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On j-Semiopen Sets And A Generalization Of Functions

Erdal Ekici

ABSTRACT: In this paper, we introduce and investigate a weaker form of R-maps
and J-continuous functions which is called almost d-semicontinuity. We obtain its
characterizations, its basic properties and their relationships with other types of
functions between topological spaces.
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1. Introduction and preliminaries

By using various forms of open sets many authors introduced and studied var-
ious types of continuity. In 1973, Carnahan introduced the notion of R-maps. In
1980, Noiri studied the notion of §-continuous functions. The aim of this paper is
to introduce the notion of almost d-semicontinuous functions which generalize R-
maps and d-continuous functions. Various characterizations and properties of such
functions are obtained. Throughout the present paper, spaces mean topological
spaces and f : (X,7) — (Y,0) (or simply f : X — Y) denotes a function f of a
space (X, 7) into a space (Y, o). Let S be a subset of a space X. The closure and
the interior of S are denoted by ¢l(S) and int(S), respectively.

Definition 1 A subset S of a space X is said to be

(1) regular open [22] if S = int(cl(S)),

(2) 6-open [23] if for each x € S, there exists a reqular open set W such that
zeWCS,

(3) a-open [14] if S C int(cl(int(S))),

(4) semi-open [9] if S C cl(int(S)),

(5) preopen [11] if S C int(cl(S)),

(6) v-open [7] if S C int(cl(S)) U cl(int(S)),

(7) B-open [1] or semi-preopen [2] if S C cl(int(cl(S))).
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The complement of a regular open set is said to be regular closed [22].

The complement of a semiopen set is said to be semiclosed [6]. The intersection
of all semiclosed sets containing a subset A of X is called the semi-closure [6] of A
and is denoted by s-cl(A). The union of all semiopen sets contained in a subset A
of X is called the semi-interior of A and is denoted by s-int(A).

A point € X is called a d-cluster (resp. 6-cluster) point of A [23] if AN
int(cl(U)) # & (resp. ANcl(U) # @) for each open set U containing x. The set of
all d-cluster (resp. #-cluster) points of A is called the d-closure (resp. 6-closure) of
A and is denoted by 6-cl(A) (resp. 6-cl(A)). If 6-cl(A) = A (resp. 6-cl(A) = A),
then A is said to be d-closed (resp. #-closed). The complement of a J-closed (resp.
O-closed) set is said to be d-open (resp. #-open).

A subset S of a topological space X is said to be d-semiopen [20] iff S C ¢l(6-
int(S)). The complement of a §-semiopen set is called a d-semiclosed set [20].
The union (resp. intersection) of all §-semiopen (resp. J-semiclosed) sets, each
contained in (resp. containing) a set S in a topological space X is called the
d-semiinterior (resp. d-semiclosure) of S and it is denoted by d-sint(S) (resp. I-
scl(S)) [20].

The family of all d-semiopen (resp.regular open, preopen, (-open. «-open,
semi-open, d-open) sets of a space X will be denoted by §SO(X) (resp. RO(X),
PO(X), pO(X), aO(X), SO(X), 6O(X)). The family of all d-semiclosed (resp.
regular closed, d-closed) sets in a space X is denoted by 6SC(X) (resp. RC(X),
dC(X)). The family of all é-semiopen (resp.regular open, d-open) sets containing
a point x € X will be denoted by §SO(X, z) (resp. RO(X,x), 60(X,x)).

Lemma 2 Let (X,7) be a topological space. Intersection of arbitrary of §-closed
sets in X is d-closed.

Lemma 3 Let A be a subset of a topological space (X, 7). Then 6-cl(A) =N{F €
0C(X): AC F}.

Corollary 4 6-cl(A) is §-closed for a subset A in a topological space (X,T).
Proof. It is obvious from the above lemmas. m

Definition 5 A function f: (X,7) — (Y, 0) is said to be
(1) R-map [5] if f~1(V) € RO(X) for every V. € RO(Y),
(2) almost semi-continuous [12] if f~1(V) € SO(X) for every V. € RO(Y),
(3) S-continuous [15] if f~1(V) is §-open in X for every V.€ RO(Y).

