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Spin-structures and 2-fold coverings ∗

Daciberg L. Gonçalves, Claude Hayat and Maria Hermı́nia de Paula Leite Mello

abstract: We prove that the existence of a Spin-structure on an oriented real
vector bundle and the number of them can be obtained in terms of 2-fold coverings
of the total space of the SO(n)-principal bundle associated to the vector bundle.
Basically we use theory of covering spaces. We give a few elementary applications
making clear that the Spin-bundle associated to a Spin-structure is not sufficient
to classify such structure, as pointed out by [6].
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1. Introduction

Let ξ be an oriented n-real vector bundle over a CW-complex X. So ξ has
structural group SO(n). There is a classical definition of a Spin-structure of ξ
which is given in section 2. This definition is given by two items which are con-
cerning to the existence of a Spin-principal bundle and a 2-fold covering, where
some relations hold. The main purpose of this note is to give a proof that the
above definition is equivalent just to the existence of some 2-fold coverings. More
precisely, the Spin-structures are certain 2-fold coverings of the total space of the
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associated SO(n)-principal bundle, SO(n)
i

↪→ PSO(n)(ξ)
p−→ X under the usual re-

lation between two covering spaces. Based on this, we give an alternative definition
(see Definition 2.3 of a Spin structure).

Using this equivalent definition we easily obtain some known results about Spin-
structure, including ones about existence and classification of the Spin-structures.
Also it is natural to ask what happens if we look only at the Spin-bundle which
arises in the definition of a Spin-structure. Namely, if for a given Spin-structure
we consider only the Spin-bundle associated to it, is this sufficient to classify the
Spin-structure? We make several calculations which illustrate that this is not the
case. The principal bundle maps are an essential part of the structure.

The group SO(n) has fundamental group Z2 for n > 2 and Z for n = 2. For
n > 1, let Spin(n) be the group which is the connected 2-fold covering of the group
SO(n). We denote that covering by Z2 ↪→ Spin(n) λ−→ SO(n).

For the case where n = 1, we define a Spin-structure of an oriented n-real
vector bundle ξ to be simply a 2-fold covering of the basis X. Since there is always
a 2-fold covering of X, for example X × Z2, there is always a Spin-structure. In
this case, we define two Spin-structures to be equivalent if the correspondent 2-
fold coverings are equivalent as covering spaces (see [5], Chapter V section 6). So
the study of Spin-structures of an oriented 1-real vector bundle ξ over a space X
corresponds to the classical study of 2-fold coverings of X. Also, recall that there
is only one orientable 1-real vector bundle ξ over a space X which is the trivial
bundle.

From now on let n > 1 and let us assume that the covering spaces are connected.
This note contains two sections besides this one. In section 2 we state and prove

the main result which is Theorem 2.1. Then we give an alternative definition, Def-
inition 2.3, of a Spin-structure, and we show few results using this new definition.
In section 3 we compute the set of Spin-structures in several examples and we look
at the set of the Spin-bundles obtained from the Spin-structures.

Similar results as the ones in this note, were obtained by M. Schulz in his Phd.
thesis [8].

2. Statement of the main theorem

2.1. Definitions and Theorem. Let ξ be an oriented n-real vector bundle over
a CW-complex X. So ξ has structural group SO(n). Consider the associated

SO(n)-principal bundle, SO(n)
i

↪→ PSO(n)(ξ)
p−→ X, where PSO(n)(ξ) is the space

of all oriented orthonormal frames.
Recall (see [4] p.371-372) that a G-principal bundle G ↪→ P

p→ X, where G is
a group, is given by an atlas (Um, km). It means an open covering {Um} of X and
homeomorphisms km : Vm = p−1(Um) → Um ×G such that

(Um ∩ Un)×G
km◦k−1

n−→ (Um ∩ Un)×G
(x, u) 7−→ (x, µG(kmn(x), u)).
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where µG is the product in G and kmn are continuous functions Um ∩ Un → G.
They verify the cocycle conditions:

kim(x)kmt(x)kti(x) = 1G,

and from the definition one can define a right action of G on the total space of the
bundle, which commutes with the projection and we denote it by m : P ×G → P .

We recall other definitions which are going to be used.

