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On the index complex of a maximal subgroup and the group-theoretic
properties of a finite group *

Wang Xiaojing and Jiang Lining

ABSTRACT: Let G be a finite group, SP(G), ®'(G) and ®1(G) be generalizations
of the Frattini subgroup of G. Based on these characteristic subgroups and using
Deskins index complex, this paper gets some necessary and sufficient conditions for
G to be a p-solvable, m-solvable, solvable, super-solvable and nilpotent group.
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1. Intruduction

The relationship between the properties of maximal subgroups of a finite group
and its structure has been studied extensively. The concept of index complex(see
[1]) associated with a maximal subgroup plays an important role in the study of
group theory.

Suppose that G is a finite group, and M is a maximal subgroup of G. A
subgroup C of G is said to be a completion for M in G if C' is not contained in
M while every proper subgroup of C' which is normal in G is contained in M.
The set of all completions of M, denote it by I(M), is called the index complex of
M in G. Clearly I(M) contains a normal subgroup, and is a nonempty partially
ordered set by set inclusion relation. If C' € I(M) and C is the maximal element
of I(M), C is said to be a maximal completion for M. If moreover C' <1 G, C then
is said to be a normal completion for M. Clearly every normal completion of M
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is a maximal completion of M. Furthermore, by k(C') we denote the product of
all normal subgroups of G which are also proper subgroups of C, k(C) is a proper
normal subgroup of C.

In [2], Deskins studied the group-theoretic properties of the completions and its
influences on the solvability of a finite group. He also raised a conjecture concerning
super-solvability of a finite group in the same paper. Deskins’s conjecture and other
investigations were continued by many successive works [3-5]. This paper will study
the structure of a finite group G. Using the concept of index complex and applying
Frattini-Like subgroups such as S?(G), ®'(G) and ®,(G), the paper improves main
results of [3-5] and obtains some necessary and sufficient conditions for the G to
be a p-solvable, m-solvable, solvable, super-solvable and nilpotent group.

Throughout this paper, G denotes a finite group. The terminologies and no-
tations agree with standard usage as in [6]. The notation M <- G means M is a
maximal subgroup of G, and N <1 G means that N is a normal subgroup of G. If
p is a prime, then p’ denotes the complementary sets of primes and |G : M|, the
p-part of |G : M|.

2. Preliminaries

For convenience, we give some notations and definitions firstly. Suppose that p
is a prime, put

Fe= {M:M < G and |G: M| is composite};
FP= {M:M < Gand M > Ng(P) for a P € Syl,(G)};

Fre—  FP()Fe
Fo = Upeno) F*
Fl= Fo(F°

Using subgroups above, one can define Frattini-Like subgroups of G as follows.

Definition 2.1

SP(G) = ﬂ{M : M € FP°} if FP¢ is nonempty, otherwise SP(G) = G;

?,(G) = ﬂ{M : M € Fg} if Fg is nonempty, otherwise ®1(G) = G;
P'(Q) = ﬂ{M : M € FL} if F, is nonempty, otherwise ® (G) = G.
We begin with a preliminary result which will be used frequently in connection

with induction arguments in the next section.

Lemma 2.1 Let M be a maximal subgroup of a group G and N a normal subgroup
of G. If C € I(M) and N < k(C), then C/N € I(M/N) and k(C/N) = k(C)/N.

Proof. Since C € I(M), C £ M. Also C/N £ M/N. And if A/N < C/N,
A/N <G/N, then A < C'and A< G. Since A < M, A/N < M/N, and C/N €
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I(M/N). Also C £ M means k(C) # C. Then k(C/N) < C/N and moreover
kE(C)/N < M/N. So k(C/N) < k(C)/N.

On the other hand, let k(C/N) = H/N, then H <G and H/N < C/N. Thus,
H < C and k(C/N) = H/N < k(C)/N. Therefore, k(C/N) = k(C)/N. O

QQ

Lemma 2.2[2] Let C' and D be normal completions of a maximal subgroup M of
G. Then C/k(C) =2 D/k(D).

The order of C/k(C), where C' is a normal completion of M, is called the normal
index of M in G, denoted by n(G : M).
Lemma 2.3[7] ®;(G) is a nilpotent group; ®'(G) is a Sylow tower group.

Lemma 2.4 If G is a group with a maximal core-free subgroup, the followings are
equivalent:

(1) There exists a nontrivial solvable normal subgroup of G.

