixed point of ϕ ∈ Ar(Rn,Mm), r ≥ 1, and ̺ :
R

n × TpM
m → TpM

m the induced linear action. Let G be a closed subgroup

of R
n, EG = Fix(̺|G) and VG = Fix(ϕ|G). Then VG is a Cr submanifold of M

tangent to EG em p and for any cone C ⊂ G − ∪tGt with G 6⊂ Gt the subsets

W s
C (VG) = {q ∈ Mm; limg→∞ ϕ(g, q) ∈ VG , g ∈ C},

Wu
C (VG) = {q ∈ Mm; limg→∞ ϕ(−g, q) ∈ VG , g ∈ C}

are Cr-submanifolds that intersect transversally along VG and also ϕh is normally

hyperbolic in VG , for every h ∈ C.
It follows from 2.1.2 that there exist ϕ-invariant submanifolds Vt diffeomorphic

to Et and tangent to Et at p, were Vt = Fix(ϕ|Gt
).

2.2. Transversally hyperbolic compact singular orbits. Before giving
the definition of transversally hyperbolic singular orbit we need two trivializa-
tion lemmas. Let Dm

ε = {(x1, . . . , xm) ∈ R
m; |xi| < ε}, ε > 0, and ∂

∂xi
=

(0, . . . , 0, 1, 0, . . . , 0) the constant vector field.

Lemma 2.3 (k-flow box) Let ϕ ∈ Ar(Rk,Mm) with infinitesimal generators

X1, . . . ,Xk , and Op a k-dimensional orbit. There exists a Cr- diffeomorphism

h : Vp → Dm
ε , where Vp is a neighborhood of p, such that h∗Xi = ∂

∂xi
in Dm

ε ,
for each i = 1, . . . , k.

Proof: Let ρ : U → U0 be a chart of Mm with ρ(p) = 0 and Yi = ρ∗Xi , i =
1, . . . , k. There exists a neighborhood V0 ⊂ U0 where the local flows Y t

i define a
local Cr-action φ : Dk

τ × V0 → U0 dada por φ(τ1, . . . , τk, x) = Y τ1

1 ◦ · · · ◦ Y τk

k (x).
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Let H be a subspace of R
m orthogonal to subspace generated by the vectors

Y1(0), . . . , Yk(0), W0 = H ∩ V0 and ψ : Dk
τ × W0 → U0 the restriction of φ.

Take a base {e1, . . . , em} de R
m such that {e1, . . . , ek} is the canonical base of

R
k and {ek+1, . . . , em} is a base of {0} × H. Since Dψ(0, 0) : R

k × H → R
m is

an isomorphism, there exists an ε > 0 such that the restriction of ψ to Dm
ε =

Dk
ε × Dm−k

ε is a diffeomorphism onto its image. Put Vp = ρ−1(ψ(Dm
ε )), then

h = ψ−1 ◦ ρ is the desired chart. ¤

Remark 2.4 Note that the diffeomorphism h = h(ϕ) : Vp → Dm
ε depends contin-

uously on ϕ in the following sense: given η > 0, there exists δ > 0 such that if

ϕ̃ ∈ Ar(Rk,M) is δ C1-close to ϕ, then h(ϕ̃) : Ṽp → Dm
ε is η C1-close to h(ϕ)

in Vp ∩ Ṽp .

A pair (Vp, h) as in Lemma 2.3 will be called a k-flow box at p. If q ∈ Op

with q 6= p, then there exists u ∈ R
k such that X1

u(p) = q. We shall call γ =
{Xt

u(p); 0 ≤ t ≤ 1} an arc of ϕ in Op . By using Lemma 2.3 one can also prove:

Lemma 2.5 (Long k-flow box) Let ϕ ∈ Ar(Rk,M), Op a k-dimensional orbit

of ϕ and γ ⊂ Op an arc of ϕ in Op . Then, there exists k-flow box (Vγ , h),
where Vγ is a neighborhood of γ.