Lemma 6 (Park et. al. [20]) Let A be a subset of a space X. Then
(1) §-scl(X\A) = X\d-sint(A),
(2) x € 6-scl(A) if and only if ANU # @ for each U € 6SO(X, z),
(3) A is d-semiclosed in X if and only if A = §-scl(A),
(4) 0-scl(A) is 0-semiclosed in X .

Lemma 7 (Noiri [17]) For a subset of a space Y, the following hold:
(1) a-cl(V)) = cl(V) for every V € SO(Y).
(2) p-cl(F) = cl(V) for every V € SO(Y).
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Lemma 8 (Noiri [18]) s-cl(V') = int(cl(V')) for every preopen set V of a space X .

Definition 9 A space (X, 1) is said to be
(1) submazimal [3] if every dense subset of X is open in X,
(2) extremally disconnected [3, 16] if cl(U) € 7 for every U € T.

2. Almost §-semicontinuous functions

In this section, we obtain several characterizations of almost J-semicontinuous
functions.

Definition 10 A function f : (X,7) — (Y, 0) is said to be almost 6-semicontinuous
if for each x € X and each V € RO(Y) containing f(z), there exists U € SO(X)
containing x such that f(U) C V.

Theorem 11 For a function f: (X,7) — (Y,0), the following are equivalent:
(1) f is almost d-semicontinuous;
(2) for each x € X and each V € o containing f(x), there exists U € SO(X)
containing x such that f(U) C int(cl(V));
(3) f~YF) € 6SC(X) for every F € RC(Y);
(4) f~YH(V) € 6SO(X) for every V € RO(Y).
(5) f(6-scl(A)) C é-cl(f(A)) for every subset A of X ;
(6) 5-scl(f~1(B)) C f~Y(5-cl(B)) for every subset B of Y;
(7) f71(F) € 65C(X) for every §-closed set F of (Y, 0);
(8) f~1(V) € 6SO(X) for every §-open set V of (Y,0);
(9) 6-scl(f~1(cl(int(cl(B))))) C f~(cl(B)) for every subset B of Y ;
(10) (5—scl(f_1(cl(int(F)))) C f7Y(F) for every closed set F of Y;
(11) 6-scl(f=(cl(V))) C f Lcl(V)) for every open set V of Y;
(12) f~(V) C 6-sint(f~ (5 cl(V))) for every open set V of Y;
(18) f~Y(V) C (- mt(f Y(s-cl(V)))) for every open set'V of Y ;
(14) f~1(V) C 6-sint(f~1(int(cl(V))))) for every open set V of Y;
(15) f~1(V) C cl(§-int(f~1(int(cl(V)))))) for every open set V of Y ;
(16) 6-scl(f~1(V)) C f=(cl(V)) for each V € BO(Y);
(17) 6-scl(f~2(V)) C f=(cl(V)) for each V € SO(Y);
(18) f~1(V) C 5—5int(f’1(int(cl(V)))) for each V€ PO(Y);
(19) 5—scl(f* (V) C f~Ha-cl(V)) for each V € BO(Y);
(20) §-scl(f~H(V)) C f (p c(V)) for each V € SO(Y);
(21) f~1(V) C 6-sint(f~(s-cl(V))) for each V € PO(Y).

Proof. (1)=(2). Let z € X and V € o containing f(x). We have int(cl(V)) €
RO(Y). Since f is almost J-semicontinuous, then there exists U € 4SO(X, x) such
that f(U) C int(cl(V)).

(2)=(1). Obvious.

(3)(4). Obvious.

