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Blow-up directions at space infinity
for solutions of semilinear heat equations

Yoshikazu Giga and Noriaki Umeda

abstract: A blowing up solution of the semilinear heat equation ut = ∆u+ f(u)
with f satisfying lim inf f(u)/up > 0 for some p > 1 is considered when initial data
u0 satisfies u0 ≤ M , u0 6≡ M and limm→∞ infx∈Bm u0(x) = M with sequence of
ball {Bm} whose radius diverging to infinity. It is shown that the solution blows up
only at space infinity. A notion of blow-up direction is introduced. A characteriza-
tion for blow-up direction is also established.

Key Words: nonlinear heat equation, blow-up at space infinity, blow-up di-
rection.
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1. Introduction and main theorems

We are interested in solutions of semilinear heat equations which blow up at
space infinity.

In [8] we considered a nonnegative blowing up solution of

ut = ∆u + up x ∈ Rn, t > 0

with initial data u0 satisfying

0 ≤ u0(x) ≤ M, u0 6≡ M and lim
|x|→∞

u0(x) = M,

where p > 1 and M > 0 is a constant. We proved in [8] that the solution u blows
up exactly at the blow-up time for the spatially constant solution with initial data
M . We moreover proved that u blows up only at the space infinity. In this paper
we would like to generalize this result in following two directions.
(i) (Initial data) We consider more general initial data u0 which may not converge
to M for some direction of x, for example u0 → M as |x| → ∞ only for x in some
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sector. It is convenient to introduce a notion of blow up direction at the space
infinity, We are able to give necessary and sufficient conditions so that particular
direction is a blow-up direction.
(ii) (Nonlinear term) We extend a class of nonlinear term. It includes eu and up+uq

for p, q > 1.
We consider solutions of the initial value problem for the equation

{
ut = ∆u + f(u),
u(x, 0) = u0(x),

x ∈ Rn, t > 0,
x ∈ Rn.

(1)

The nonlinear term f is assumed to be locally Lipschitz in R with the properly
that

lim inf
s→∞

f(s)
sp

> 0 for some p > 1, f ′ ≥ 0. (2)

We take two constants M and N satisfying M + N > 0 and

f(M) > 0. (3)

The initial data u0 is assumed to be a measureable function in Rn satisfying

−N ≤ u0 ≤ M a.e. and u0 6≡ M a.e. (4)

We are interested in initial data such that u0 → M as |x| → ∞ for x in some sector
of Rn. We assume that

essinfx∈Bm(u0(x)−Mm) ≥ 0 for m = 1, 2, . . . , (5)

where

Bm = Brm(xm) (6)

with a sequence {rm} and a sequence of constants Mm satisfying

lim
m→∞

rm = ∞, lim
m→∞

|M −Mm| = 0,

and {xm}∞m=1 is some sequence of vectors. Here Br(x) denotes the closed ball of
radius r centered at x. (In fact, it follows from (4) that |xm| → ∞ as m →∞.)

Problem (1) has a unique bounded solution at least locally in time. However, the
solution may blow up in finite time. For a given initial value u0 and nonlinear term
f let T ∗ = T ∗(u0, f) be the maximal existence time of the solution. If T ∗ = ∞,
the solution exists globally in time. If T ∗ < ∞, we say that the solution blows up
in finite time. It is well known that

lim sup
t→T∗

‖u(·, t)‖∞ = ∞, (7)

where ‖ · ‖∞ denotes the L∞-norm in space variables.
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In this paper, we are interested in behavior of a blowing up solution near space
infinity as well as location of blow-up directions defined below. A point xBU ∈ Rn

is called a blow-up point (with value ±∞) if there exists a sequence {(xm, tm)}∞m=1

such that

tm ↑ T ∗, xm → xBU and u(xm, tm) → ±∞ as m →∞.

If there exists a sequence {(xm, tm)}∞m=1 such that

tm ↑ T ∗, |xm| → ∞ and u(xm, tm) → ±∞ as m →∞,

then we say that the solution blows up to ±∞ at space infinity.
A direction ψ ∈ Sn−1 is called a blow-up direction for the value ±∞ if there

exists a sequence {(xm, tm)}∞m=1 with xm ∈ Rn and tm ∈ (0, T ∗) such that
u(xm, tm) → ±∞ (as m →∞) and

xm

|xm| → ψ as m →∞. (8)

We consider the solution v(t) of an ordinary differential equation
{

vt = f(v), t > 0,
v(0) = M.

(9)

Let Tv = T ∗(M, f) be the maximal existence time of solutions of (9), i. e.,

Tv =
∫ ∞

M

ds

f(s)
.

We are now in position to state our main results.

Theorem 1. Assume that f is locally Lipschitz in R and satisfies (2) and (3).
Let u0 be a continuous function satisfying (4) and (5), and Tv ≤ T ∗(−N, f). Then
there exists a subsequence of {xm}∞m=1 (still denote by {xm}, independent of t)
such that

lim
m→∞

u(xm, t) = v(t).

The convergence is uniform in every compact subset of {t : 0 ≤ t < Tv}. Moreover,
the solution blows up at Tv.

Remark 1.1. Our assumption Tv ≤ T ∗(−N, f) says that the solution does not
blow up to minus infinity before it blows up to plus infinity. From the condition
(4), it follows that limm→∞ |xm| = ∞.