Let Op be singular k-dimensional orbit of ϕ ∈ Ar(Rn,Mm) and Gp its
isotropy group. Call G0

p the connected component of Gp that contains the ori-
gin and let H be a k-dimensional subspace of R

n such that R
n = H ⊕ G0

p .
Let {w1, . . . , wn} be a base of R

n such that {w1, . . . , wk} is a base of H and
{wk+1, . . . , wn} is a base of G0

p , and {Xi = Xwi
; i = 1, . . . , n} the corresponding

set of infinitesimal generators. Note that Xk+1(q) = · · · = Xn(q) = 0 for every
q ∈ Op . We shall say that X1, . . . ,Xn is a set of infinitesimal generators adapted

to Op .
Applying Lemma 2.3 to the action ϕ restricted to H we obtain a chart h :

Vp → Dm
ε of Mm such that if (θ, x) ∈ Dm

ε = Dk
ε × Dm−k

ε , then the vector fields
Xi in this chart can be written

(∗)

Xi(θ, x) =
∂

∂θi

, i = 1, . . . , k

Xk+i(θ, x) =

k∑

j=1

aji(x)
∂

∂θj

+

m∑

j=k+1

aji(x)
∂

∂xj

, i = 1, . . . , n − k

A chart like above is called adapted to Op at p. The vector fields

X̂i =

m∑

j=k+1

aji(x)
∂

∂xj

, i = 1, . . . , n − k,

define a local action ϕ
T

of R
n−k on Dm−k

ε having 0 ∈ Dm−k
ε as a fixed point.

When p is a fixed point of ϕ then a chart adapted to Op at p will be any chart
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of M which contains p. In this case X̂i = Xi , i = 1, . . . , n. It can be verified
that ϕ

T
has the following two properties:

(1) Although ϕ
T

depends on the chart (Vp , h) which in turn depends on H,
the fact that 0 ∈ Dm−k

ε be a hyperbolic fixed point of ϕ
T

does not depend on the
chart.

(2) If q ∈ Op and q 6= p, the there exists a chart (Vp, h) adapted to Op such
that q ∈ Vp .

It follows from the two properties above that the following concept is well
defined.

Definition 2.6 Let Op be singular k-dimensional orbit of ϕ. Op is transversally

hyperbolic if there exist a chart adapted to Op at p such that 0 ∈ Dm−k
ε is a

hyperbolic fixed point of the action ϕ
T
.

Remark 2.7 Note that when k = n − 1, ϕ
T

is the local flow of the vector field

X̂n(x) =

m∑

j=n

ajn(x)
∂

∂xj

, x = (xn, . . . , xm) ∈ Dm−n+1
1 .

Therefore, Op is transversally hyperbolic if and only if 0 ∈ Dm−n+1
ε is a hyperbolic

singularity of X̂n .

Remark 2.8 Note that {X1, . . . Xk, X̂1, . . . , X̂n−k} define a local R
n-action ϕ̂ on

Dm
ε and that O(θ,x)(ϕ̂) = O(θ,x)(h ◦ ϕ ◦ h−1) for each (θ, x) ∈ Dm

ε .

3. Local structural stability

Let Op be a transversally hyperbolic compact singular orbit of ϕ ∈ Ar(Rn,M), n <
m. It is not difficult to prove, from Remark 2.4, that Op is C1-persistent, i. e.,
given a neighborhood V of Op there exists δ > 0 such that if d1(ψ,ϕ) < δ,
then ψ has a compact orbit O′ diffeomorphic to Op inside V. The following
example shows that local structural stability is not a consequence of transversal
hyperbolicity when n < m.

Example 3.1 Let S2 = {(x, y, z) ∈ R
3;x2 + y2 + z2 = 1}, N = (0, 0, 1), S =

(0, 0,−1),X0 = x∂/∂x + y∂/∂y on R2 = {(x, y, 0) ∈ R
3}, PN : R2 → S2 (PS :

R2 → S2) the projection with focus in N (S) and X the tangent vector field to
S2 defined by

X(p) =

{
(PN )∗X0 , p 6= N ;
0, p = N.