Definition 2.1 Given two principal bundles Gi ↪→ Pi
pi→ X i = 1, 2 a principal

bundle homomorphism is a pair (f, λ) where f : P1 → P2 is a continuous map
and λ : G1 → G2 is a group homomorphism such that the following diagram is
commutative:

P1 ×G1

(f,λ)

²²

m1 // P1

f

²²

p1

ÃÃA
AA

AA
AA

A

X

P2 ×G2
m2 // P2

p2

>>}}}}}}}

(1)

where mi is the action of Gi on Pi.

The group SO(n) has fundamental group Z2 for n > 2 and Z for n = 2. For
n > 1, let Spin(n) be the group which is the connected 2-fold covering of the group
SO(n). We denote that covering by Z2 ↪→ Spin(n) λ−→ SO(n) where λ is a group
homomorphism. As a result of our discussion in the introduction we will consider
always n > 1 and assume that the covering spaces are connected.

Definition 2.2 [6,4] Let ξ be an oriented n-real vector bundle over a CW-complex

X. Consider the associated SO(n)-principal bundle SO(n)
i

↪→ PSO(n)(ξ)
p−→ X,

we have:

1- A Spin-structure on ξ is a pair (η, f) where η : Spin(n) ↪→ E
π−→ X is a

Spin(n)-principal bundle and f : E → PSO(n)(ξ) is a 2-fold covering such that the
following diagram commutes:

Spin(n)

²²

λ // SO(n)

i

²²
E

f //

##GG
GG

GG
GG

GG
PSO(n)(ξ)

p
zzuuuuuuuuu

X

(2)
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where λ : Spin(n) → SO(n) is the 2-fold covering of SO(n) and (f, λ) is a map of
principal bundles (see Definition 2.1).

2- The Spin-structures (η, f) and (η′, f ′) are equivalent if there exists an iso-
morphism ψ : η → η′ such that f ′ ◦ ψ = f .

The condition above, f ′ ◦ ψ = f , is the classical equivalence of two coverings.

Eψ
≈

//

f $$HHHHHHHHH E′

f ′{{vvvvvvvvv

PSO(n)(ξ)

(3)

Given a differentiable manifold which is oriented, we have the notion of Spin-
manifold. For, consider the tangent bundle of the manifold which is a SO(n)-bundle
as result of the given orientation. So we can apply the Defintion 2.2. When there
is a Spin-structure we say that the oriented manifold admits a Spin-structure or
it is Spinable.

We recall some constructions of connected covering. If p : M → N is a 2-fold
covering of a space N , then p](π1M) is the kernel of an epimorphism ϕ : π1N → Z2.
Conversely, let ϕ : π1N → Z2 be an epimorphism. If Ñ denotes the universal cover
of N , then the projection p : M = Ñ/ kerϕ → N is a 2-fold covering such that
p](π1M) = kerϕ and the following diagram is commutative (we identify kerϕ and
Z2 with subsets of the corresponding sets):

π1NÄ _

²²

Z2mM

{{ww
ww

ww
ww

w

kerϕ Â Ä // Ñ //

²²

Ñ/ kerϕ

p
zzuuu

uuu
uuu

u

N

For example, π1SO(2) = Z and π1SO(n) = Z2, n ≥ 3, admit only one epimorphism
to Z2 and, hence, there is a unique (up to covering-equivalence) connected 2-fold
covering of SO(2) and SO(n) n ≥ 3, resp..

Now we state the main theorem, which gives an alternative definition of the
existence of a Spin-structure.

Let f : E = P̃ / kerϕ → P = PSO(n)(ξ) be a 2-fold covering and consider the
homotopy exact sequence:

1 → π1E
f]−→ π1P

ϕ−→ Z2 → 0

Theorem 2.1 An oriented n-real vector bundle ξ admits a Spin-structure if and
only if there exists a 2-fold covering f : E = P̃ / kerϕ → P = PSO(n)(ξ) such that
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ϕ ◦ i] : π1SO(n) → Z2 is an epimorphism, where SO(n) → PS0(n)(ξ) → X is
the associated SO(n)-principal bundle of the oriented vector bundle ξ. Further,
the set of equivalence classes of 2-fold coverings (as defined by means of diagram
3) as above is in one-to-one correspondence with the set of equivalent classes of
Spin-structures (as in Definition 2.2) of the oriented bundle.

Based on the Theorem above we can give the following alternative definition of
a Spin-structure on ξ:

Definition 2.3 Let ξ be an oriented n-real vector bundle over a CW-complex X.
Consider the associated SO(n)-principal bundle, SO(n)

i
↪→ PSO(n)(ξ)

p−→ X.