This result in particular implies that

sup
0<t<T∗

v−1(t)‖u(·, t)‖∞ < ∞. (10)

When we set f(u) = |u|p−1u, such a blow-up rate estimate is known for subcritical
p; see e.g. [4], [6], [7] for general bounded initial data without assuming (4) and (5).
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Such a blow-up estimate is very fundamental to analyze the behavior of solution
near blow-up point as noted in [3]. However, for supercritical p such a blow-up rate
estimate (10) may not hold in general; see e.g. [1], [9]. If one considers only radial
solutions of (1) for supercritical p less than 1 + 4/(n− 4− 2(n− 1)1/2) or n ≤ 10,
then the estimate (10) holds [11]. We would like to emphasize that Theorem 1
requires no restriction on p.

Our second main result is on the location of blow-up points.

Theorem 2. Assume the same hypotheses of Theorem 1. Then the solution of (1)
has no blow-up points with +∞ in Rn. (It blows up only at space infinity.)

There is a huge literature on location of blow-up points since the work of
Weissler [13] and Friedman-McLeod [2]. (We do not intend to list references ex-
haustively in this paper.) However, most results consider either bounded domains
or solutions decaying at space infinity; such a solution does not blow up at space
infinity [5].

As far as the authors know, before the result of [8] the only paper discussing
blow-up at space infinity is the work of Lacey [10]. He considered the Dirichlet
problem in a half line. He studied various nonlinear terms and proved that a
solution blows up only at space infinity.

In particular, his result implies that the solution of




ut = uxx + f(u),
u(0, t) = 1,
u(x, 0) = u0(x) ≥ 1,

x > 0, t > 0,
t > 0,
x > 0

blows up only at space infinity, where u0 satisfies 0 ≤ u0 ≤ M with M > 1, and
f(s) = sp and es.

His method is based on construction of suitable subsolutions and supersolutions.
However, the construction heavily depends on the Dirichlet condition at x = 0 and
does not apply to the Cauchy problem even for the case n = 1.

As previously described, the authors [8] proved the statement of Theorems 1
and 2 assuming that lim|x|→∞ u0(x) = M for positive solutions of ut = ∆u + up.
Later, Simozyo [12] had the same results as in [8] by relaxing the assumptions of
initial data u0 ≥ 0 which is similar to that in the present paper. His approach
is a construction of a suitable supersolution which implies that a ∈ Rn is not a
blow-up point. Although he restricted himself for f(s) = sp, his idea works our f
under slightly strong assumption on u0. Here we give a different approach.

By Simozyo’s results [12] it is natural to consider a problem of “blow-up direc-
tion” defined in (8). We next study this “blow-up direction” for the value +∞.
Our third result is on this blow-up direction. It is convenient to introduce the
function Am defined by

Am(s) =
1

|Bs(ym)|
∫

Bs(ym)

u0(z)dz (11)

for a given sequence {ym}∞m=1. This Am(s) represents the mean value of u0 over
the ball Bs(ym).
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Theorem 3. Assume the same hypotheses of Theorem 1 and let {sm}∞m=1 be a
sequence diverging to ∞ in R. For a given direction ψ ∈ Sn−1, the following
alternatives hold.

(i) If there exists a sequence {ym}∞m=1 satisfying limm→∞ ym/|ym| = ψ such that

lim sup
m→∞

inf
s∈(1,sm)

Am(s) = M,

then ψ is a blow-up direction.

(ii) If there exists a constant sc ∈ (1/(M + N),∞) such that for any sequence
{ym}∞m=1 satisfying limm→∞ ym/|ym| = ψ such that

lim sup
m→∞

inf
s∈(1,sc)

Am(s) ≤ M − 1
sc

,

then ψ is not a blow-up direction.

This characterizes blow up directions by profiles of initial data. This is a new
result even if f(u) = |u|p−1u or n = 1.

Here are main ideas of the proofs . To prove Theorem 1 we construct a suitable
subsolution. To prove Theorem 2 we derive a non blow-up criterion. We do not
appeal any energy arguments for rescaled function as is done in our previous paper
[8]. Our argument consists of two parts. First we observe that

u(x, t) ≤ δv(t)

near a point a ∈ Rn with some δ ∈ (0, 1) when t is close to blow-up time. By a
bootstrap argument we derive that u is actually bounded near a when t is close to
the blow up time. To prove Theorem 3 we use comparison argument as in Theorems
1,2 and non blow-up criterion which is established in the proof of Theorem 2. We
also note that there is no situation which is not covered by assumption of (i) and
(ii) of Theorem 3.

This paper is organized as follows. In section 2 we prove Theorem 1 by using
the Green kernel of the heat equation. The proof of Theorem 2 is given in section
3 by a priori estimate. In section 4 we show Theorem 3 using Theorems 1 and 2.

2. Behavior at space infinity

In this section, we prove Theorem 1. We may assume rm ≤ rm+1 and Mm ≤
Mm+1 for m ∈ N without loss of generality.

Proof of Theorem 1: Let GBR(z)(x, y, t) be the Green kernel of the Dirichlet
problem of the heat equation in the domain BR(z) and G(x, y, t) be that of Rn.
We set

GR(x, y, t) =
{

GBR
(x, y, t),

0,
x ∈ BR(z), t > 0,
x ∈ Rn\BR(z).
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It is easily seen that

lim
R→∞

∫

Rn

GR(x, y, t)ψ(y)dy =
∫

Rn

G(x, y, t)ψ(y)dy

uniformly in Br(z) × [0, a] for any measureable function ψ(y) with any r and a
satisfying 0 < r < ∞ and 0 < a < ∞.