It is clear that X is the meridian vector field on S2 and that in a neighborhood
of S (N) using the coordinate system P−1

N (P−1
S ) X = x∂/∂x + y∂/∂y (X =

−x∂/∂x − y∂/∂y). Now, consider on R × S2 the vector fields X1 = ∂/∂t and
X2(t, p) = X(p) and the diffeomorphism

Φ : R × S2 → R × S2, Φ(t, p) = (t − 1, p)
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It is clear that Φ∗X1 = X1 and Φ∗X2 = X2 . Thus X1 and X2 induce vector
fields Y1 and Y2 on S1 × S2, the quotient manifold of R × S2 under the action
of Z generated by Φ, such that [Y1, Y2] = 0. Call ϕ the action of R

2 on S1 ×S2

with infinitesimal generators Y1, Y2 , OS (ON ) the S1-orbit of ϕ induced by
R × {S} (R × {N}). By construction OS is a transversally hyperbolic compact
singular orbit of ϕ surrounded by cylindrical orbits. If instead of Φ we consider
the diffeomorphism Φα given by Φα(t, p) = (t − 1, Rα(p)), where Rα is a small
rotation of S2 leaving the z-axis fixed and of an irrational angle α we obtain
an action ϕα C1-close to ϕ which is not topologically equivalent to ϕ in any
neighborhood of OS . Thus ϕ is not locally C1 structurally stable at OS .

Let Op be a compact singular orbit of ϕ ∈ Ar(Rn, N) and O a ϕ-orbit such
that cl(O) ⊃ Op . Then GO , the isotropy group of O, is a subgroup of Gp .
When Op is transversally hyperbolic one can obtain additional information about
the relation between GO and Gp .

Proposition 3.2 Let Op be a transversally hyperbolic T k-orbit, 0 ≤ k < n, of

ϕ ∈ Ar(Rn, N). Then, there exist a linear k-subspace H of R
n transversal to Gp

and Γ ⊂ H isomorphic to Z
k such that

1. Γk = H ∩ Gp is isomorphic to Z
k;

2. Γ is a subgroup of Γk;

3. Γ = GO ∩ H for each orbit O with Op ⊂ cl(O).

Lemma 3.3 Let Op be a T k-orbit, 0 ≤ k < n, of ϕ ∈ Ar(Rn, N) and O a

T k+l × R
ℓ−k−l-orbit, k + l < ℓ ≤ n, such that Op ⊂ cl(O). Then, GO ∩ G0

p is

isomorphic to R
n−ℓ × Z

l.

Proof: It is known that Gp and GO are isomorphic to R
n−k × Z

k and R
n−ℓ ×

Z
k+l, respectively and that GO ⊂ Gp and G0

O ⊂ G0
p . Let {u1 . . . , un−ℓ, v1, . . . , vk+l}

be a set of generators of the group GO such that {u1 . . . , un−ℓ} is a base of G0
O.

We will show that G0
p∩{v1, . . . , vk+l} has exactly l elements, but this implies that

GO ∩ G0
p is isomorphic to R

n−ℓ × Z
l, which is the desired conclusion. In fact, as-

sume that there exists 0 < k′ ≤ k such that {v1, . . . , vl+k′} ⊂ G0
p and let ξ be the

action of R
k−k′

given by the vector fields Xvi
, i = l+k′ +1, . . . , l+k. Let q ∈ Op

such that q /∈ Op(ξ). Since Op ⊂ cl(O), there are sequences {pj ∈ O; j ∈ N} and
{tij ∈ [0, 1]; i = 1, 2 . . . , k + l and j ∈ N} such that

lim
j→∞

pj = p and lim
j→∞

ϕ
( k+l∑

i=1

tijvi, pj

)
= q.

For each i = 1, . . . , k + l, we can assume, extracting a subsequence if necessary,
that tij → ti ∈ [0, 1]. Then

q = ϕ
( k+l∑

i=1

tivi, p
)

= ϕ
( l+k∑

i=l+k′+1

tivi , ϕ
( l+k′∑

i=1

tivi, p
))

= ϕ
( k+l∑

i=l+k′+1

tivi, p
)
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which contradicts the fact that q /∈ Op(ξ). ¤

Let Op be a transversally hyperbolic T k-orbit, 0 ≤ k < n, of ϕ ∈ Ar(Rn, N)
and Oi , i = 1, . . . ,m, n-dimensional orbits such that cl(Oi) ⊃ Op . It follows from
Definition 2.6 that there exists s ∈ {0, . . . , n−k−1} such that Oi , i = 1, . . . ,m, is
homeomorphic to T k+s×R

n−k−s. If Gi is the isotropy group of Oi , i = 1, . . . ,m,
then Gp

∼= R
n−k × Z

k and Gi
∼= Z

k+s, i = 1, . . . ,m.