A Spin-structure on ξ is an epimorphism ϕ : π1PSO(n)(ξ) → Z2 such that ϕ ◦
i] : π1SO(n) → Z2 is an epimorphism.

Now we derive some results using this definition.

Remark 2.1 Given an orientable bundle, one can choose an orientation. If the
base X is connected then there are two possible orientations. In any case if ξ is
an orientable bundle and ξ1 is an oriented bundle obtained from ξ by giving an
orientation, we can ask for the number of Spin-structures (possibly zero) of this
oriented bundle ξ1. It is not difficult to see that the number of Spin-structures for
ξ1 is independent of the choice of the orientation of the bundle ξ. In particular
there is a Spin-structure of the bundle with respect to one orientation if and only
if there is a Spin-structure with another orientation.

2.2. Classical results. As before, let P = PSO(n)(ξ) and define

A = {ϕ : π1P → Z2 | ϕ ◦ i] is an epimorphism}.

Corollary 2.1A The cardinality of the set S(ξ) of the Spin−structures on ξ equals
the cardinality of A. The set A is either empty or

#A = #Hom(π1X, Z2) = #H1(X;Z2).

Proof: The exact sequence on homotopy of the fibration SO(n) ↪→ P → X

π1SO(n)
i]−→ π1P → π1X → 0

gives the following exact sequence

0 → Hom(π1X, Z2) → Hom(π1P, Z2)
ı̃−→ Z2 (4)

because Hom(π1SO(n), Z2) = Z2 for n > 1. When A is not empty then ı̃ is an
epimorphism. Hence, Hom(π1P, Z2) is decomposed into the two cosets modulo
ker̃ı = Hom(π1X,Z2). The non-trivial coset is A. 2
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In fact, the exact sequence (4) is part of a longer sequence. This longer se-
quence is obtained as follows: consider the Serre spectral sequence of the fibration
SO(n)

i
↪→ PSO(n)(ξ)

p−→ X. It gives the so called Serre exact sequence [1, th5.12]:

0 → H1(X;Z2) → H1(P ; Z2) → H1(SO(n); Z2)
w−→ H2(X; Z2) (5)

where the image of the generator of H1(SO(n); Z2) = Z2 by the morphism w is
the second Stiefel-Whitney class of ξ (see [4]).

This exact sequence can be rewritten under an equivalent form:

0 → Hom(π1X, Z2)
p∗−→ Hom(π1P,Z2)

i∗−→ Z2
w−→ H2(X; Z2). (6)

Using this sequence together with the previous Corollary we obtain the following
well known result:

Corollary 2.1B Let ξ be an oriented n-vector bundle over a CW complex X.
Then ξ admits a Spin-structure if and only if the second Stiefel-Whitney class of
ξ is zero.

Corollary 2.1C The projective space RP 5 of dimension 5 does not admit a Spin-
structure.

Proof: The projective space RP 5 is known to be orientable. The second Stiefel-
Whitney class of its tangent bundle by [7] p. 46 is nontrivial. So by the previous
Corollary the result follows. 2

2.3. Proof of Theorem 2.1. One direction of the statement is clear. For, given
a Spin-structure (η, f) take the double covering f : E → P . From the diagram 2
it follows that this covering has the property that ϕ ◦ i# : π1(SO(n)) → Z2 is an
epimorphism.

For the converse, consider ϕ ∈ A and f : E = P̃ /kerϕ → P . We will first show
that p ◦ f : E → X is a locally trivial bundle with fiber Spin(n) and then that it
is in fact a principal bundle.

By hypothesis SO(n) ↪→ P
p−→ X is a SO(n)-principal bundle. Let us denote

its atlas by (Um, km) where {Um} is an open covering of X and km : p−1(Um) →
Um × SO(n) a trivialization of the principal bundle. The injection j : Vm =
p−1(Um) ↪→ P denotes the injection as a subset of P . The restriction f ′ =
f |f−1(Vm) is a 2-fold covering of Vm. By [5] Proposition 11.1 p. 177, we have
the equality:

