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A Characterization for Discrete Quantum Group 1

Ming Liu, Lining Jiang and Guosheng Zhang

abstract: Based on the work of A.Van Daele, E.G.Effros and Z.J.Ruan on mul-
tiplier Hopf algerba and discrete quantum group, this paper states that discrete
quantum group (A, ∆) is exactly the set {(ω ⊗ ι)∆(a)|a ∈ A, ω ∈ A∗}, where A∗
is the space of all reduced functionals on A. Furthermore, this paper characterizes
(A, ∆) as an algebraic quantum group with a standard *-operation and a special
element z ∈ A such that (1⊗ a)∆(z) = ∆(z)(a⊗ 1) (∀a ∈ A).

Key Words: discrete quantum group, reduced functional, cointegral.

Contents

1 Introduction 41

2 Characterization for Discrete Quantum Group 43

1. Introduction

Let G be a discrete group. If G is finite, one can define the pointwise product
(fg)(p) = f(p)g(p) and the natural *-operation f∗(p) = f(p) on C(G), the space
of all complex functions on G, to make it into a unital *-algebra, where f, g ∈
C(G), p ∈ G. Furthermore, under the structure maps

∆(f)(p, q) = f(pq), ε(f) = f(e), S(f)(p) = f(p−1),

C(G) becomes a Hopf *-algebra. Here C(G)⊗ C(G) is identified with the algebra
of complex functions on G×G in the obvious way. If G is infinite, this is no longer
possible. One then consider K(G), the space of all complex functions with finite
support on G. It is easy to check that K(G) is a *-algebra and the range of ∆ is not
in K(G)⊗K(G) any more. However for any f, g ∈ K(G) we have that ∆(f)(1⊗g)
and ∆(f)(g⊗ 1) are both in K(G)⊗K(G). This leads to the concept of multiplier
Hopf *-algebras [1].

Let A be an algebra with a non-degenerate product, with or without identity.
A multiplier of A is a pair (ρ1, ρ2) of linear maps from A to itself satisfying for all
a, b ∈ A,

ρ1(ab) = ρ1(a)b, ρ2(ab) = aρ2(b), ρ2(a)b = aρ1(b).
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The set of all multipliers of A, denoted by M(A), is made into a unital algebra in a
natural way and called the multiplier algebra of A. There is a natural embedding
of A into M(A). Furthermore, M(A) can be characterized as the largest algebra
with identity in which A sits as an essential two-sided ideal. It’s customary to
alter (ρ1, ρ2) by an auxiliary object m by treating ρ1 and ρ2 as left and right
multiplication, i.e., ρ1(a) = ma, ρ2(a) = am. Then to show m ∈ M(A), it suffices
to verify that A is a two-sided ideal of {m | a(mb) = (am)b,∀a, b ∈ A}.

A comultiplication on A is defined as a homomorphism ∆: A −→ M(A ⊗ A)
satisfying
i) ∆(A)(1⊗A) and (A⊗ 1)∆(A) are subspaces of A⊗A;
ii) ∆ is coassociative in the following sense: ∀a, b, c ∈ A,

(a⊗ 1⊗ 1)(∆⊗ ι) (∆ (b) (1⊗ c)) = (ι⊗∆) ((a⊗ 1)∆ (b)) (1⊗ 1⊗ c).

Now let (A, ∆) be a pair of an algebra A with a non-degenerate product and a
comultiplication ∆ on A. If the maps T1 and T2 defined by

T1(a⊗ b) = ∆(a)(1⊗ b), T2(a⊗ b) = (a⊗ 1)∆(b) (a, b ∈ A)

are bijective, we call (A, ∆) a multiplier Hopf algebra, and call it regular if (A,
∆◦p) is also a multiplier Hopf algebra (or equivalently if the antipode S is bijective
from A to A). In fact, if (A, ∆) is a regular multiplier Hopf algebra, a, b ∈ A, then

∆(a)(1⊗ b), (a⊗ 1)∆(b)

∆(a)(b⊗ 1), (1⊗ a)∆(b)

all belong to A⊗A. When a multiplier Hopf algebra has also a standard *-operation
[2], it is called a multiplier Hopf *-algebra. It is clear that K(G) described above
is a multiplier Hopf *-algebra.