Lemma 3.4 Let Op be a transversally hyperbolic T k-orbit, 0 ≤ k < n. There

exists a linear k-subspace H of R
n transversal to Gp , such that H ∩ Gp is a

subgroup of R
n isomorphic to Z

k, and if O is a T k+l×R
ℓ−k−l-orbit, k+l < ℓ ≤ n,

with cl(O) ⊃ Op , then GO ∩ H is a subgroup of H ∩ Gp isomorphic to Z
k.

Proof: Let Wi be the linear subspace of R
n generated by Gi . Then dim Wi =

k + s and Wi is transversal to G0
p . We first show that W1 = Wi , i = 2, . . . ,m.

Assume that there exists i ∈ {2, . . . ,m} such that W1 6= Wi and choose u1 ∈ G1\
Gi , u2 ∈ Gi\G1 such that w = u1−u2 ∈ G0

p . Let Xw ,Xu1
,Xu2

∈ X
r(N) be the

associated vector fields. Then Xw = Xu1
−Xu2

or equivalently Xt
w = Xt

u1
◦X−t

u2
.

Take infinitesimal generators X1, . . . ,Xn of ϕ adapted to Op so that Xn = Xw

and a chart (V, h) adapted to Op at p. It follows from X1
u1
|Op

= id = X1
u2
|Oi

that
DX1

ui
(p) = id, i = 1, 2. Thus, DX1

w(p) = id, which is equivalent to DXw(p) = 0.
However, this contradicts the fact that Op is transversally hyperbolic and proves
that W1 = Wi = W, i = 2, . . . ,m. By Lemma 3.3 W ∩ G0

p is isomorphic to R
s.

By taking H as a k-subspace of W such that W = H ⊕ (W ∩ G0
p), it is easy to

check - for each orbit O with Op ⊂ cl(O) - that GO ∩H is a subgroup of H ∩Gp

isomorphic to Z
k. ¤

Under the same hypotheses of Lemma 3.4, we obtain:

Corollary 3.5 Let {u1, . . . , uk} be a set of generators of H∩GO . If O ⊂ cl(Oi),
then there exist ni

1, . . . , n
i
k ∈ N such that {ni

1u1, . . . , n
i
kuk} is a set of generators

of H ∩ Gi .

Remark 3.6 Assume that cl(O) ⊃ Op and that O ⊂ cl(Oi) for some i =
1, . . . ,m. Let {u1, . . . , uk, uk+1, . . . , uk+l, . . . , uℓ} be a linearly independent sub-
set of R

n such that {u1, . . . , uk} is a set of generators of H ∩GO and the vector
fields {Xu1

, . . . ,Xuℓ
} are linearly independent on O. Consider a segment L that is

transversal to O at q0 and such that at least one connected component of L\{q0}
is contained in Oi and call ψ = ψ(ϕ) the locally free C1 action of R

ℓ with in-
finitesimal generators {Xu1

, . . . ,Xuℓ
} restricted to U = {Xt1

u1
◦ · · · ◦ Xtℓ

uℓ
(q); q ∈

L and (t1, . . . , tℓ) ∈ R
ℓ}. ϕ satisfies:

1. O is a ψ-orbit, its isotropy group GO(ψ) is generated by {u1, . . . , uk, uk+1, . . . , uk+l}
and H ∩ GO(ψ) = H ∩ GO;

2. there exists 0 ≤ l′ ≤ ℓ − k such that Oq(ψ) is homeomorphic to T k+l′ ×

R
ℓ−k−l′ and H ∩ Gq(ψ) = H ∩ Gi for each q ∈ U ∩ Oi ;
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Lemma 3.7 There exist a neighborhood V0 of q0 in U and Cr functions νi :
V0 → R

ℓ, i = 1, . . . , k, such that νi(q0) = ui and H∩Gq(ψ) = H∩Gi is generated

by {ν1(q), . . . , νk(q)} for each q ∈ V0 ∩ Oi ;

Proof: Let h : Vq0
⊂ V → Dℓ+1

ε with h(q0) = 0, be a ℓ-flow box at q0 . Let Di =
Di(ε) = {(x1, . . . , xℓ+1) ∈ Dℓ+1

