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Interior gradient estimate for 1-D anisotropic curvature flow

Yuko Nagase and Yoshihiro Tonegawa∗

abstract: We establish the interior gradient estimate for general 1-D anisotropic
curvature flow. The estimate depends only on the height of the graph and not on
the gradient at initial time. The proof relies on the monotonicity property of the
number of zeros for the parabolic equation.
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1. Introduction

Let Ω be a bounded domain in Rn. A surface given as a graph u : Ω → R is a
minimal surface when u satisfies

(1.1) div

(
∇u√

1 + |∇u|2

)
= 0.

For this equation, the following interior gradient estimates are well-known ( [6,8,9]):
Given a constant M and Ω̃ ⊂⊂ Ω, there exists a constant C depending only on
M and Ω̃ such that if supΩ |u| ≤ M , then supΩ̃ |∇u| ≤ C. The standard elliptic
theory ( [5]) subsequently gives all the interior Ck,α(Ω̃) estimates of the graph u
which depends only on M and Ω̃. The similar estimates are also known for the
mean curvature flow equation ( [3]). That is, if u : Ω× (0, T ) → R satisfies

(1.2)
ut√

1 + |∇u|2 = div

(
∇u√

1 + |∇u|2

)
,

and supΩ×[0,T ] |u| ≤ M , Ω̃ ⊂⊂ Ω, 0 < T0 < T , then there exists C such that
supΩ̃×[T0,T ] |∇u| ≤ C. Again, C is a constant depending only on M , Ω̃ and T0.
Note that C is independent of the gradient at t = 0.
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One direction to extend those results are to consider general anisotropic cur-
vature problem, namely, to consider the variational problem corresponding to the
energy functional

F (u) =
∫

Ω

a(ν)
√

1 + |∇u|2,

where ν = (∇u,−1)/
√

1 + |∇u|2 is the unit normal vector to the graph of u and
the function a : Sn−1 → R+ is the surface energy density and should satisfy certain
convexity property. The Euler-Lagrange equation is

(1.3) divpap(ν) = 0,

and the curvature flow equation is

(1.4)
ut√

1 + |∇u|2 = divpap(ν).

For both elliptic and parabolic problems in general dimensions, it is not known if
the similar interior estimates for (1.1) and (1.2) hold equally for the anisotropic
equations (1.3) and (1.4) so far. The main reason for the difficulty to extend
the results is the lack of monotonicity formula for the mass ratio, which plays an
important role in the measure-theoretic treatment of minimal submanifolds. On the
other hand, if one allows the interior gradient estimate to depend on the gradient
at t = 0, then the argument of [7] gives the interior gradient estimate.

In this paper, we show the interior gradient estimates for general anisotropic
curvature flow for one-dimensional case which is independent of the initial time
gradient. The proof utilizes the result of Angenent ( [2]), which says that the
number of zeros of the solution of parabolic equations is nonincreasing as time
increases. We compare the solution to those for a suitable heat equation and use
this result. We utilize the fact that the equation is invariant under the rotation
here. We remark that the method we use is valid only for 1 dimensional case.

2. Theorem

Let r > 0 be given. The graph u : [−r, r]×[0, T ] → R is said to be an anisotropic
curvature flow if smooth function u satisfies

(2.1)
ut√

1 + u2
x

= (ap(ux,−1))x.

where a : R2 → [0,∞) is an anisotropic surface energy density function satisfying
the following assumptions:

(a) a(tp, tq) = t a(p, q) for all t > 0,

(b) a is a convex function,

(c) there exists δ0 > 0 such that a(p, q)− δ0|(p, q)| is a convex function,

(d) a is smooth except at (0, 0).
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The left-hand side of the equation corresponds to the normal velocity of the curve
(x, u(x, ·)) while the right-hand side is the weighted anisotropic curvature. This is
a gradient flow of the anisotropic surface energy functional

∫ r

−r

a(ν) ds,

where ds =
√

1 + u2
xdx and ν = (−ux, 1)/

√
1 + u2

x with homogeneous Dirichlet
(u = 0) or Neumann (ap(−ux, 1) = 0) boundary conditions, since

d

dt

∫ r

−r

a(ν) ds =
∫ r

−r

ap(−ux, 1)uxt dx = −
∫ r

−r

|(ap(−ux, 1))x|2 ds.