As we have known, a non-zero linear functional ϕ(resp.ψ) on a regular multiplier
Hopf algebra (A, ∆) is called left (resp.right) integral if (ι ⊗ ϕ)∆(a) = ϕ(a)1
(resp.(ψ ⊗ ι)∆(a) = ψ(a)1) for all a ∈ A, where 1 denotes the identity in M(A).
In general such integrals do not always exist. Moreover, the left and right integrals
need not be the same one even if they both exist. A regular multiplier Hopf
algebra with a left (and hence a right) integral is called an algebraic quantum
group. The paper will study a special class of algebraic quantum group (see [7]),
namely, discrete quantum group, which was studied firstly as a dual of compact
quantum group in [3]. A discrete quantum group is defined as a multiplier Hopf
*-algebra (A, ∆) where A is a direct sum of full matrix algebras ([4-9]). More
specifically, let (A, ∆) be an algebraic quantum group with a standard *-operation
and a non-zero element z ∈ A such that ∀a ∈ A, (1⊗a)∆(z) = ∆(z)(a⊗1), and A∗

the space of all reduced functionals on A (see Definition 2.2). Then by Proposition
2.1 one can see that (ω⊗ι)∆(a) and (ι⊗ω)∆(a) are in M(A), where a ∈ A,ω ∈ A∗.
Using the two types of multipliers, if (A, ∆) is a discrete quantum group, then

A = {(ω ⊗ ι)∆(a)|a ∈ A,ω ∈ A∗} = {(ι⊗ ω)∆(a)|a ∈ A,ω ∈ A∗}.
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From this, the paper gives a characterization of a discrete quantum group, as
follows a discrete quantum group coincides with an algebraic quantum group with
a standard *-operation and a non-zero element z ∈ A such that ∀a ∈ A,

(1⊗ a)∆(z) = ∆(z)(a⊗ 1).

Throughout this paper, all algebras will be algebras over the complex field C
and ι denotes the identity map. For general results on multiplier Hopf algebras
theory, we refer the reader to [1, 10]. We shall use their notations, so we will use
m,∆, ε, S for the multiplication, the comultiplication, the counit and the antipode,
respectively.

2. Characterization for Discrete Quantum Group

Let (A, ∆) be a regular multiplier Hopf algebra and A
′

the space of all linear
functionals on A. Using ∀a ∈ A and ω ∈ A

′
, one can construct a multiplier of A.

For any b ∈ A, it is clear that (ω⊗ι)(∆(a)(1⊗b)) ∈ A and (ω⊗ι)((1⊗b)∆(a)) ∈
A. That’s to say, there exist maps ρ1 and ρ2 from A to itself defined by

ρ1(b) = (ω ⊗ ι)(∆(a)(1⊗ b)),

ρ2(b) = (ω ⊗ ι)((1⊗ b)∆(a)).

These are well defined because both ∆(a)(1⊗ b) and (1⊗ b)∆(a) are in A⊗A, and
one can apply ω⊗ ι mapping A⊗A to A⊗C, which is naturally identified with A
itself.
Proposition 2.1 Let (A, ∆) be a regular multiplier Hopf algebra and ρ1, ρ2 as
defined above. Then (ρ1, ρ2) ∈ M(A).
Proof To prove that (ρ1, ρ2) is a multiplier of A, it suffices to prove ρ2(c)b =
cρ1(b), for all b, c ∈ A.

cρ1(b) = c((ω ⊗ ι)(∆(a)(1⊗ b)))
= (ω ⊗ ι)((1⊗ c)(∆(a)(1⊗ b)))
= (ω ⊗ ι)(((1⊗ c)∆(a))(1⊗ b))
= (ω ⊗ ι)((1⊗ c)∆(a))b
= ρ2(c)b.

Thus (ρ1, ρ2) ∈ M(A). ¥
In the following, by (ω ⊗ ι)∆(a) we denote the multiplier (ρ1, ρ2). Similarly,

put
η1(b) = (ι⊗ ω)(∆(a)(b⊗ 1)),
η2(b) = (ι⊗ ω)((b⊗ 1)∆(a)).

Then (η1, η2) ∈ M(A) and can be written as (ι⊗ ω)∆(a).
In general (ω ⊗ ι)∆(a) and (ι ⊗ ω)∆(a) are not in A. Indeed, consider the

algebra A generated by {ep, b|p ∈ Z} subject to

epeq = δ(p, q)ep, bep = ep+1b.
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Then [8] A is a regular multiplier Hopf algebra with a comultiplication ∆ on A
defined by:

∆(ep) =
∑
k∈Z

ek ⊗ ep−k,

∆(b) = a⊗ b + b⊗ a−1.