ε ;xi = 0} and Σi = Σi(ε) = h−1(Di). The func-
tions τi : Vq0

→ (−ε, ε) given by τi(q) = −xi(q), where h(q) = (x1(q), . . . , xℓ+1(q)),

are such that X
τi(q)
i (q) ∈ Σi , for i = 1, . . . , ℓ. We know that X1

ui
(q0) = q0 , i =

1, . . . , k. Therefore, there exists 0 < δ < ε such that X1
ui

(Σi(δ)) ⊂ Vq0
, i =

1, . . . , k. Let Σq0
= Σq0

(δ) = ∩n−1
i=1 Σi(δ). Σq0

is a transversal section to O at q0 .
For each i = 1, . . . , k, consider the function wi : Σq0

→ R
ℓ given by

νi(q) =

i−1∑

j=1

τj(X
1
ui

(q))uj + (1 + τi(X
1
ui

(q)))ui +

ℓ∑

j=i+1

τj(X
1
ui

(q))uj . (3.1)

It can be verified that every orbit of Xνi(q) inside Oq(ψ), q ∈ Σq0
∩Oi , is periodic

of period one and νi(q0) = ui , i = 1, . . . , k. We can extend the functions νi to
the open set V0 = ∪q∈Σq0

(Oq(ψ)∩Vq0
) by defining νi(q) = νi(Σq0

∩Oq(ψ)). Thus,
H ∩ Gq(ψ) is generated by {ν1(q), . . . , νk(q)} for each q ∈ V0 ∩ Oi and the proof
is completed. ¤

Proof of Proposition 3.2. Let H be given by Lemma 3.4. The result follows from
Corollary 3.5 and Lemma 3.7. ¤

Proof of Theorem 1.1. There exist a neighborhood Vϕ of ϕ and a neighborhood
V of Op such that every ψ ∈ Vϕ has an unique T k-orbit O(ψ) in V which is
transversally hyperbolic. We can assume without lost of generality that p ∈ O(ψ),
or in other words, that O(ψ) = Op(ψ). Let {v1, . . . , vk} be a set of generators of
Γk(ϕ) (Γk(ϕ) was defined in Proposition 3.2) and {X1, . . . ,Xn} a set of infinites-
imal generators of ϕ adapted to Op such that Xi = Xvi

, i = 1, . . . , k. Take a
chart h : Vp → Dn

ε adapted to Op at p with h(p) = 0 and let Σ = h−1(Dn−k
ε ).

Let {Y1, . . . , Yn} be a set of infinitesimal generators of ψ ∈ Vϕ adapted to
Op(ψ). Since (Σ∩V )∩Fix(ψT ) = {p} = (Σ∩V )∩Fix(ϕT ), we have that Γk(ψ) =
H ∩ Gp(ψ) is isomorphic to Z

k. Let {ṽ1, . . . , ṽk} be a set of generators of Γk(ψ)
such that Yi = Yṽi

is close to Xi for i = 1, . . . , k. It follows that Γ(ψ) is generated
by {n1ṽ1, . . . , nkṽk}.

By reducing the size of Vϕ and V, if necessary, by Remark 2.4 and (ii) of
2.1.1, there exist a neighborhood Σ0 of p in Σ and a topological equivalence
g : Σ0 → Σ ∩ V between h−1 ◦ ϕ

T
◦ h and h−1 ◦ ψ

T
◦ h at p. Let us consider the

C1 actions ϕ0, ψ0 : R
k × N → N defined by ϕ0(t; q) = ϕ(t1n1v1, . . . , tknkvk; q)

and ψ0(t1, . . . , tk; q) = ψ(t1n1ṽ1, . . . , tknkṽk; q), where t = (t1, . . . , tk). Note that
the ϕ0-orbits (resp. ψ0-orbits) by points in Σ0 (resp. Σ∩V ) are diffeomorphic to
T k and transversal to Σ0 (resp. Σ∩V ). The open sets S(ϕ) = ∪q∈Σ0

Oq(ϕ0) and
S(ψ) = ∪q∈Σ∩V Oq(ψ0) are neighborhoods of Op(ϕ) and Op(ψ), respectively. If
q ∈ S(ϕ), there exists t ∈ [0, 1]k such that ϕ0(t, q) ∈ Σ0 . The map H : S(ϕ) →
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S(ψ) defined by
F (q) = ψ0(−t, g(ϕ0(t, q)))).

is a topological equivalence between ϕ and ψ. ¤
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