(1)=(4). Let z € X and V € RO(Y, f(x)). Since f is almost d-semicontinuous,
then there exists U, € §SO(X,z) such that f(U,) C V. We have U, C f~1(V).
Thus, f~1(V) = UU, € §SO(X).
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(4)=(1). Obvious.
(1)=(5). Let A be a subset of X. Since d-cl(f(A)) is d-closed in Y, it is denoted
by N{F; : F; € RC(Y), i € I}, where I is an index set. By (1)<(3), we have

AC fY6 = cl(f(A) = N{fU(F) : i € I} € 65C(X)

and hence §-scl(A) C f=(6-cl(f(A))). Therefore, we obtain f(d-scl(A)) C J-
A(f(A)).

(5)=>(6). Let B be asubset of Y. We have f(§-scl(f~1(B))) C s-cl(f(f~1(B))) C
§-cl(B) and hence §-scl(f~1(B)) C f~1(5-cl(B)).

(6)=(7). Let F be any é-closed set of (Y, o). We have §-scl(f~1(F)) C f~1(6-
cl(F)) = f~1(F) and hence f~1(F) is é-semiclosed in (X, 7).

(7)=>(8). Let V be any d-open set of (Y, o). We have f~1(Y\V) = X\f~1(V) €
§SC(X) and hence f~1(V) € §SO(X).

(8)=-(1). Let V be any regular open set of (Y, o). Since V is d-open in (Y, 0),
f71(V) € SO(X) and hence, by (1)<(4), f is almost -semicontinuous.

(1)=(9). Let B be any subset of Y. Assume that x € X\ f~1(cl(B)). Then
f(z) € Y\cl(B) and there exists an open set V' containing f(x) such that VN B =
@; hence int(cl(V)) N cl(int(cl(B))) = @. Since f is almost J-semicontinuous,
there exists U € 6SO(X,z) such that f(U) C int(cl(V)). Therefore, we have
UNf=Y(cl(int(cl(B)))) = @ and hence z € X\d-scl(f~1(cl(int(cl(B))))). Thus we
obtain

5-scl(f~(cl(int(cl(B))))) C f~1(cl(B)).
(9)=(10). Let F be any closed set of Y. Then we have

S-scl(f=1(cl(int(F))) = d-scl(f~t(cl(int(cl(F)))))
C fHl(F)) = f7HE).
(10)=-(11). For any open set V of Y, cl(V) is regular closed in Y and we have
S-scl(f~H(cl (V) = 6-scl(f (cl(int(cl(V))))) € f~H(cl(V)).

(11)=(12). Let V be any open set of Y. Then Y\cl(V) is open in Y and by
using Lemma 8 we have

X\6-sint(f~(s-cl(V)))
= S-scl(fHY\int(cl(V)))) C f7H (Y \c(V))) € X\fH(V).
Therefore, we obtain f~1(V) C §-sint(f = (s-cl(V))).
(12)=-(13). Let V be any open set of Y. We obtain
V) € s-sint(f (s-cl(V))) C cl(-int(f~ (s-cl(V)))).

(13)=(1). Let = be any point of X and V any open set of Y containing f(x).
Then z € f=1(int(cl(V))) C cl(5-int(f = (s-cl(int(cl(V)))))) = cl(6-int(f~L(int(cl(V))))).
Thus, f~1(int(cl(V))) € 6SO(X). Take U = f~1(int(cl(V))). We obtain x € U
and f(U) C int(cl(V')). Therefore, f is almost J-semicontinuous.
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(12)<(14) and (13)<(15). Obvious.

(1)=(16). Let V be any (-open set of Y. It follows from [2, Theorem 2.4]
that cl(V') is regular closed in Y. Since f is almost d-semicontinuous, by (1)< (3
f71(cl(V)) is 6-semiclosed in X. Therefore, we obtain d-scl(f~1(V)) C f=1(cl(V)

(16)=-(17). This is obvious since SO(Y) C BO(Y).

(17)=(1). Let F be any regular closed set of Y. Then F is semi-open in Y
and hence §-scl(f~Y(F)) Cc f~Y(cl(F)) = f~'(F). This shows that f~1(F) is
d-semiclosed. Therefore, by (1)< (3), f is almost d-semicontinuous.