Under these assumptions, we show

Theorem 2.1 Suppose u is a smooth solution of (2.1) on [−r, r]× [0, T ] satisfying

sup
[−r,r]×[0,T ]

|u| ≤ M.

Given 0 < s < r and 0 < t0 < T , there exists a constant C > 0 depending only on
δ0,M, t0, s, r such that

sup
[−(r−s),r−s]×[t0,T ]

|ux| ≤ C.

Note that the estimate is independent the gradient of the initial data. Also we
point out that the dependence of C on a is only through the lower bound of the
uniform convexity δ0, but not on the upper bound (such as C1 bound). Thus, the
result in this paper can be extended equally to the non-smooth anisotropic curva-
ture flow problem [4] by approximations. Before the proof, we cite the following
theorem due to Angenent [2] which is crucial in the proof:

Lemma 2.1 Suppose u ∈ C∞([x1, x2]× [0, T ]) satisfies the equation

(2.2) ut = a(x, t)uxx + b(x, t)ux + c(x, t)u

on [x1, x2]× [0, T ] and

u(xj , t) 6= 0 for t ∈ [0, T ] j = 1, 2.

Here, a, b, c are smooth functions of (x, t) and a > 0. Then for all t ∈ (0, T ], the
zero set of x → u(x, t) will be finite, even when counted with multiplicity. The
number of zeros of x → u(x, t) counted with multiplicity is nonincreasing function
of t.

Proof of Theorem. Given 0 < s < r and 0 < t0 < T , we construct a solution
v for (2.1) on [−s, s]× (0, T ] with the following properties:

(a) v(−s, t) = −M − 1 and v(s, t) = M + 1 for 0 < t ≤ T ,
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(b) vx > 0 on [−s, s]× (0, T ],

(c) for any −s < x ≤ s, limt→0 v(x, t) > M .

The property (c) means that v has an initial data which is vertical at x = −s. We
show that the function v has a gradient bound 0 < vx ≤ C on [−s, s] × [t0, T ],
where C depends only on M, δ0, s, t0. We show the existence of such v later in
the proof. Assuming such v exists for now, we then prove that any solution with
sup[−r,r]×[0,T ] |u| ≤ M satisfies sup[−(r−s),r−s]×[t0,T ] ux ≤ C. The same argument
using −u will show sup[−(r−s),r−s]×[t0,T ] |ux| ≤ C. For a contradiction, assume
that there exists a point (x̄, t̄) ∈ [−(r − s), r − s]× [t0, T ] with ux(x̄, t̄) > C. Since
sup |u| ≤ M and by (a), we may choose λ so that |x̄−λ| < s and v(x̄−λ, t̄) = u(x̄, t̄).
With this λ, define vλ(x, t) = v(x − λ, t). Since ux(x̄, t̄) > C ≥ (vλ)x(x̄, t̄) and
vλ(λ + s, t̄) = v(s, t̄) = M + 1 > u(λ + s, t̄), there has to be at least another point
x̄ < x̃ < λ + s such that u(x̃, t̄) = vλ(x̃, t̄). Thus u − vλ has at least two zeros at
t = t̄ on λ − s < x < λ + s. Function u − vλ satisfies the equation of the type
(2.2) on [λ − s, λ + s]× (0, T ], with non-zero boundary values for all t > 0 due to
sup |u| ≤ M and (a). Thus we may use Lemma 1 and conclude that u− vλ has at
least two zeros in x variable for all t̄ > t > 0. Since vλ > M for x away from λ− s
and all small t, and since we assume that u is a smooth function up to t = 0, this
is impossible to satisfy for all small enough t.