Here λ ∈ C \ {0} and a =
∑
k∈Z

λkek ∈ M(A). Notice that these infinite sums

are well-defined in the “strict topology” on M(A) (i.e., when one multiplies with
elements of the algebra, one gets finite sums). Then for ω ∈ A

′
,

(ω ⊗ ι)∆(ep) =
∑
k∈Z

ω(ek)ep−k ∈ M(A)−A,

(ω ⊗ ι)∆(b) = ω(a)b + ω(b)a−1 ∈ M(A)−A.

Based on the example, it is natural to ask under which condition for a multi-
plier Hopf algebra the elements (ω ⊗ ι)∆(a) and (ι ⊗ ω)∆(a) are in A. With the
help of reduced functional, whose definition is given below, one can answer the
question and furthermore give a characterization for a discrete quantum group.
Definition 2.2 Let (A, ∆) be a multiplier Hopf algebra and A′ the space of all
linear functionals on A. ∀a ∈ A and f ∈ A′, one can define the left and right
action of a on f , respectively: ∀x ∈ A

af(x) := f(xa); fa(x) := f(ax).

Furthermore, for a, b ∈ A and f ∈ A′, one can define the functional afb by

afb(x) = f(bxa),

and call it a reduced functional on A.
In the following, by A∗ we denote the set of all reduced functionals on A and

by A1, A2 we denote the space {(ω ⊗ ι)∆(a)|a ∈ A,ω ∈ A∗} and the space{(ι ⊗
ω)∆(a)|a ∈ A,ω ∈ A∗}, respectively. And we will denote them by Ã when A1 = A2.
Furthermore, one can find that both A1 and A2 are subsets of A. Indeed, for all
a, b, c ∈ A, f ∈ A

′
,

(afb⊗ ι)∆(c) = (f ⊗ ι) ((b⊗ 1)∆(c)(a⊗ 1)) ,

(ι⊗ afb)∆(c) = (ι⊗ f) ((1⊗ b)∆(c)(1⊗ a)) .

For an algebraic quantum group (A, ∆),

Â = {aϕ|a ∈ A} = {ϕa|a ∈ A}

is defined as the dual of A, where ϕ is the left integral on A[7]. Now for f, g ∈ A′,
notice that the functional f ⊗ g : A ⊗ A → C can be extended uniquely to a
functional f ⊗ g : M(A⊗A) → C ([1]), put

f ? g(a) := (f ⊗ g)∆(a),
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then f ? g ∈ A′ is well defined.
Lemma 2.3 Let (A, ∆) be an algebraic quantum group and Â as defined above.
Set

Â0 = {ω ∈ A
′ |(ω ⊗ ι)∆(a) ∈ A, (ι⊗ ω)∆(a) ∈ A, ∀a ∈ A}.

Then (1) Â ⊂ Â0;
(2) Â0 is a unital associative algebra;
(3) M(Â) = Â0.

Proof (1) For a, b ∈ A, since

(ι⊗ bϕ)∆(a) = (ι⊗ ϕ)(∆(a)(1⊗ b))
= (ι⊗ ϕ)(

∑
(a)

a(1) ⊗ a(2)b)

=
∑
(a)

a(1)ϕ(a(2)b) ∈ A,

where ∆(a)(1 ⊗ b) =
∑
(a)

a(1) ⊗ a(2)b (this is possible for a regular multiplier Hopf

algebra). Therefore (ι ⊗ bϕ)∆(a), and similarly (bϕ ⊗ ι)∆(a) ∈ A. This means
bϕ ∈ Â0 and Â ⊂ Â0.

(2) Now for any ω1, ω2 ∈ Â0, we have

((ω1 ? ω2)⊗ ι)∆(a) = (ω2 ⊗ ι)∆((ω1 ⊗ ι)∆(a)),

(ι⊗ (ω1 ? ω2))∆(a) = (ι⊗ ω1)∆((ι⊗ ω2)∆(a)).

In fact, ∀a, b ∈ A, (ω1 ⊗ ι)∆ (a) ∈ A and (ω2 ⊗ ι)∆ ((ω1 ⊗ ι)∆ (a) (b⊗ 1)) ∈ A.
Furthermore ∀c ∈ A,

c(ω2 ⊗ ι)∆((ω1 ⊗ ι)(∆(a)(b⊗ 1))) = (ω2 ⊗ ι)((1⊗ c)∆((ω1 ⊗ ι)
∑
(a)

a(1)b⊗ a(2)))

=
∑
(a)

ω1(a(1)b)(ω2 ⊗ ι)((1⊗ c)∆(a(2)))

=
∑
(a)