(1)=-(18). Let V be any preopen set of Y. Then V' C int(cl(V)) and int(cl(V))
is regular open in Y. Since f is almost §-semicontinuous, by (1)< (4), f=*(int(cl(V)))
is d-semiopen in X and hence we obtain that f=*(V) C f~(int(cl(V))) C o-
sint(f~(int(cl(V)))).

(18)=(1). Let V be any regular open set of Y. Then V is preopen and f~*(V) C
§-sint(f~L(int(cl(V)))) = d-sint(f~1(V)). Therefore, f~1(V) is d-semiopen in X
and hence, by (1)<(4), f is almost d-semicontinuous.

(16)(19), (17)<(20), (18)<(21). Obvious. m

);
)

3. Relationships
In this section, the relationships of almost J-semicontinuity are investigated.
almost semi-continuous < almost J-semicontinuous < d-continuous < R-map

However, the converses are not true in general as shown by the following exam-
ples:

Example 12 Let X = {a,b,c,d} and 7 = {X, @, {a}, {c},{a,b},{a,c},{a,b,c},{a,c, d}}.
Let f: X — X be a function defined by f(a) = a, f(b) =d, f(c) =c¢, f(d) =d.
Then, [ is almost semi-continuous but not almost §-semicontinuous.

Example 13 Let X = {a,b,c} and 7 = {X, o, {a},{b},{a,b}}. Let f: X — X
be a function defined by f(a) = b, f(b) = a, f(¢) = a. Then, [ is almost 0-
semicontinuous but not d-continuous.

The other example for the last implication can be seen in [15].

Definition 14 Let (X, 7) be a topological space. The collection of all reqular open
sets forms a base for a topology Ts. It is called the semiregularization. In case
when T = T4, the space (X, T) is called semi-regular [22].

Theorem 15 Let (X,7) be a semi-reqular space. Then a function f : (X,7) —
(Y, o) is almost semi-continuous if and only if it is almost §-semicontinuous.

Definition 16 A function f: X — Y is said to be

(1) weakly 0-semicontinuous if for each x € X and each open set V of Y
containing f(x), there exists U € 0SO(X,x) such that f(U) C cl(V).

(2) é-semicontinuous if for each x € X and each open set V of Y containing
f(x), there exists U € 0SO(X,x) such that f(U) CV,

(3) §-semiirresolute [4{] if for each x € X and each §-semiopen set V of Y
containing f(x), there exists U € 60SO(X,x) such that f(U) C V.



78 ERDAL EKICI

The following example shows that the composition of two §-semicontinuous
functions is not J-semicontinuous.

Example 17 Let X =Y = Z = {a,b,¢,d} and 7 = {@, X, {a}, {b},{a,b}}. Let
f: X —>Y and g:Y — Z be functions defined by f(a) = b, f(b) =b, f(c) =
f(d) =d and g(a) = a, g(b) = ¢, g(c) = a, g(d) = d, respectively. Then, f and g
are 0-semicontinuous but g o f is not d-semicontinuous.

Theorem 18 Let f : X — Y and g : Y — Z be functions. Then the following
hold:

(1) If f is almost §-semicontinuous and g is an R-map, then the composition
go f: X — Z is almost §-semicontinuous,

(2) If f is d-semiirresolute and g is almost d-semicontinuous, the composition
go f: X — Z is almost §-semicontinuous.

Theorem 19 The following properties are equivalent for a function f: X —Y
(1) f is §-semicontinuous,
(2) f~Y(F) is §-semiclosed in X for every closed set F in'Y .

Definition 20 A function f: X — Y is said to be faintly §-semicontinuous if for
each x € X and each 0-open set V of Y containing f(z), there exists U € §SO(X, x)
such that f(U) C V.

Theorem 21 The following properties are equivalent for a function f: X —Y
(1) f is faintly §-semicontinuous,
(2) f~Y(F) is 6-semiclosed in X for O-closed set F in'Y .