For the m-th ball Bm defined in (6), let um be the subsolution of (1) satisfying




(um)t = ∆um + f(um),
um(x, 0) ≡ Mm,
um = w

x ∈ Bm, t > 0,
x ∈ Bm,
x ∈ Rn\Bm, t > 0,

where w is the solution of
{

wt = f(w), t > 0,
w(0) = −N.

Our goal is to prove limm→∞ um(xm, t) = v(t). We set Xm = um − w and
observe that Xm satisfies





(Xm)t = ∆Xm + f(Xm + w)− f(w),
Xm(x, 0) ≡ Mm −N,
Xm = 0

x ∈ Bm, t > 0,
x ∈ Bm,
x ∈ Rn\Bm, t > 0.

It is easily seen that Xm ≤ Xm+1 for any m ∈ N. It is well known that Xm

satisfies the integral equation

Xm(x, t) =
∫

Rn

Gm(x, y, t)(Mm + N)dy

+
∫ t

0

∫

Rn

Gm(x, y, t− s){f(Xm(y, s) + w(s))− f(w(s))}ds.

when Gm(x, y, t) be the Green kernel of the Dirichlet problem of the heat equation
in the domain BRm .

We shall prove that limm→∞Xm(xm, t) = v(t)− w(t). Since v satisfies (9), we
have

v(t)−w(t)−Xm(xm, t) = M + N −
∫

Rn

Gm(xm, y, t)(Mm + N)dx

∫ t

0

[
f(v(s))− f(w(s))−

∫

Rn

{
f(Xm(y, s) + w(s))− f(w(s))

}
dy

]
ds.

Since
∫
Rn G(x, y, t)dy = 1, we have

M + N −
∫

Rn

Gm(xm, y, t)(Mm + N)dy)

=
∫

Rn

{
G(xm, y, t)−Gm)(xm, y, t)

}
(M + N) + Gm(xm, y, t)(M −Mm)dy
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and

f(v(s))− f(w(s))−
∫

Rn

{
f(Xm(y, s) + w(s))− f(w(s))

}
dy

=
∫

Rn

[{
(G(xm, y, t− s)−Gm(xm, y, t− s))(f(v(s))− f(w(s)))

+ Gm(x,m , y, t− s)
{
f(x(s))− f(Xm(y, s) + w(s))

}]
dy.

By the monotone convergence theorem we have

lim
m→∞

{
M + N −

∫

Rn

Gm(xm, y, t)(Mm + N)dy)
}

= 0

and

lim
m→∞

{∫ t

0

∫

Rn

Gm(x, y, t− s){f(Xm(y, s) + w(s))− f(w(s))}ds

}

= lim
m→∞

∫ t

0

∫

Rn

Gm(xm, y, t− s)
{
f(v(s))− f(Xm(y, s) + w(s))

}
dyds.

Thus we have

lim
m→∞

{
v(t)− w(t)−Xm(xm, t)

}

= lim
m→∞

[∫ t

0

∫

Rn

Gm(xm, y, t− s)
{
f(v(s))− f(Xm(y, s) + w(s))

}
dyds

]

≤ lim
m→∞

[∫ t

0

C
{
v(s)− w(s)−Xm(xm, s)

}
ds

]

for t ∈ [0, T0 with T0 ∈ (0, T ∗) and some constant C = C(T0). We set X(t) =
limm→∞Xm(xm, t). The monotone convergence theorem yields

v(t)− w(t)−X(t) ≤
∫ t

0

C(v(s)− w(s)−X(s))ds.

Since v(t) ≥ w(t) + X(t), we have

v(t)− w(t)−X(t) ≡ 0 for t ∈ [0, T0].

We thus obtain that

lim
m→∞

um(xm, t) ≡ v(t) for t ∈ [0, T0].

Since um(x, t) ≤ u(x, t) ≤ v(t), we conclude

lim
m→∞

um(xm, t) ≡ v(t) for t ∈ [0, T0].
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Thus, since Tv ≤ T ∗(−N, f) and Tv ≤ T ∗(u0, f), we take

lim
m→∞

u(xm, t) = v(t) for t ∈ [0, Tv). (12)

It remains to prove that u blows up at t = Tv. For this purpose it suffices
to prove that limm→∞ u(xm, tm) = ∞ for some sequence tm → Tv. We argue by
contradiction. Suppose that limm→∞ u(xm, tm) ≤ C for some C ∈ [M,∞). Then
we could take t0 ∈ (0, Tv) satisfying v(t0) ≥ C and vt(t) > 0 for t ≥ t0. By (12) we
have

lim
m→∞

u

(
xm,

t0 + Tv

2

)
= v

(
t0 + Tv

2

)
> C,

which yields a contradiction. We thus proved that limm→∞ u(xm, tm) = ∞, so that
u(x, t) blows up at Tv. 2

3. Non blow-up point in Rn

In this section we prove Theorem 2. We may assume that f(u0(x)) ≥ 0 for any
x ∈ Rn without loss of generality.

Lemma 3.1. Let u and v be solutions of (1) and (9) with u0, M and f satisfying
(2), (3) and (4). Then there exist δ = δ(a, r, t0, u0, f) ∈ (0, 1) such that for (x, t) ∈
Br(a)× [t0, T ∗),

u(x, t) ≤ δv(t)

with t0 ∈ [0, T ∗).