Thus it remains to prove the existence of such v. To do this, we invert the
role of independent variable x and dependent variable y = v(x, t). Let y = w(x, t)
be the inverse function of v with respect to the space variables, i.e., w satisfies
y = v(w(y, t), t) identically. Since the equation is geometric, w should satisfy the
similar equation to (2.1) on [−M − 1,M + 1] × (0, T ] with the role of y and x
exchanged. Now, the conditions on v in terms of w are

(a’) w(−M − 1, t) = −s and w(M + 1, t) = s for 0 < t ≤ T ,

(b’) wx > 0 on [−M − 1,M + 1]× (0, T ],

(c’) for any −M − 1 ≤ x ≤ M , limt→0 w(x, t) = −s.

Furthermore, on [−M − 1,M + 1]× (0, T ], w should satisfy

(2.3)
wt√

1 + w2
x

= (aq(1, wx))x.

Since ∂y
∂x = 1/∂x

∂y , we need to show that there exists a constant C > 0 such that
wx > C on [−M, M ]× [t0, T ]. We solve (2.3) with the following convex initial data.
Let Γ ∈ C∞([−M − 1,M + 1]) be

• Γ(x) = −s for x ∈ [−M − 1, M ],

• Γ(M + 1) = s, Γ′′(M + 1) = 0,

• Γ(x) ≥ −s, Γ′(x) ≤ 3s, Γ′′(x) ≥ 0 for x ∈ [M, M + 1].
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Let w be the unique smooth solution of (2.3) with the initial data Γ and the
boundary data (a’). Since any functions c1 + c2x are solutions of (2.3), one obtains
the gradient estimate

(2.4) 0 ≤ wx ≤ 3s

on [−M − 1,M + 1]× [0, T ], by using these functions as barriers and the standard
maximum principle applied to wx. Also, note that the convexity of w is preserved,
i.e., wxx ≥ 0. This is seen by differentiating the equation with respect to t and
then applying the maximum principle to wt. wt = 0 on the boundary and wt =
aqqwxx ≥ 0 for t = 0 imply wt ≥ 0. The equation then yields wxx ≥ 0 on
[−M − 1,M + 1]× [0, T ].

Now, (2.4) implies that aqq(−1, wx) ≥ c(s, δ0)(call this δ)> 0 by assumption
(c). We claim that the solution of





zt = δzxx [−M − 1,M + 1]× [0, T ],
z(±(M + 1), t) = ±s t ∈ [0, T ],
z(x, 0) = Γ(x) x ∈ [−M − 1,M + 1]

satisfies w ≥ z on [−M−1, M+1]×[0, T ]. This is because of the following combined
with the standard maximum principle:

(w − z)t = aqq(−1, wx)wxx − δzxx = aqq(−1, wx)(w − z)xx + (aqq(−1, wx)− δ)zxx

≥ aqq(−1, wx)(w − z)xx.

In the last line, we used zxx ≥ 0, which follows by the same reason for wxx ≥ 0
before, and aqq(−1, wx) ≥ δ. We next claim that for t0 ≤ t, there exists c =
c(t0, s, δ) > 0 such that zx ≥ c on [−M − 1, M + 1] × [t0, T ]. zx satisfies again
the heat equation with non-negative initial data and the homogeneous Neumann
data, and thus by the strong maximum principle (or extending the solution to R
by a suitable reflection argument and then using the representation formula with
the heat kernel) we have such c. Since wxx ≥ 0, for (x, t) with t ≥ t0, we have

wx(x, t) ≥ wx(−M − 1, t) ≥ zx(−M − 1, t) ≥ c

as the result. Note that we are using w ≥ z and w = z on the boundary x = −M−1.
This completes the proof.

Remark 2.1 After completing the manuscript, we learned that Julie Clutterbuck
at Australian National University has recently considered the problem and obtained
the similar interior estimates.
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