Theorem 22 Let f: X — Y be a function. Suppose that Y is regular. Then, the
following properties are equivalent:

(1) f is §-semicontinuous,

(2) f=1(5-cl(B)) is §-semiclosed in X for every subset B of Y,

(3) f is almost §-semicontinuous,

(4) [ is weakly §-semicontinuous,

(5) f is faintly §-semicontinuous.

Proof. (1)=(2). Since d-cl(B) is closed in Y for every subset B of Y, f~1(4-
cl(B)) is d-semiclosed in X.

(2)=(3). For any subset B of Y, f~1(4-cl(B)) 1s d-semiclosed in X and hence
we have &-scl(f~1(B)) C d-scl(f~1(6-cl(B))) = f~1(d-cl(B)). It follows that f is
almost d-semicontinuous

(3)=-(4). This is obvious.

(4)=(5). Let A be any subset of X. Let z € d-scl(A) and V' be any open set
of Y containing f(z). There exists U € 6SO(X, z) such that f(U) C ¢l(V). Since
x € d-scl(A), we have U N A # & and hence & # f(U) N f(A) C (V)N f(A).
Therefore, we have f(x) € 6-cl(f(A)) and hence f(d-scl(A)) C 0-cl(f(A)).

Let B be any subset of Y. We have f(§-scl(f~%(B))) C 6-cl(B) and 4-

scl(f~1(B)) C f~1(0-cl(B)).
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Let F be any 6-closed set of Y. Tt follows that d-scl(f~*(F)) C f~1(6-
c(F)) = f~Y(F). Therefore f~(F) is -semiclosed in X and hence f is faintly
d-semicontinuous.

(5)=(1). Let V be any open set of Y. Since Y is regular, V is f-open in Y.
By the faint é-semicontinuity of f, f~1(V) is d-semiopen in X. Therefore, f is
d-semicontinuous. m

Definition 23 A function f : X — Y is said to be faintly continuous [10] (resp.
faintly semi-continuous [19], faintly precontinuous [19], faintly B-continuous [13,
19], faintly a-continuous [13]) if f =2 (V') is open (resp. semi-open, preopen, (3-open,
a-open) in X for each 0-open set V of of Y.

Theorem 24 If (X, 1) is submazimal extremally disconnected semi-regular and
(Y, 0) is reqular, then the following are equivalent for a function f : (X,7) — (Y, 0):

(1) f is faintly a-continuous,

(2) f is faintly semi-continuous,

(8) f is faintly precontinuous,

(4) f is faintly ~-continuous,

(5) f is faintly B-continuous,

(6) [ is faintly continuous,

(7) f is faintly 6-semicontinuous,

(8) f is §-semicontinuous,

(9) f is almost §-semicontinuous,

(10) f is weakly 0-semicontinuous.

Definition 25 A function f : X — Y is said to be almost §-semiopen if f(U) C
int(cl(f(U))) for every §-semiopen set U of X.

Theorem 26 If f: X — Y is an almost §-semiopen and weakly §-semicontinuous
function, then f is almost 6-semicontinuous

Proof. Let x € X and let V' be an open set of Y containing f(z). Since f
is weakly d-semicontinuous, there exists U € §SO(X, ) such that f(U) C (V).
Since f is almost d-semiopen, f(U) C int(cl(f(U))) C int(cl(V)) and hence f is
almost §-semicontinuous. m

Definition 27 A space X is said to be

(1) almost regular [21] if for any regular closed set F of X and any point
x € X\F there exist disjoint open sets U and V such that x € U and F C V,

(2) semi-regular if for any open set U of X and each point x € U there exists
a regular open set V of X such thatx € V C U.

Theorem 28 If f: X — Y is a weakly 6-semicontinuous function andY is almost
reqular, then f is almost §-semicontinuous.
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Proof. Let z € X and let V' be any open set of Y containing f(z). By the
almost regularity of Y, there exists a regular open set G of Y such that f(z) € G C
c(G) C int(cl(V)) [21, Theorem 2.2]. Since f is weakly d-semicontinuous, there
exists U € 6SO(X, z) such that f(U) C cl(G) C int(cl(V)). Therefore, f is almost
d-semicontinuous. m

Theorem 29 If f : X — Y is an almost d-semicontinuous function and Y is
semi-reqular, then f is §-semicontinuous.