Proof: By (2) there exist Mf = Mf (f) > M and δf = δf (f) ∈ (0, 1) satisfying
for r ≥ Mf and δ ∈ (δf , 1),

f(δr) ≤ δf(r). (13)

Let T0 = T0(u0, f) ∈ (0, T ∗) such that v(T0) = Mf . Since u0 ≤ M and u0 6≡ M ,
we have u(x, T0) < v(T0). Note that u(x, t) < v(t) for t ∈ (0, T0]. Let w be the
solution of

{
wt = ∆w,
w(x, T0) = max{u(x, T0)/v(T0), δf},

x ∈ Rn, t ∈ (T0, T
∗),

x ∈ Rn.

Put ū = vw. Then we have
{

ūt = ∆ū + wf(v),
ū(x, T0) = max{u(x, T0), δfv(T0)},

x ∈ Rn, t ∈ (T0, T
∗),

x ∈ Rn.

Since w(x, t) ∈ [δf , 1) and v(t) ≥ Mf , we have

wf(v) ≥ f(wv) = f(ū)

by (13). This ū is supersolution of (1).



Blow-up directions at space infinity 17

Since for any x ∈ Rn, supt∈[T0,T∗) w(x, t) < 1, we can take δ = δ(a, r, T0, u0, f) ∈
(0, 1) satisfying w(x, t) ≤ δ for (x, t) ∈ Br(a)× [T0, T

∗). Thus, we obtain

u(x, t) ≤ ū(x, t) = w(x, t)v(t) ≤ δv(t)

and Lemma 3.1 is proved. 2

We consider the equation




ût = ∆û,
û(x, 0) = u0(x),
û(x, t) ≤ v(t),

x ∈ B1, t > 0,
x ∈ B1,
x ∈ ∂B1,

(14)

where B1 = B1(a) with some a ∈ Rn, and v is the solution of (9) and T is maximum
existence time for v.

Lemma 3.2. Let û be the solutions of (14) with a bounded continuous function
u0 satisfying u0 ≤ v(0) and B1 = B1(a) with some a ∈ Rn. And let v = v(t) ∈
C1([0, T )) blow up at t = T . Then, for any ε > 0 and ζ ∈ (0, 1), there exist
r ∈ (0,

√
T ∗) depending only on the space dimension, ε and ζ such that

sup
(x,t)∈Bζ×[T−r2,T )

û(x, t)/v(t) < ε, (15)

where Bζ = Bζ(a).

Proof: We consider the function

w = v − û.

Then, the function w satisfies




wt ≥ ∆w + vt,
w(x, 0) = v(0)− u0(x),
w(x, t) = 0,

x ∈ B1, t > 0,
x ∈ B1,
x ∈ ∂B1,

(16)

or its integral form:

w(x, t) ≥
∫

B1

G1(x, y, t)(v(0)− u0(y))dy

+
∫ t

0

∫

B1

G1(x, y, t− s)vt(s)dyds,

where G1(x, y, t) is the Green kernel of the Dirichlet problem of the heat equation
in the domain B1(0).

We take ε1 > 0 and ε2 > 0 small enough such that

(1− ε1)(1− ε2) ≥ (1− ε). (17)
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For these ε1 and ε2, and for any ζ ∈ (0, 1), we are able to take δ1 = δ(ζ, ε2) > 0
and δ2 = δ2(δ1, ε1) ∈ (0, δ1) such that

inf
x∈Bζ

s∈[0,δ1]

∫

B1

G1(x, y, s)dy ≥ 1− ε2 (18)

and

v(T − δ3)− v(T − δ1) ≥ (1− ε1)v(T − δ3). (19)

for any δ3 ∈ (0, δ2]. Then,

w(x, T − δ3) ≥
∫ T−δ3

0

∫

B1

G1(x, y, T − δ3 − s)vt(s)dyds

=
∫ T−δ3

0

vt(s)
∫

B1

G1(x, y, T − δ3 − s)dyds

≥
∫ T−δ3

T−δ1

vt(s)
∫

B1

G1(x, y, T − δ3 − s)dyds.

Since infx∈D

∫ b

a
h(x, s)ds ≥ ∫ b

a
infx∈D h(x, s)ds for any constants a, b satisfying

a ≤ b, any integrable function h in [a, b] and any domain D, we have

inf
x∈Bζ

w(x, T − δ2) ≥
∫ T−δ2

T−δ1

vt(s) inf
x∈Bζ

∫

B1

G1(x, y, T − δ2 − s)dyds.

From (18) we obtain

inf
x∈Bζ

w(x, T − δ2) ≥ (1− ε2)
∫ T−δ2

T−δ1

vt(s)ds

≥ (1− ε2) (v(T − δ2)− v(T − δ1)) .

From (19) and (17) we get

inf
x∈Bζ

w(x, T − δ2) ≥ (1− ε2)(1− ε1)v(T − δ2)

≥ (1− ε)v(T − δ2).

Then we have
sup

x∈Bζ

û(x, T − δ3) ≤ εv(T − δ3)

for any δ3 ∈ (0, δ2].
We take r = δ

1/2
3 , and observe that

sup
(x,t)∈Bζ×[T−r2,T )

û(x, t)/v(t) < ε.

2
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Proposition 3.3. For p > 1, δ ∈ (0, 1) and εm > 0 (m = 1, 2, . . . , l) with l > 0 ,
let {am}∞m=1 be a sequence defined by

a1 = δp + ε1, am = ap
m−1 + εm−1, (M = 2, 3, . . . l),

Then for any ε > 0, p > 1 and δ ∈ (0, 1), there exist l and εm > 0 (m = 1, 2, . . . , l)
satisfying al < ε.

Proof: First, we take θ1 = δ(p−1)/2 and ε1 = θ1δ − δp > 0 to get

a1 = θ1δ and θ1 ∈ (δp−1, 1).