(2) There exists a unique minimal normal subgroup N of G and the index of
all maximal subgroups of G in Fg with core-free are powers of a unique prime.

Proof. Using Ref.[7], it suffices to prove that (2) implies (1). Indeed for every
L € Fg with core-free, let p be the unique prime divisor of |G : L|. Since N £ L,
G = LN. Moreover |G : L|’ N, thus p’ IN|. Let P € Syl,(N). If P 4 G, by
the Frattini argument we have G = N - Ng(P). Suppose that Ng(P) < M < G,
there exists G, € Syl,(G) satisfying Ng(P) > N¢(Gp). This means M > Ng(G))
and therefore M € Fg. But N £ M, by the uniqueness of N we get that M is
core-free. By the hypothesis, p ‘ |G : M|. Since M > Ng(Gp), p /f |G : M|. This
leads to a contradiction. Thus P <t G and P = N is a nontrivial solvable normal
subgroup of G.

3. Main Results

The following is the main result of the paper which gives a description of p-
solvable group.

Theorem 3.1 Let p be the largest prime divisor of the order of G. The G is
p-solvable if and only if for each non-nilpotent maximal subgroup M of G in FP¢,
there exists a normal completion C' in I(M) such that C'/k(C) is a p -group.

Proof. It suffices to prove the sufficient condition. Suppose that the result is false
and let G be a counterexample of minimal order, now we can claim that:

i) FP¢ is not empty. Indeed if F?¢ is empty, then SP(G) = G. Using [9, Lemma
2.2], SP(G) is p-closed. So P € Syl,(G) < G and G is p-solvable. This leads to a
contradiction.

ii) Every maximal subgroup M of G in FP¢ must be non-nilpotent. Indeed if
there exists a maximal subgroup M in FP¢ which is also nilpotent, then |G : M|, =
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1 and G is p-solvable. It is a contradiction.

iii) G has a unique minimal normal subgroup N such that G/N is p-solvable.
Indeed if G is simple, then for every M of G in FP¢, G is the only normal completion
in I(M) with k(G) = 1. By hypothesis, G = G/k(G) is a p -group. This contradicts
with the fact that p is the largest prime dividing |G|, hence G is not simple. Let
N be a minimal normal subgroup of G, we will according to cases of N < k(C) or
N £ k(C) prove that G/N satisfies the hypothesis of the theorem.

If N <k(C), then N < C and C/N is a normal completion for M/N in G/N.
By Lemma 2.1, C/N/k(C/N) - C/N/k(C)/N >~ C/k(C). Again C/k(C) is a

p -group, so C/N/k:(C/N) is a p -group.

If N £ k(C), then N £ C. For otherwise, either N = C or N < C, so either
G =MC =MN =M or N < k(C). Each of which is a contradiction. Since N
is a minimal normal subgroup of G, we have either C(\N = N or C(\N =1. If
CN = N, then N < C. It is also a contradiction. So C(|N = 1. Then CN/N

is a normal completion for M/N in G/N. We are to show that C’/N/k(C/N) is a
p -group. Since kE(C) < Cand C(N =1, it follows that k(C)N < CN, and hence
k(C)N/N < CN/N. Also k(C)N/N < G/N, so we have k(C)N/N < k(CN/N).
We define a map ¢: C/k(C) — CN/N/k‘(C’N/N), by

$(zk(C)) = zNK(CN/N)

for all 2k(C) € C/k(C). Now zk(C) = yk(C) implies that 2=ty € k(C), so
(xN)~Y(yN) = (27 y)N € k(C)N/N < k(CN/N) and

(zN)k(CN/N) = (yN)k(CN/N).

That is to say, ¢(xk(C)) = ¢(yk(C)). Hence the map is well defined. It can be
verified that ¢ is an epimorphism and CN/N / k(CN/N) is an epimorphic image of

a p,—group. Thus G/N satisfies the hypothesis of the theorem. By the minimality
of G, G/N is p-solvable.

Similarly, it can be shown that G/Nj is p-solvable if N is another minimal
normal subgroup N; of G. Thus G = G/N (| Ny, which is isomorphic a subgroup
of the p-solvable group G/N x G/Ny, is p-solvable. So in the following suppose
that N is the unique minimal normal subgroup of G.