Proof. Let € X and let V be an open set of Y containing f(x). By the semi-
regularity of Y, there exists a regular open set G of Y such that f(z) € G C V.
Since f is almost d-semicontinuous, there exists U € §SO(X, z) such that f(U) C
int(cl(G)) = G C V and hence f is d-semicontinuous. m

4. Properties

Theorem 30 Let f: (X,7) — (Y,0) be a function and g : (X,7) — (X XY, 7 x0)
the graph function defined by g(x) = (x, f(x)) for every x € X. Then g is almost
d-semicontinuous if and only if f is almost §-semicontinuous.

Proof. Necessity. Let z € X and V € RO(Y) containing f(x). Then, we have
g(z) = (z, f(z)) € X xV € RO(X xY). Since g is almost d-semicontinuous, there
exists a d-semiopen set U of X containing x such that g(U) C X x V. Therefore,
we obtain f(U) C V and hence f is almost d-semicontinuous.

Sufficiency. Let € X and W be a regular open set of X x Y containing g(z).
There exist U; € RO(X) and V € RO(Y) such that (x, f(z)) € Uy x V. C W.
Since f is almost d-semicontinuous, there exists Us € §SO(X) such that = € Uy
and f(Uz) C V. Put U = Uy N Uy, then we obtain x € U € 6SO(X) and g(U) C
U; x V.C W. This shows that g is almost d-semicontinuous. m

Let {X;:i € I} and {Y; : ¢ € I} be any two families of spaces with the same
index set I. For each i € I, let f; : X; — Y; be a function. The product space

[1X; will be denoted by [[X; and the product function [] f; : [[X; — [[V: is
iel
simply denoted by f: [[X; — [[Ya.

Theorem 31 If a function f : X — []Y; is almost §-semicontinuous, then p;o f :
X — Y, is almost §-semicontinuous for each i € I, where p; is the projection of
[1Y: onto Y;.

Proof. Let V; be any regular open set of Y;. Since p; is continuous open, it
is an R-map and hence p;'(V;) € RO([[Y:). By Theorem 11, f~'(p; ' (V})) =
(pi o f)~X(V;) € 6SO(X). This shows that p; o f is almost d-semicontinuous for
eachiel. m

Theorem 32 The product function f: [[X; — [[Y: is almost §-semicontinuous
if and only if f; : X; — Y, is almost §-semicontinuous for each i € I.
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Proof. Necessity. Let k be an arbitrarily fixed index and Vj any regular open
set of Yj. Then [[Y; x V4 is regular open in []Y;, where j € I and j # k, and
hence f~1(ITY; x Vi) =[1Y; x fi ' (Vi) is d-semiopen in [[ X;. Thus, f; ' (Vi) is
d-semiopen in X and hence f; is almost d-semicontinuous.

Sufficiency. Let {z;} be any point of [] X; and W any regular open set of [[Y;
containing f({x;}). There exists a finite subset Iy of I such that V, € RO(Y},) for
each k € Ip and {f;(x;)} € [[{Ve : k € In} x [[{Y; : j € I\Ip} C W. For each
k € Iy, there exists U, € 6SO(X}y) containing z such that f(Uy) C V. Thus,
U=[{Uk : k € I} x [I[{X; : j € I\Ip} is a é-semiopen set of [[ X; containing
{z;} and f(U) C W. This shows that f is almost J-semicontinuous. m

Lemma 33 A set S in X is §-semiopen if and only if SN G € §SO(X) for every
d-open set G of X.

Lemma 34 Let A and X be subsets of a space (X,7). If A € 6SO(X) and
X € 60(X), then AﬁXo € 5SO(X0) [8/

Theorem 35 If f : (X,7) — (Y,0) is almost §-semicontinuous and A is §-open
in (X, 1), then the restriction f |a: (A,74) — (Y, 0) is almost 6-semicontinuous.