Next, we take θ2 = (θ1δ)(p−1)/2 and ε2 = θ1θ2δ − (θ1δ)(p−1)/2. Then θ2 and ε2
satisfy

a2 = ap
1 + ε2 = θ1θ2δ and θ2 ∈ ((θ1δ)p−1, 1).

By repeating these arguments, we have

al = (θ1θ2 . . . θl−1δ)p + εl = θ1θ2 . . . θlδ

and θn ∈ ((θ1θ2 . . . θn−1)p−1, 1).
Then it is shown that εm (m = 1, 2, . . . , n) satisfy

al = θ1θ2 . . . θlδ = δ
p−1
2 l+1θ

p−1
2 (l−1)+1

1 θ
p−1
2 (l−2)+1

2 . . . θ
p−1
2 +1

l−1 < δ
p−1
2 l+1

Take l large enough satisfying δ
p−1
2 l+1 < ε. Then we have al < ε . 2

Lemma 3.4. Assume that f satisfies (2) and (3). Let u and v be the solutions of
{

ut = ∆u + f(u),
u(x, 0) = u0(x),

x ∈ B1, t > 0,
x ∈ B1

and (9). Assume that there exists a δ ∈ (0, 1) satisfying u ≤ δv in B1× [t0, T ) with
some t0 ∈ (0, T ). Then, for any ε > 0 and ζ ∈ (0, 1), there exists r depending only
on the space dimension such that

sup
(x,t)∈Bζ×[T−r2,T )

u(x, t)/v(t) < ε.

Proof: By (2), one can take some q ∈ (1, p), δ0 = δ0(f) and b0 = b0(f, δ0) such
that for any δ1 ∈ (δ0, 1), v ≥ b0 and u ≤ δ1v,

f(u) ≤ δqf(v). (20)

And from Lemma 3.1, for any a ∈ Rn, we can take δ = δ(u0, f, a, τ) ≥ δ0 = δ0(f)
such that u(x, t) ≤ δv(t) for t > τ ∈ (0, T ) and x ∈ B1(a). Put ŵ = u − û, where
û is solution of (16). Then by (20), we have

ŵt = ut − ût = ∆u−∆û + f(u) = ∆ŵ + f(u).
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We define τ = min{t : v(s) ≥ b0 for any s ≥ t} and observe that

ŵ(x, t) =
∫ t

0

∫

Bζ

G(x, y, t− s)f(u(y, s))dyds

≤
∫ τ

0

∫

Bζ

G(x, y, t− s)f(v(s))dyds

+ δq

∫ t

τ

∫

Bζ

G(x, y, t− s)f(v(s))dyds

≤
∫ τ

0

f(v(s))
∫

Bζ

G(x, y, t− s)dyds

+ δq

∫ t

τ

f(v(s))
∫

Bζ

G(x, y, t− s)dyds.

Since

lim
t→T

v(t) = lim
t→T

∫ t

M

f(v(s))ds = ∞,

there exist r1 = r1(ε1) > 0 small enough such that for t ∈ [T − r2
1, T ),

∫ τ

0

f(v(s))
∫

Bζ

G(x, y, t− s)dyds

+ δq

∫ t

τ

f(v(s))
∫

Bζ

G(x, y, t− s)dyds

≤
(
δq +

ε1
2

)∫ t

τ

f(v(s))
∫

Bζ

G(x, y, t− s)dyds

with some ε1 satisfying δq + ε1 < 1. Then, from Lemma 3.2, we have

sup
x∈Bζ̃

u(x, t) ≤ sup
x∈Bζ̃

{(
δq +

ε1
2

) ∫ t

0

∫

B1

G(x, y, t− s)f(v(s))dyds

}
+

ε1
2

v(t)

≤ (δq + ε1)v(t) = a1v(t)

for t ∈ [T − r̃2
1, T ) with some ζ̃ > 0 and r̃1 < r1, where am (m = 1, 2, . . . l) is defined

in Proposition 3.3.
Next, by using the solution ũ of the equation of





ũt = ∆ũ,
ũ(x, 0) = u0(x),
ũ(x, t) = (δp + ε1)v(t),

x ∈ Bζ̃ , t > 0,

x ∈ Bζ̃ ,

x ∈ ∂Bζ̃ ,

and w̃ = u− ũ, and by using the same argument of proof of Lemma 3.2 and above,
we have

sup
x∈Bζ̃2

u(x, t) ≤ a2v(t)
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for t ∈ [T − r̃2
1 r̃

2
2, T ) with some r̃2 and ε2.

Iterating these arguments, we have

sup
x∈Bζ̃l

u(x, t) ≤ alv(t)

for t ∈ [T − r̃2
1 r̃

2
2 . . . r̃2

n, T ) with some r̃i and εi (i = 3, 4, . . . , n). Put ζ̃ = ζ1/n and
r = r̃1r̃2 . . . r̃n. Then by Proposition 3.3, we have

sup
(x,t)∈Bζ×[T−r2,T )

u(x, t)
v(t)

≤ ε.

2

Proposition 3.5. Let v be solution of (9) with f and M satisfying (2) and (3),
f(s) ≥ C1(s + C2)q = f̃(s) with some C1 > 0 and C2 ≥ 0 for large s, and
T ∗(M,f) = T ∗(M, f̃). Then

v(t) ≤ C(T − t)−1/(q−1)

with some q = q(f) > 1 and C = C(C1, c2, M, f) > 0, where T = T ∗(M,f).