If p /f |N| or N is a p-group, then N is p-solvable and so G is p-solvable. It is

a contradiction. Hence, |[N|, # 1 and N # N, € Syl,(N). Let M be a maximal
subgroup of G such that Ng(N,) < M. By the Frattini argument, we obtain
that G = N - Ng(N,). Using [7, lemma 5], there exists a G, € Syl,(G) with
Ng(N,) > Ng(Gp), so M € FP and |G : M|, = 1. If |G : M| = ¢ be a prime less
than p, then |G| divides ¢!. This leads to another contradiction. Thus |G : M| is
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composite and M € FP¢. By ii) and hypothesis, there exists a normal completion
C in I(M) such that C/k(C) is a p’-group. Obviously N is a normal completion
of M. Combining with Lemma 2.2, we have C/k(C) =2 N/kE(N) = N. Thus N is
a p’-group, which leads to the final contradiction. This completes the proof. [J

As we have known in [3], a group G is m-solvable if and only if for every maximal
subgroup M of G there exists a normal completion C in I(M) such that C/k(C)is
m-solvable. We now extend this result by considering a smaller class of maximal
subgroups.

Theorem 3.2 Let G be a finite group. G is m-solvable if and only if for every
maximal subgroup M of G in FY, there exists a normal completion C' in I(M) such
that C/k(C)is m-solvable.

Proof. <) Let G be a group satisfying the hypothesis of the theorem. If F(, is
empty then ®'(G) = G, and G is solvable. Thus assume that F/, is not empty. If G
is simple, then for every M in F(,, G is the only normal completion in I(M) with
k(G) = 1 and thus G = G/k(G) is m-solvable. So suppose that G is not simple.
Let N be a minimal normal subgroup of G. Without loss of generality, one can
suppose that F[, /N is not empty. We will use induction on the order of G. For
each M/N in FC/;/N’ by [7, Lemma 3], it follows that M € F{,. So by hypothesis
there exists a normal completion C' in I(M) such that C'/k(C) is m-solvable.

Similar to the proof in Theorem 3.1, C’N/N/k(C’N/N) is m-solvable. Thus

G/N satisfies the hypothesis of the theorem. Using the induction we obtain that
G/N is m-solvable. Furthermore, we can assume that N is the unique minimal
normal subgroup of G. By the same way, G/N is still a m-solvable group.

Now if N < ®'(G), then from Lemma 2.3 ®'(G) is solvable. Thus, N is -
solvable, and furthermore G is m-solvable. If N £ ®'(G), there exists a maximal
subgroup My € F{, with N £ Mj. Then CorecMy =1 and G = NMy. So N is a
normal completion in I(Mp). By hypothesis there exists a normal completion C in
I(My) such that C/k(C) is m-solvable. By Lemma 2.2, N/k(N) = N = C/k(C).
Again C/k(C) is m-solvable, therefore N is m-solvable and moreover, G is m-solvable.

=) The converse is obvious. O

The following theorem can be proved similarly as Theorem 3.2, and we omit it
here.

Theorem 3.3 Let GG be a finite group. G is solvable if and only if for every
maximal subgroup M of G in F/, there exists a normal completion C' in I(M) such
that C/k(C)is solvable.

As we have known [4], if G is Sy-free, then G is super-solvable if and only if for
each maximal subgroup M of G, there exists a maximal completion C' in I (M) such
that G = CM and C/k(C) is cyclic. The following theorem extends this result.

Theorem 3.4 Suppose that G is Sy-free. G is super-solvable if and only if for each
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maximal subgroup M of G in F/,, there exists a maximal completion C in I(M)
such that G = CM and C/k(C) is cyclic.

Proof. Let G be a super-solvable group. Then every chief factor of G is a cyclic
group of prime order. VM € F(, it is clear that the set S = {T'< G|T £ M} is
not empty. Choose an H to be the minimal element in S. Clearly, H € I(M) and
H/k(H)is a chief factor of G, hence H/k(H) is cyclic.

Let G be a group satisfying the hypothesis of the Theorem. If F(, is empty
then G = ®(G) and G is super-solvable [9]. We now assume that F/, is not
empty and then G is solvable. In the remainder of the proof we will drop the
maximality imposed on the completion C' in I(M) in the hypothesis. For each
maximal subgroup M in F(,, there exists a completion C' in I(M) such that G =
CM and C/k(C) is cyclic. From [5, Lemma 2], we can get a normal completion A
in I(M) such that A/k(A) is either cyclic or elementary abelian of order 22.