ω1(a(1)b)ω2(a(2))ca(3)

= c
∑
(a)

(ω1 ⊗ ω2 ⊗ ι)(a(1)b⊗ a(2) ⊗ a(3))

= c
∑
(a)

(ω1 ⊗ ω2 ⊗ ι)(a(1)b⊗∆(a(2)))

= c
∑
(a)

(ω1 ⊗ ω2 ⊗ ι)(∆(a(1)b)⊗ a(2))

= c((ω1 ? ω2)⊗ ι)(∆(a)(b⊗ 1)),

for the last second equation we use the coassociativity of the comultiplication ∆.
For the arbitrariness of b, one can get

c(ω2 ⊗ ι)∆((ω1 ⊗ ι)∆(a)) = c((ω1 ? ω2)⊗ ι)∆(a),

and thus
((ω1 ? ω2)⊗ ι)∆(a) = (ω2 ⊗ ι)∆((ω1 ⊗ ι)∆(a)).
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For the second formula, we have the similar discussion.
Furthermore Â0 is a unital associative algebra under the convolution operation.

Indeed for ∀a ∈ A,
(ε⊗ ι)∆(a) = (ι⊗ ε)∆(a) = a,

which implies that Â0 has a unit ε. And for all a ∈ A,

((ω1?ω2)?ω3⊗ι)∆(a) = (ω3⊗ι)∆((ω2⊗ι)∆((ω1⊗ι)∆(a))) = (ω1?(ω2?ω3)⊗ι)∆(a),

(ι⊗(ω1?ω2)?ω3))∆(a) = (ι⊗ω1)∆((ι⊗ω2)∆((ι⊗ω3)∆(a))) = (ι⊗ω1?(ω2?ω3))∆(a).

So (ω1 ? ω2) ? ω3 = ω1 ? (ω2 ? ω3). Henceforth, Â0 is an associative algebra with
identity.

(3) As we have known, A
′

is also an associative algebra. Then ∀f ∈ M(A),
∀ω ∈ Â0, ∀bϕ, cϕ ∈ Â, the associativity of the (convolution) product in A

′
leads to

the relations
(bϕ ? f) ? ω = bϕ ? (f ? ω),

ω ? (f ? cϕ) = (ω ? f) ? cϕ,

which implies
(Â ? M(Â)) ? Â0 = Â ? (M(Â) ? Â0),

Â0 ? (M(Â) ? Â) = (Â0 ? M(Â)) ? Â.

Since M(Â) is the multiplier algebra of Â, i.e., Â = Â ? M(Â) = M(Â) ? Â,

Â ? Â0 = Â ? (M(Â) ? Â0),

Â0 ? Â = (Â0 ? M(Â)) ? Â.

From the non-degeneracy of the (convolution) product, one can get

Â0 = M(Â) ? Â0 = Â0 ? M(Â),

which shows that Â0 is a two-sided ideal of M(Â). Again Â0 is unital, therefore
Â0 = M(Â). ¥
Remark 2.4 One can prove that Â is a two-sided ideal of A∗ and A∗ is a subal-
gebra of M(Â) (see [6]). Then

Â ⊂ A∗ ⊂ Â0 = M(Â).

Corresponding to integrals, one can get the notion of cointegrals. A left coin-
tegral in a regular multiplier Hopf algebra is a non-zero element h ∈ A such that
ah = ε(a)h for all a ∈ A. Similarly, a non-zero element k ∈ A satisfying ka = ε(a)k
is called a right cointegral. They do not always exist and need not coincide as
if they exist. However, they are unique (up to a scalar) if they exist. They are
faithful if

(ω ⊗ ι)∆(h) = 0 implies ω = 0,
(ι⊗ ω)∆(h) = 0 implies ω = 0.
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Using the cointegral, we have the following definition.
Definition 2.5[8] Let (A, ∆) be an algebraic quantum group. We call (A,∆) of
compact type if A has an identity, i.e., A is a Hopf algebra. We call (A,∆) of
discrete type if A has a left (resp. right) cointegral.

With the help of Lemma 2.3 and Remark 2.4, we have the following precise
results for a special class of algebraic quantum group—discrete quantum group.
Proposition 2.6 Let (A,∆) be a discrete quantum group and A

′
, A∗ as defined

above. Then ∀f ∈ A
′
, f ∈ A∗ if and only if for all a ∈ A,

(ι⊗ f)∆(a) ∈ A and (f ⊗ ι)∆(a) ∈ A.