Proof: From the assumption it follows

T − t =
∫ ∞

v

ds

f(s)
≤

∫ ∞

v

ds

C1(s + C2)q

and

v(t) ≤
(

1
C1(q − 1)

(T − t)
)−1/(q−1)

+ C2

for t ∈ (0, T ) satisfying that T −t is small enough. This yields the desired estimate.
2

Lemma 3.6. Assume that u0 satisfies (4) and (5), and f satisfies (2) and (3).
Let a be a point in Rn. Then a is not a blow-up point, and

lim sup
t→T

u(a, t) ≤ C

with some C = C(h, u0, f) < ∞ for a ∈ Bh(0) (see [5, Lemma2.1]).

Proof: From Lemma 3.4, it follows that u(x, t) ≤ εv(t) in Bη(a)× [Tv−r2, T ) with
some r = r(a, η, c, u0, f). By assumption we have |f(s)/s| is nondecreasing function
for |s| ≥ s0, and |f(εs)| ≤ εq|f(s)| for |s| > s0/ε with t0 = t0(f, q) q = (p + 1)/2.
From Lemma 3.4, it also follows that |u(x, t)| ≤ ε|v(t)|. Then we have

∣∣∣∣
f(u)

u

∣∣∣∣ ≤
∣∣∣∣
f(εv)

εv

∣∣∣∣ ≤ εq−1

∣∣∣∣
f(v)

v

∣∣∣∣ (21)
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for (x, t) ∈ Bη(a)× [T − r2
0, T ), where

r0 = sup
{
r̄ ∈ (0, r] : v(T − r̄2) ≥ s0/2

}
.

with r defined in Lemma 3.4.
We argue a kind of a local bootstrap argument for u to get a bound. Let φm be

a C2−function supported on Bηm(a) such that φm ≡ 1 on Bηm+1 and 0 ≤ φm ≤ 1.
(Note that since η ∈ (0, 1), φm ≥ φm+1 for m ∈ N.) We consider a cutoff of u
defined by wm = φmu. Then this wm satisfies

(wm)t = ∆wm = φmf(u) + gm

with gm = 2∇u · ∇φm + u∆φm. We observe that

wm(x, t) =e(t−(T−r2))∆φm(x)u(x, T − r2
0)

+
∫ t

T−r2
0

e(t−s)∆ {φm(x)f(u(x, s)) + g(x, s)} ds.

Since ‖et∆h‖∞ ≤ ‖h‖∞ and ‖et∆∇h‖∞ ≤ Ct−1/2‖h‖∞ for a measurable function
h, we have

∫ t

T−r2
0

et∆gm(x, s)ds ≤ C

∫ t

T−r2
0

(t− s)−1/2‖u‖L∞(Bη,m)ds

with Bη,m = Bηm(a). We estimate the integral involving φmf to get t ∈ [T −r2
0, T )

∫ t

T−r2
0

‖φmf(u(·,s))‖L∞(Bη,m)ds

≤
∫ t

T−r2
0

‖w(·, s)‖L∞(Bη,m)

∥∥∥∥
f(u(·, s))

u(·, s)

∥∥∥∥
L∞(Bη,m)

ds

≤ εq−1

∫ t

T−r2
0

‖w(·, s)‖L∞(Bη,m)

∣∣∣∣
f(v(s))

v(s)

∣∣∣∣ ds.

From these estimates it follows that for t ∈ [T − r2
0, T ) we estimate L∞-norm of

w1:

‖w1(·, t)‖∞ ≤‖w1(·, T − r2
0)‖∞ + εq−1

∫ t

T−r2
0

‖w1(·, s)‖∞
∣∣∣∣
f(v(s))

v(s)

∣∣∣∣ ds

+ Cε

∫ t

τ−r2
0

(t− s)−1/2‖u(·, s)‖L∞(Bη,m)ds.

By Gronwall’s inequality (see [5, Lemma2.3]) we have

‖w1(·, t)‖∞ ≤
[
‖w1(·, T − r2

0)‖∞ +
∫ t

T−r2
0

C(t− τ)−1/2‖u(·, s)‖L∞(Bη,m)

× exp

(
−

∫ τ

T−r2
0

ε(q−1)

∣∣∣∣
f(v(σ)
v(σ)

∣∣∣∣ dσ

)εq−1

dτ

]
exp

(
εq−1

∫ t

T−r2
0

∣∣∣∣
f(v(s))

v(s)

∣∣∣∣ ds

)
.
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Since vt = f(v) by (9), we have

exp

(
εq−1

∫ t

T−r2
0

∣∣∣∣
f(v(s))

v(s)

∣∣∣∣ ds

)
≤ exp

(
εq−1

∫ t

T−r2
0

∣∣∣∣
vt(s)
v(s)

∣∣∣∣ ds

)

≤ exp
(
εq−1

(
log |v(t)| − log |v(T − r2

0)|
))

≤
∣∣∣∣

v(t)
v(T − r2

0)

∣∣∣∣
εq−1

≤ Cvεq−1
(t).

Since f(s) ≥ Csq for large s, by Proposition 3.5 we have

‖u(·, s)‖L∞(Bη,m) ≤ v(t) ≤ C(T − t)−1/(q−1)

and
w1(x, t) ≤ C1(T − t)−(1+εq−1)/(q−1)+1/2.

We thus conclude that

u(x, t) ≤ C1(T − t)−(1+εq−1)/(q−1)+1/2 in Bη2 × [T − r2
0, T ).

By repeating the argument we have

u(x, t) ≤ w2(x, t) ≤ C2(T − t)−(1+2εq−1)/(q−1)+1 in Bη3 × [T − r2
0, T ).