First suppose that there exists an M in F{, which has a normal completion A
such that A/k(A) is elementary abelian of order 22. Let G = G/coreg(M) and C,
M, A be the images of C, M and A in G respectively. Then G =C-M = A-M. Tt
is easy to verify that k(A) = A coregM, so A/k(A) = A coregM/coregM = A.

Since coregM = 1, k(A) = 1, A is a minimal normal subgroup of G. A is an
elementary abelian of order 22 and M (A = 1. Considering the permutation
representation of G on 4 cosets of M, G is isomorphic to a subgroup of S;. Again
Sy and A4 are the only non-super-solvable subgroups of Sy, A4 doesn’t satisfy the
hypothesis of the theorem, and G is Sy-free, so G is super-solvable.

Now assume that for each maximal subgroup M in F(,, M has a normal com-
pletion A so that A/k(A) is cyclic. Let N be a minimal normal subgroup of G.
Obviously, that G is Sy-free is quotient-closed. By [4, Lemma 3] and [7, Lemma
3], we can assume that the hypothesis holds for G/N. Using induction, we obtain
that G/N is super-solvable. Similar to Theorem 3.1, we can suppose that N is the
unique minimal normal subgroup of G. If N < ®(G), then G is super-solvable.
If N £ ®(G), there exists a maximal subgroup M in F{, so that G = NM and
coreg(M) = 1. Obviously N is a normal completion in I(M). By hypothesis,
there exists a normal completion A so that A/k(A) is cyclic. By Lemma 2.2,
A/k(A) 2 N/k(N) = N. Thus N is cyclic and G is super-solvable.

Remark Let G be a solvable group. To obtain the conclusion in Theorem 3.4,
the condition of maximality imposed on the completion C' is nonsignificant. So we
have the following result: If G is Sy-free and solvable, G is super-solvable if and
only if for each maximal subgroup M of G in F(,, there exists a completion C' in
I(M) so that G = CM and C/k(C) is cyclic.

Theorem 3.5 Let G be a group and M be an arbitrary maximal subgroup of G
in F. Then G is nilpotent if and only if for each normal completion C' of M,

IC/E(C)| = |G = M].

Proof. <) Let G be a group satisfying the hypothesis of the theorem. If Fg is
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empty then G/N = ®;(G/N). Using [9, Lemma 2.3], G/N is nilpotent. If G is
simple, then for every M in Fg, G is the only normal completion in I(M) with
k(G) = 1. By hypothesis |G/k(G)| = G = |G : M|, M = 1, hence G is a cyclic
group of prime order. So assume that G is not simple. Let N be a minimal normal
subgroup of G. Without loss of generality, suppose that F,y is not empty. For
any maximal subgroup M/N in Fg /v, suppose that C'//N is an arbitrary normal
completion in I(M/N). From [7, Lemma 3] we have M in Fg. Obviously C is a
normal completion in I(M) and |C/k(C)| = |G : M|. Using Lemma 2.1,

(C/N [K(C/N)| = |C/N [K(C)/N| = |C/K(C)] = |G : M| = |G/N [ M/N|.

Thus G/N satisfies the hypothesis of the theorem. Applying induction one can see
G/N is nilpotent. Similar to the proof in Theorem 3.1, we may assume N is the
unique minimal subgroup of G.

If N < ®,(G), by [5, Lemma 2.3] G is nilpotent. If N £ &;(G), there exists
an M in Fg so that G = NM. Clearly, N is a normal completion in I(M).By
hypothesis |[N/k(N)| = |N| = |G : M|. For any L in Fg with coreg(L) = 1,
obviously N £ L and G = NL. N is also a normal completion in I(M), so
IN/k(N)| =|N| = |G : L|. By Lemma 2.4 G has a nontrivial solvable subgroup K,
so N < K and N is solvable. Since G/N is nilpotent, G is solvable. Thus N is an
elementary abelian p-group. If G is not a p-group, we assume that |G| has a prime
factor ¢ different from p. If the subgroup Q = (ala € G and |a| = q) < M, this
contradicts with the fact that coregM = 1. So there exists an of order ¢ element
a in G — M. This implies that G = (M, (a)). However, |[N| = |G : M| is a power
of p. This leads to another contradiction. So G must be a p-group and then is a
nilpotent group.

=) The converse holds obviously. O
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