Proof It suffices to prove the sufficiency. As (A, ∆) is a discrete quantum group,
it is natural of discrete type. By Proposition 5.3 in [7], the dual Â of A is of compact
type. So Â has an identity and hence M(Â) = Â. Using Remark 2.4, Â0 = A∗ and
therefore f ∈ A∗. ¥
Proposition 2.7 Let (A, ∆) be a discrete quantum group and Ã as described
above. Then A = Ã.
Proof Firstly, we show that A1 = A2. Indeed, for any a, b ∈ A,

((ω ⊗ ι)∆(a))∗b = (b∗(ω ⊗ ι)∆(a))∗

= ((ω ⊗ ι)((1⊗ b∗)∆(a)))∗

= ((ω ⊗ ι)
∑
(a)

a(1) ⊗ b∗a(2))∗

=
∑
(a)

ω(a(1))a∗(2)b

=
∑
(a)

ω∗(S(a∗(1)))a
∗
(2)b

= S−1((ι⊗ ω∗)∆(S(a∗)))b.

So
((ω ⊗ ι)∆(a))∗ = S−1((ι⊗ ω∗)∆(S(a∗))),

and similarly
((ι⊗ ω)∆(a))∗ = S−1((ω∗ ⊗ ι)∆(S(a∗))),

which means that (ω ⊗ ι)(∆(a) and (ι⊗ ω)(∆(a) can be represented each other.
Secondly, we shows that A ⊆ Ã. Using Proposition 3.1 in [4], A has a left

cointegral h satisfying h2 = h∗ = h. Set

I = {(ω ⊗ ι)∆(h)|ω ∈ A
′
0},

where A
′
0 is the set of linear functionals on A which are supported on finitely

many components of A. Here A
′
0 = A∗. In fact, if f ∈ A

′
0, then for all x ∈ A,

by Proposition 3.1 in [8] there exists an element e (call it a local unit) such that
xe = ex. Hence

f(x) = f(xe) = f(ex) = (efe)(x),

which implies f ∈ A∗. If f = af
′
b ∈ A∗, a, b ∈ A, f

′ ∈ A
′
. Then ∀x ∈ A,

f(x) = f
′
(bxa). Since A is a direct sum of matrix algebra, bxa is in finitely many
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simple summands of A and hence f
′
(bxa) is non-zero on finitely many components

of A. So f ∈ A
′
0. Moreover, I is a two-sided ideal of A. Indeed, for any a ∈ A,

∆(h)(1⊗ a) = ∆(h2)(1⊗ a) = ∆(h)∆(h)(1⊗ a) ∈ ∆(h)(A⊗ 1),

and therefore
((ω ⊗ ι)∆(h)) a = (ω ⊗ ι) (∆(h)(1⊗ a)) ∈ I.

Then Ia ⊆ I. Similarly, aI ⊆ I. Pick an element a 6= 0 such that Ia = 0. Then
for all ω ∈ A∗, (ω ⊗ ι) (∆(h)(1⊗ a)) = 0. So ∆(h)(1⊗ a) = 0, which implies a = 0
and leads to a contradiction. Thus I = A. Obviously I ⊆ Ã and hence A ⊆ Ã. ¥

With the help of Lemma 2.3, we propose a characterization for a discrete quan-
tum group as follows.
Proposition 2.8 (A,∆) is a discrete quantum group if and only if (A, ∆) is an
algebraic quantum group with a standard *-operation and a non-zero element z ∈ A
such that ∀a ∈ A,

(1⊗ a)∆(z) = ∆(z)(a⊗ 1).

Proof We just need to prove the sufficiency. As Ã ⊆ A holds for any algebraic
quantum group (A,∆), in particular we have (ω ⊗ ι)∆(z) ∈ A. Define a map
Γ : Â0 −→ A by Γ(ω) = (ω ⊗ ι)∆(z), where Â0 is defined as in Lemma 2.3. It is
obvious that Γ is well defined. Furthermore, one can prove that Γ is an injective
A-module homomorphism. Indeed, if (ω ⊗ ι)∆(z) = 0, then ∀a ∈ A

0 = a(ω ⊗ ι)∆(z)
= (ω ⊗ ι)((1⊗ a)∆(z))
= (ω ⊗ ι)(∆(z)(a⊗ 1))
=

∑
(a)

ω(z(1)a)z(2).

Applying ∆ and S to this formula, one can get
∑

(a)

ω(z(3)a)z(1) ⊗ S(z(2)) = 0.