By repeating these calculations m times, we obtain

u(x, t) = wm(x, t) ≤ Cm(T − t)−(1+mεq−1)/(q−1)+m/2 in Bηm+1 × [T − r2
0, T ),

where m and ε satisfy −(1 + mεq−1)/(q − 1) + m/2 ∈ (0, 1/2 − εq−1/(q − 1)] and
m ∈ (2/(q − 1− 2εq−1), 2/(q − 1− 2εq−1) + 1]. We now conclude that

|u(x, t)| = |wm+1(x, t)| ≤ C in Bηm+2 × [T − r2
0, T ]

with some C > 0 by repeating the procedure once more. This implies that a is not
a blow-up point. 2

Proof of Theorem 2: Put ū0 satisfying (4), (5) and

ū0(x) ≥ u0(x) and f(ū0(x)) ≥ 0

for x ∈ Rn. Then by comparison we may assume that ū0 = u0 without loss of
generality. Since a ∈ Rn is arbitrary in Lemma 3.6, there is no blow-up point in
Rn. 2

From Lemma 3.4, Proposition 3.5 and the proof of Lemma 3.6, we have a
sufficient condition for non blow-up point.
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Theorem 3.7. (Non blow-up criterion) Let v be a solution of (9) with f satisfying
(2) and (3). If there exists δ ∈ (0, 1) such that ǔ satisfies

{
ǔt = ∆ǔ + f(ǔ),
ǔ(x, t) ≤ δv(t),

(x, t) ∈ B1(a)× (T − ε, T ),
(x, t) ∈ B1(a)× (T − ε, T ).

with some ε > 0, then

ǔ ≤ D (x, t) ∈ Br(a)× (T − ε, T )

with r ∈ (0, 1) and D = D(δ, r, ε) < ∞.

4. On blow-up direction

We shall prove Theorem 3 which gives a condition for blow-up direction.

Proof of Theorem 3: We first prove the case (i). By assumption we obtain
that u0(x) satisfies (5) with some sequences {rm}∞m=1 and {xm}∞m=1 satisfying
limm→∞ rm = ∞ and limm→∞ xm/|xm| = ψ. Then, from Theorem 1 it follows
that

lim
m→∞

u(xm, tm) = ∞
with the sequence {tm}∞m=1 satisfying limm→∞ tm = Tv. Since limm→∞ xm/|xm| =
ψ by the assumption we obtain that ψ is a blow-up direction.

We next show the case (ii). We take the sequence {xm}∞m=1 satisfying
limm→∞ xm/|xm| = ψ and {rm}∞m=1 satisfying limm→∞ rm = ∞.

We set

um,0(x) =
{

u0(x),
M,

x ∈ Bsc(xm),
x ∈ Rn\Bsc(xm),

and consider the equation
{

(um)t = ∆um + f(um),
um(x, 0) = um,0(x),

x ∈ Rn, t > 0,
x ∈ Rn.

By comparison we obtain u(x, t) ≤ um(x, t) for any m ∈ N. By assumption there
exist m0 > 0 and sequence {cm}∞m=m0

satisfying 0 < cm ≤ cm+1 and limm→∞ cm =
1/sc such that for any m ≥ m0,

inf
r∈(1,sc)

Am(r) ≤ M − cm, (22)

where Am(r) is defined in (11). Since the solution of (1) satisfies the integral
equation

u(x, t) = e∆tu0(x) +
∫ t

0

e∆(t−s)f(u(x, s))ds,

we have

u(x, t) ≤ e∆tu0(x) +
∫ t

0

f(v(s))ds = v(t)−M + e∆tu0(x)
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for (t, x) ∈ [0, T ∗)×Rn.
Let Mf , δf and T0 be the same as proof of Lemma 3.1. We consider the solution

w of
{

wt = ∆w,
w(x, T0) = max{{v(T0)−M + e∆T0u0(x)}/v(T0), δf},

x ∈ Rn, t ∈ (T0, T
∗),

x ∈ Rn.

We now introduce ũ = vw. From the proof of Lemma 3.1, it follows that ũ ≥ u for
(x, t) ∈ Rn × [T0, T

∗). Then we have

u(x, t) ≤ v(t)e∆(t−T0) max{{v(T0)−M + e∆T0u0(x)}/v(T0), δf}
for (x, t) ∈ Rn × [T0, T

∗). By (22) it follows that for each x ∈ Br with r ∈ [1, sc]
there is zx ∈ Br which is farest from x such that

e∆tu0(x) ≤ (
et∆(M − cm|Br|δ(· − zx)

)
(x)

where δ is the Dirac delta function. Thus

e∆tu0(x) ≤ sup
z∈Bsc

{
1

(4πt)n/2

∫

Rn

e−|x−y|2/4t(M − cm|B1|δ(y − z))dy

}
.

Since |x− z| ≤ 2sc for any x ∈ Bsc , it follows that

e∆tu0(x) ≤ M − cm|B1|
(4πt)n/2

e−s2
c/t in Bsc(xm)× [0, T ∗).

We thus obtain

u(x, t) ≤ v(t)e∆(t−T0) max
{(

v(T0) +
cn|B1|

(4πt)n/2
e−s2

c/T0

)/
v(T0), δf

}
.

for (x, t) ∈ Bsc × [T0, T
∗). We set

δm = e∆(t−T0) max
{(

v(T0) +
cn|B1|

(4πt)n/2
e−s2

c/T0

)/
v(T0), δf

}
,

and note that δm ∈ (0, 1) satisfies δm ≥ δm+1 for m ∈ N. From Lemma 3.6 and
comparison it follows that there exist the sequence {ηm}∞m=m0

= {ηm(cm, sc, f)}∞m=m0

satisfying 0 < ηm+1 ≤ ηm < ∞ such that

lim
t→T∗

u(xm, t) ≤ ηm.