Proof. Let V be any regular open set of Y . By Theorem 11, we have f~1(V) €
§SO(X) and hence (f |4)" (V) = f~4 (V)N A € 6SO(A) by Lemma 34. Thus, it
follows that f |4 is almost d-semicontinuous. m

Lemma 36 Let A and Xo be subsets of a space (X,7). If A € §SO(Xy) and
Xo € 60(X), then A € §SO(X) [8].

Theorem 37 Let f: (X,7) — (Y,0) be a function and {U; : i € I} a cover of X
by §-open sets of (X, 7). If f lu,: (Ui, Ty,) — (Y, 0) is almost d-semicontinuous for
each i € I, then f is almost d-semicontinuous.

Proof. Let V be any regular open set of (Y, o). Then, we have
V) =Xnf i (V) =u{Uinf7 (V) rie I} = U{(f [v,) "' (V) ri € I}

Since f |y, is almost §-semicontinuous, (f |y,)~ (V) € §SO(U;) for each i € I. By
Lemma 36, for each i € I, (f |y,)"1(V) is §-semiopen in X and hence f~1(V) is
d-semiopen in X. Therefore, f is almost §-semicontinuous. m

Definition 38 The d-semifrontier of a subset A of X, denoted by 6-sfr(A), is
defined by 0-sfr(A) = d-scl(A) N d-scl(X\A) = 0-scl(A)\d-sint(A) [8].

Theorem 39 The set of all points x of X at which a function f: X — Y is not
almost d-semicontinuous is identical with the union of the d-semifrontiers of the
inverse images of reqular open sets containing f(x).



82 ERrRDAL EKICI

Proof. Let x be a point of X at which f is not almost §-semicontinuous Then,
there exists a regular open set V of Y containing f(z) such that UN(X\ f~1(V)) #
@ for every U € 6SO(X,z). Therefore, we have z € §-scl(X\f~1(V)) = X\6-
sint(f~1(V)) and z € f~1(V). Thus, we obtain = € d-sfr(f=1(V)).

Conversely, suppose that f is almost d-semicontinuous at z € X and let V be
a regular open set containing f(z). Then there exists U € §SO(X,x) such that
U C f~YV); hence z € &-sint(f~1(V)). Therefore, it follows that = € X\J-
sfr(f~1(V)). This completes the proof. m

Theorem 40 If f : X — Y is almost §-semicontinuous, g : X — Y is 0-
continuous and Y is Hausdorff, then the set {x € X : f(x) = g(x)} is §-semiclosed
in X.

Proof. Let A = {z € X : f(z) = g(z)} and z € X\A. Then f(z) # g(x).
Since Y is Hausdorff, there exist open sets V and W of Y such that f(x) € V,
g(r) € W and VNW = &; hence int(cl(V)) Nint(cl(W)) = @. Since f is
almost d-semicontinuous, there exists G € §SO(X, x) such that f(G) C int(cl(V)).
Since g is d-continuous, there exists an d-open set H of X containing = such that
g(H) C int(cl(W)). Now, put U = GNH, then U € §SO(X, z) and f(U)Ng(U) C
int(cl(V)) Nint(cl(W)) = @. Therefore, we obtain U N A = & and hence « € X\0-
scl(A). This shows that A is d-semiclosed in X. m

Theorem 41 If fi1 : X1 — Y is weakly §-semicontinuous, fo : Xo — Y is almost
d-semicontinuous and Y is Hausdor(f, then the set {(x1,22) € X1 X Xo : f(x1) =
fx2)} is d-semiclosed in Xq X Xa.