(∗) f ′]π1f
−1(Vm) = j−1

# f]π1E,

from which it is easy to prove that kerϕ ◦ j] = f ′]π1f
−1(Vm). As the open sets Um

in the atlas (Um, km) can be taken contractible, the homeomorphisms km induce
isomorphisms in the fundamental group of π1(Vm) and π1(SO(n)). Then, the
hypothesis ϕ ◦ i] being surjective implies that ϕ ◦ j] is also surjective, so f−1(Vm)
is connected.
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Now, if y ∈ Vm, we have p ◦ f ′(f−1(y)) = p(y), hence f−1 ◦ k−1
m (Um × SO(n))

is homeomorphic to Um ×H for some H, which is a non-trivial 2-fold covering of
Um × SO(n) inducing the identity on Um. So H is a non-trivial 2-fold covering of
SO(n), which is unique. This proves that H = Spin(n) and that there exists a
homeomorphism hm : (p ◦ f)−1(Um) → Um × Spin(n) verifying

(∗∗) (idUm × λ) ◦ hm = km ◦ f ′.

See the diagram below:

f−1(Vm) = f−1(p−1(Um))

f ′=f|Vm

²²

hm

≈
// Um × Spin(n)

I×λ

²²
p−1(Um) = Vm

km

≈ // Um × SO(n)

This means that p ◦ f : E → X is a locally trivial bundle with fiber Spin(n). It
remains to show that it is a principal bundle.

By hypothesis km ◦ k−1
n (x, u) = (x, µSO(n)(kmn(x), u)) where µSO(n) is the

product in SO(n). By construction, there was defined continuous maps

hmn : Um ∩ Un → Spin(n)

such that hm ◦ h−1
n (x, v) = (x, hmn(x)(v)). The relation (∗∗) gives the following

diagram

(Um ∩ Un)× Spin(n)

id×λ

²²

hm◦h−1
n // (Um ∩ Un)× Spin(n)

id×λ

²²
(Um ∩ Un)× SO(n)

km◦k−1
n // (Um ∩ Un)× SO(n)

(7)

which means that

λ(hmn(x)(v)) = µSO(n)(kmn(x), λ(v)), v ∈ Spin(n).

The homomorphism λ is surjective. There exists 2 preimages in Spin(n) of
kmn(x) ∈ SO(n), denoted by vmnxi , i = 1, 2, such that:

λ(hmn(x)(v)) = λ(µSpin(n)(vmnxi , v)).

In particular for v = e the neutral element of Spin(n)

λ(hmn(x)(e)) = λ(µSpin(n)(vmnxi , e)).

One vmnxi is equal to hmn(x)(e), then

λ(hmn(x)(v)) = µSO(n)(λ(hmn(x)(e)), λ(v)) = λ(µSpin(n)(hmn(x)(e), v)).
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So hmn(x)(v)) = µSpin(n)(hmn(x)(e), v) or tmnxv(µSpin(n)(hmn(x)(e), v)) where
tmnxv is the action of Z2. Because tmnxe = 1 and it is continuous in v, it is
constant and tmnxv = 1. This proves that the action of hmn(x) on Spin(n) is by

translation, hence Spin(n) ↪→ E
p◦f−→ X is a Spin(n)-principal bundle. 2

3. What about the Spin−principal bundle which is given in a
Spin−structure as defined in Definition 2.2?

Recall that in the Definition 2.2 a Spin-structure is a pair (η, f) where η is a
Spin-principal bundle. In [6], Milnor pointed out that there may exist only one
Spin(n)-principal bundle over X, up to bundle equivalence, but different Spin-
structures on ξ, where ξ is an oriented bundle over X.

A slightly more general situation can be described as follows. We can construct
a map which associates to each Spin-structure (η, f) the Spin-principal bundle η.
It is natural to ask if the Spin-structure can be distinguished by its Spin-principal
bundle. In this section we compute the set of Spin-structures as well the set of
all Spin-principal bundles obtained from the Spin-structures. In some cases the
examples show that the answer of the question above is “yes” and in the other cases
the answer is “no”. The examples where the answer is “no” illustrate precisely the
situation pointed out by Milnor [6].

Our first example is an orientable bundle of dimension 2 over S1.