Since the sequence {xm}∞m=1 is arbitrary, we obtain that ψ is not blow-up direction.
Finally, we should show that the conditions of ψ in (i) and (ii) cover all of Sn−1

exclusively. Let {sm}∞m=1 be the sequence satisfying limm→∞ sm = ∞. We set
D = (1,∞) ∩ [1/(M + N),∞) and the set of sequence

S(ψ) =
{
{ym}∞m=1

∣∣∣∣ lim
m→∞

ym

|ym| = ψ, lim
m→∞

|ym| = ∞
}

.
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Let Ψ∗ and Ψ∗ be the sets of directions of the form

Ψ∗ = Ψ∗(u0) =
{

ψ ∈ Sn−1

∣∣∣∣∃{ym}∞m=1 ∈ S(ψ), lim sup
m→∞

inf
s∈(1,sm)

Am(s) = M

}

Ψ∗ = Ψ∗(u0) =
{

ψ ∈ Sn−1

∣∣∣∣∃sc ∈ D,

∀{ym}∞m=1 ∈ S(ψ), lim sup
m→∞

inf
s∈(1,sc)

Am(s) ≤ M − 1
sc

}
.

Here, Ψ∗ and Ψ∗ are the sets of all ψ ∈ Sn−1 satisfying, respectively, (i) and (ii)
of Theorem 3. We have

(Ψ∗)c =
{

ψ ∈ Sn−1
∣∣∣∀{ym}∞m=1 ∈ S(ψ), lim sup

m→∞
inf

s∈(1,sm)
Am(s) < M

}
.

Note that Am(s) ∈ [−N,M ], we have

∀{ym}∞m=1 ∈ S(ψ), lim sup
m→∞

inf
s∈(1,sm)

Am(s) < M

⇔∀{ym}∞m=1 ∈ S(ψ), ∃c ∈ D, lim sup
m→∞

inf
s∈(1,sm)

Am(s) ≤ M − 1
c
.

We define another set

Ψ] = Ψ](u0) =
{

ψ ∈ Sn−1

∣∣∣∣∃c ∈ D,

∀{ym}∞m=1 ∈ S(ψ), lim sup
m→∞

inf
s∈(1,sm)

Am(s) ≤ M − 1
c

}
.

It is easily seen that Ψ] ⊂ (Ψ∗)c. Moreover,

(Ψ])c =
{

ψ ∈ Sn−1

∣∣∣∣∀c ∈ D,

∃{ym}∞m=1 ∈ S(ψ), lim sup
m→∞

inf
s∈(1,sm)

Am(s) > M − 1
c

}
.

Let j ∈ N ∩D. Then we have

(Ψ])c ⊂
{

ψ ∈ Sn−1

∣∣∣∣∀j ∈ N ∩D,

∃{yj
m}∞m=1 ∈ S(ψ), lim sup

m→∞
inf

s∈(1,sm)
Aj

m(s) > M − 1
c

}
,

where

Aj
m(s) =

1
|Bs(y

j
m)|

∫

Bs(yj
m)

u0(z)dz.
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Take the subsequence {mj}∞j=a ∈ N satisfying limj→∞mj = ∞, mj < mj+1,
limj→∞ |yj

mj
| → ∞, 2|yj

mj
| < |yj

mj+1
| and |yj

mj+1
| ≤ |yj+1

mj+1
|, where a = min{b|b ∈

N ∩D}. Then we have

(Ψ])c ⊂
{

ψ ∈ Sn−1

∣∣∣∣∃{yj
mj
}∞j=a ∈ S(ψ), lim sup

m→∞
inf

s∈(1,sm,j)
Aj

m(s) > M − 1
j

}
,

where sm,j = smj
. We thus obtain (Ψ])c ⊂ ((Ψ∗)c)c and (Ψ∗)c ⊂ Ψ]. Since

Ψ] ⊂ (Ψ∗)c, we have Ψ] = (Ψ∗)c.
It remains to show that Ψ] = Ψ∗. It is easily seen that Ψ] ⊃ Ψ∗. We see that

Ψ] =
{

ψ ∈ Sn−1

∣∣∣∣∃c′ ∈ D, ∀{ym}∞m=1 ∈ S(ψ),

∃m0 > 0,∀m ≥ m0, inf
s∈(1,sm)

Am(s) ≤ M − 1
c′

}
,

where we take c′ > c. Take c′′ = [max{sm0 , c
′}+1], where [θ] is largest integer less

than θ. We thus obtain that

Ψ] =
{

ψ ∈ Sn−1

∣∣∣∣∃c′′ ∈ D, ∀{ym}∞m=1 ∈ S(ψ),∀m ≥ c′′, inf
s∈(1,c′′)

Am(s) ≤ M − 1
c′′

}

=
{

ψ ∈ Sn−1

∣∣∣∣∃c′′ ∈ D, ∀{ym}∞m=1 ∈ S(ψ), lim sup
m→∞

inf
s∈(1,c′′)

Am(s) ≤ M − 1
c′′

}
.

By replacing c′′ to sc, we have Ψ] ⊂ Ψ∗. Then we obtain Ψ] = Ψ∗.
Thus, we get (Ψ∗)c = Ψ∗, and the proof is now complete. 2
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