And replacing a by S(z(2))a, one can obtain

∑

(a)

ω(z(3)S(z(2))a)z(1) = 0

and hence also ω(a)z = 0 (∀a ∈ A), which implies ω = 0 considering the fact z 6= 0.
For any a ∈ A,

aΓ(ω) = (ω ⊗ ι)((1⊗ a)∆(z))
= (ω ⊗ ι)(∆(z)(a⊗ 1))
= (aω ⊗ ι)∆(z)
= Γ(aω),

which shows that Γ is A-module homomorphism.
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Take h = Γ(ε). Then ∀a ∈ A,

ah = aΓ(ε) = Γ(aε) = ε(a)Γ(ε) = ε(a)h.

Thus h is a left cointegral of (A, ∆) and (A, ∆) is of discrete type. From [5, Theorem
3.1], A has local units. Denote them by {eα}α∈I . Then

A =
⊕

α∈I

Aeα.

Combining with the fact that (A, ∆) is an algebraic quantum group with a standard
*-operation, A can be written as a direct sum of full matrix algebras. Namely, A
is a discrete quantum group and this completes the proof. ¥
Example 2.9 Let us look closer at K(G), the space of all complex functions
with finite support on G. Considering the fact that

(fδe)(p) = (δef)(p) = f(p)δe(p) = ε(f)δe(p), (∀f ∈ K(G), p ∈ G)

where δe is the function taking value 1 on the unit e of G and 0 elsewhere, the
element δe, denoted by h, is a cointegral on K(G). Therefore K(G) is an algebraic
quantum group of discrete type. Again (K(G), ∆) has a standard *-operation,

K(G) is a discrete quantum group. It is clear that K̃(G) ⊆ K(G). On the other
hand, suppose that ϕ is the left integral on (K(G),∆). Then ∀a ∈ K(G),

a = (ϕ⊗ ι)(h⊗ a)
= (ϕ⊗ ι)(∆(a)(h⊗ 1))
= (hϕ⊗ ι)∆(a).

Here we use the relation

(1⊗ a)∆(h) = ∆(h)(a⊗ 1) (∀a ∈ K(G)).

Therefore a = (hϕ⊗ ι)∆(a) ∈ K̃(G) and K(G) = K̃(G).
Assume that (A, ∆) is an algebraic quantum group, ϕ and ψ are the left and

right Haar measures on (A, ∆), respectively. Then there exists an invertible mul-
tiplier δ ∈ M(A) (call it a modular function) (see [7]) so that ∀a ∈ A,

(ϕ⊗ ι)∆(a) = ϕ(a)δ, (ι⊗ ψ)∆(a) = ψ(a)δ−1, ψ(a) = ϕ(aδ)

and that
∆(δ) = δ ⊗ δ, ε(δ) = 1, S(δ) = δ−1.

In general case, δ ∈ M(A)−A. In the following, we give a necessary and sufficient
condition for δ ∈ A.
Proposition 2.10 Let (A, ∆) be an algebraic quantum group and δ as described
above. Then δ ∈ A if and only if A is unital.
Proof ⇐) If A has a unit e, then ϕ = eϕ ∈ Â ⊂ Â0. So ϕ(a)δ = (ϕ⊗ ι)∆(a) ∈ A
and hence δ ∈ A.
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⇒) If δ ∈ A, then (ϕ⊗ ι)∆(a) = ϕ(a)δ ∈ A (resp. (ι⊗ψ)∆(a) = ψ(a)δ−1 ∈ A).
So ϕ ∈ Â0 (resp. ψ ∈ Â0) and thus (ι ⊗ ϕ)∆(a) ∈ A (resp. (ψ ⊗ ι)∆(a) ∈ A).
Again (ι⊗ ϕ)∆(a) = ϕ(a)1 (resp. (ψ ⊗ ι)∆(a) = ψ(a)1), ∀a ∈ A. Then ϕ(a)1 ∈ A
(resp. ψ(a)1 ∈ A), i.e., 1 ∈ A. ¥

From Proposition 2.10, one can get the following conclusion at once.
Corollary 2.11 Let (A, ∆) be a discrete quantum group and δ as described above.
Then δ ∈ A if and only if A is of finite dimension.
Remark 2.12 From Proposition 2.7 one can see that if A is a discrete quantum
group, then A = Ã, where

Ã = {(ω ⊗ ι)∆(a)|a ∈ A,ω ∈ A∗},
and A∗ is the space of all reduced functionals on A. On the other hand, if A is
an algebraic quantum group with the property of A = Ã, is A a discrete quantum
group? The question is under consideration now.
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