3.1. Spin-structures over S1. Let ξ : R2 ↪→ R × TS1 −→ S1 be the 2-vector
bundle over S1, where TS1 = R × S1 is the tangent space of S1. The principal
SO(2)−fibre bundle associated to ξ is SO(2) ↪→ PSO(2)(ξ) −→ S1. In fact we have
SO(2) = S1 and PSO(2)(ξ) = S1 × S1.

a) The index 2 subgroups of π1PSO(2)(ξ)
The subgroups of index 2 of π1PSO(2)(ξ) = Z × Z are the kernels of surjective

homomorphisms of Z × Z to Z2. There are three surjective homomorphisms:

ϕ1 : Z × Z → Z2, (1, 0) 7→ 1, (0, 1) 7→ 0;
ϕ2 : Z × Z → Z2, (1, 0) 7→ 0, (0, 1) 7→ 1;
ϕ3 : Z × Z → Z2, (1, 0) 7→ 1, (0, 1) 7→ 1.

Then

H1 := kerϕ1 = 2Z × Z,
H2 := kerϕ2 = Z × 2Z,
H3 := kerϕ3 = {(a, a + 2k) | a ∈ Z, k ∈ Z} ∼= ∆⊕ ({0} × 2Z)

with ∆ = {(k, k) | k ∈ Z}.

b) Description of the 2-fold coverings of PSO(2)(ξ)
The universal cover of S1 × S1 is:

Z× Z (×2π,×2π)
↪→ R× R→ R/2πZ× R/2πZ = S1 × S1.
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The operation of Hi on R×R is the restriction of the operation of Z×Z on R×R.
We denote by Ei = (R × R)/Hi the 2-fold covering of S1 × S1 with fundamental
group Hi. The projection fi : Ei → S1 × S1 is defined by the diagram

Z × ZÄ _

(×2π,×2π)

²²
R×R

²²

// (R×R)/Hi = Ei

fiuu
R/2πZ×R/2πZ

Now we have to select the double coverings which provide the Spin-structures.
c) Eliminate one of the coverings of S1 × S1

i) An element of E1 is a coset

(ϑ, µ) + H1 = {(ϑ + 4k1π, µ + 2k2π) | (ϑ, µ) ∈ R×R, k1, k2 ∈ Z}.
Remark that (ϑ, µ) and (ϑ + 2π, µ) are not in the same class mod H1. As usual, it
is possible to define

f1((ϑ, µ) + H1) = (ϑ + 2πZ, µ + 2πZ);

now

f−1
1 (0, 0) = {H1, (2π, 0) + H1} ∼= Z2.

ii) An element of E2 is a coset

(ϑ, µ) + H2 = {(ϑ + 2k1π, µ + 4k2π) | (ϑ, µ) ∈ R×R, k1, k2 ∈ Z}.
As usual, it is possible to define

f2((ϑ, µ) + H2) = (ϑ + 2πZ, µ + 2πZ);

then
f−1
2 (0, 0) = {H2, (0, 2π) + H2} ∼= Z2.

iii) The operation of H3 on R × R is the restriction of the operation of Z × Z on
R×R.

H3 ×R×R −→ R×R
((k1, k1 + 2k2), (ϑ, µ)) 7→ (ϑ + 2k1π, µ + 2k1π + 4k2π).

Then

f3((ϑ, µ) + H3) = (ϑ + 2πZ, µ + 2πZ)

is well defined. We remark that (ϑ, µ) and (ϑ, µ + 2π) are not in the same class
mod H3 but (ϑ, µ + 2π) and (ϑ + 2π, µ) are in the same class mod H3; hence



38 D. L. Gonçalves, C. Hayat and M. Mello

f−1
3 (0, 0) = {H3, (2π, 0) + H3} ∼= Z2.

Defining i] : Z → Z ×Z by a 7→ (a, 0), the map ϕ2 ◦ i] is not surjective and the
maps ϕ1 ◦ i] and ϕ3 ◦ i] are surjective.

kerϕ`Ä _

²²
0 // Z

i] // Z× Z
ϕ`

²²

// Z // 0

Z2

In the sense of Definition 2.2, the two coverings E1 and E3 define different
Spin-structures on ξ.

It is worth to mention that the Z2-coverings f1 and f3 are equivalent to the
bounding Spin-structure on S1 and to the Lie group Spin-structure on S1, respec-
tively, as defined by Kirby in [3] pg. 35 and 36.