Proof. Let A = {(z1,22) € X1 X Xo: f(x1) = f(x2)} and (z1,22) € (X1 X
X2)\A. Then f(x1) # f(z2) and there exist open sets V7 and V5 of Y such that
f(z1) € Vi, f(z2) € Vo and Vi N V2 = @&; hence (V1) Nint(cl(Vz)) = @. Since fi
(resp, fo2) is weakly d-semicontinuous (resp. almost J-semicontinuous), there exists
Uy € 6SO(X1,x1) such that f1(Ur) C cl(Vh) (vesp. Uz € 6SO(X2,xz2) such that
f2(Us) Cint(cl(Va))). Therefore, we obtain (x1,z2) € Uy x Uy C (X7 x X2)\A4 and
Uy x Us € 6SO(X; x X5). This shows that A is §-semiclosed in X7 x X5. m

Definition 42 A space X is said to be 0-semi-To [4] if for any distinct points x,
y of X, there exist disjoint 6-semiopen sets U, V of X such thatx € U andy € V.

Theorem 43 If for each pair of distinct points x1 and xo in a space X, there
exists a function f of X into a Hausdorff space Y such that

(1) f(a1) # f(w2),

(2) f is weakly 0-semicontinuous at x1 and

(8) almost §-semicontinuous at o,

then X is 6-semi-Ts.

Proof. Since Y is Hausdorff, there exist open sets V; and V5 of Y such that
f(z1) € V1, f(z2) € Vo and V1 NV, = &5 hence cl(Vy) Nint(cl(Vz2)) = @. Since f
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is weakly d-semicontinuous at x1, there exists Uy € §SO(X, x1) such that f(Uy) C
cl(V1). Since f is almost d-semicontinuous at xy, there exists Uy € 6SO(X, x2)
such that f(Us) C int(cl(Vz2)). Therefore, we obtain U; NUz = @&. This shows that
X is 6-semi-T>. m

Definition 44 A space X is said to be §-semi-compact if every d-semiopen cover
of X has a finite subcover.

Let f : X — Y be a function. The subset {(x, f(x)) : 2z € X} C X xY is called
the graph of f and is denoted by G(f).

Definition 45 A function f : X — Y has a (§s,7r)-graph if for each (z,y) €
X xY\G(f), there exist U € 6SO(X,x) and a regular open set V of Y containing
y such that (U x V)NG(f) =@.

Lemma 46 A function f : X — Y has a (0s,7)-graph if and only if for each
(z,y) € X XY such that y # f(x), there exist a §-semiopen set U and a regular
open set V' containing x and y, respectively, such that f(U)NV = @.

Theorem 47 If f : X — Y is an almost d-semicontinuous function and Y is
Hausdorff, then [ has a (05,71)-graph.

Proof. Let (z,y) € X XY such that y # f(z). Then there exist open sets V and
W such that y € V, f(x) € W and VNW = &; hence int(cl(V)) Nint(cl(W)) =
@. Since f is almost d-semicontinuous, there exists U € §SO(X,x) such that
f(U) Cint(cl(W)). This implies that f(U) Nint(cl(V)) = @. Therefore, f has a
(s,7)-graph. m

Theorem 48 If f : (X,7) — (Y,0) has a (ds,7)-graph, then f(K) is §-closed in
(Y,0) for each subset K which is §-semi-compact relative to (X, ).

Proof. Suppose that y ¢ f(K). Then (z,y) ¢ G(f) for each z € K. Since
G(f) is (05, 7)-graph, there exist U, € §SO(X) containing = and a regular open set
V, of Y containing y such that f(U,)NV, = @. The family {U, : z € K} is a cover
of K by d-semiopen sets. Since K is d-semi-compact relative to (X, 7), there exists
a finite subset Ky of K such that K C U{U, : © € Ko}. Set V.=n{V, : z € Ko}.
Then V is a regular open set in Y containing y. Therefore, we have

FE)NV [ U fUINV C U [fU)NV]= 2.

It follows that y ¢ -cl(f(K)). Therefore, f(K) is d-closed in (Y,0). m

Corollary 49 If f : (X,7) — (Y,0) is an almost d-semicontinuous function and
Y is Hausdorff, then f(K) is -closed in (Y,0) for each subset K which is 0-semi-
compact relative to (X, 7).
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