We found out that only the homomorphisms ϕ1 ◦ i] and ϕ3 ◦ i] are surjective.
From Theorem 2.1, this property implies that (fi, λ) is a principal bundle map. The
Spin(2)-principal bundles associated to the Spin-structures E1, E3 are orientable
S1-bundles, so they are classified by homotopy classes of maps S1 → BSpin(2) =
BS1 = CP∞. Since CP∞ is simply connected, there is only one homotopy class
of maps S1 → BS1 = CP∞. This homotopy class represents the trivial Spin(2)-
principal bundle. So we conclude that the Spin-bundles associated to the two
different Spin-structures are isomorphic. This gives an example of the phenomenon
pointed out by Milnor in [6].

Remark 3.1 Since Spin(n)-principal bundles over a space X are classified by the
set of homotopy classes of maps [X,BSpin(n)], the above example shows that in
general one can not expect that the set of Spin-structures can be identified with
the set of homotopy classes of maps [X, BSpin(n)]. Furthermore, the example
above has the property that any map X → BSpin(n) is a homotopy lifting of
a classifying map ϕξ : X → BSO(n) of the given bundle ξ, through the map
BSpin(n) → BSO(n). Hence, this shows that even if you consider the set of maps
X → BSpin(n) which are homotopy liftings of a classifying map ϕξ : X → BSO(n)
of the given bundle ξ, through the map BSpin(n) → BSO(n), the set of homotopy
classes of such maps will not classify the Spin-structures.

Remark 3.2 Although the Spin-bundles do not classify the Spin-structures, as
shown by the example above, following [3] p. 34 we have the following alternative
description of the Spin-structures in terms of homotopy classes of maps. Given
a SO(n)-principal bundle let f : X → BSO(n) a map which classsify the bundle.
Consider the set L of all maps f ′ : X → BSpin(n) which are liftings of f with re-
spect to the map Bλ : BSpin(n) → BSO(n). There is a one-to-one correspondence
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between the set of Spin-structures of ξ and the set of homotopy classes of maps of
L. So in the example above the set L contains exactly two homotopy classes of
maps. (see [3]).

3.2. The trivial bundle over projective spaces. This family of examples
includes the example provided by Milnor in [6]:

Let X be the projective space RPm of dimension m. By ξ : Rn ↪→ RPm×Rn →
RPm we denote the trivial n- real vector bundle over RPm with a fixed orientation
on Rn. This vector bundle is orientable, although the total space as well as the
base are non-orientable manifolds if m is even.

The SO(n)-principal bundle associated to ξ(n) is

SO(n) ↪→ PSO(n)(ξ) = RPm × SO(n) → RPm. (8)

Now we consider two cases.
Case I- Let n = 2. In this case let us consider 2-fold coverings E1, E2 of

PSO(2)(ξ), where now PSO(2)(ξ) = RPm×S1 since SO(2) = S1. The first covering
is E1 = RPm×Spin(2) which corresponds to the subgroup π1(RPm)×2Z = Z2+2Z.
For the second covering consider the homomorphism ϕ2 : π1(RPm)×Z→ Z2 such
that ϕ2(a) = 1 = ϕ2(h) where a is the generator of π1(RPm) and h is a generator
of Z. It is not difficult to see that ker ϕ2 is isomorphic to Z. It is generated by
the element a + h. So it follows that the total space of the two Spin-bundles do
not have the same homotopy type so they can not be isomorphic as Spin-principal
bundles.

Case II Let m ≤ 3 and n ≥ 3.
Because n ≥ 3 we have that Spin(n) is 2-connected, i.e. π1(Spin(n)) =

π2(Spin(n)) = 1. So the classifying space for the Spin-principal bundles, de-
noted by BSpin(n), is 3-connected. Hence, up to bundle equivalence, there is only
one Spin(n)-principal bundle over RPm (m ≤ 3) (the trivial principal bundles).
Since the trivial bundle ξ admits a Spin-structure, the number of Spin-structures
on ξ(n), which is the cardinality of H1(RPm; Z2) by the Corollary 2.1A, is 2. This
example also gives support to the remarks 3.1 and 3.2.

Remark 3.3 The reader may ask if there is an example of a nontrivial SO(n)-
principal bundle ξ which admits two different Spin-structures having ismorphic
Spin-principal bundles. The answer is yes. An example is the tangent bundles of
an orientable compact surface of genus greater than 1. See [2]

Remark 3.4 In the begining of this Section we have considered the map which
associates to each Spin-structure (η, f) the Spin-principal bundle η. Another in-
teresting related question is to study the image of the map above.

In [4] pg. 83, 84 one can find more about the study of the set of all Spin-
principal bundles which comes from the set of Spin-structures.
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