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Indirect linear locally distributed damping of coupled systems

Annick BEYRATH

ABSTRACT: The aim of this paper is to prove indirect internal stabilization results
for different coupled systems with linear locally distributed damping (coupled wave
equations, wave equations with different speeds of propagation). In our case, a
linear local damping term appears only in the first equation whereas no damping
term is applied to the second one (this is indirect stabilization, see [11]). Using the
piecewise multiplier method we prove that the full system is stabilized and that the
total energy of the solution of this system decays polynomially.

Key words: Wave equation, coupled system, piecewise multiplier method, internal
stabilization, indirect damping, polynomial decay.

Contents
1 _Introduction and main result 17
2 Proof of the main result 19
2.1 Step 1] . . . o 21
2.2 Step 2| . ... e 25
2.3 Step 3| . ... 27
2.4 Step 4l . ... e e 29
2.5 Step Dl . . . e 29
2.6 Step 6] . . . .. e 31
2.7 Step 7| . . o e 32

1. Introduction and main result

Let Q be a non-empty bounded open set in RY of class C2 and T' = 99 its
boundary and let a € C°(2) be a positive function in €.

We consider the following system of two coupled wave equations with homoge-
neous Dirichlet conditions on the boundary :

u) — Aug 4 a(z)uy +ouy =0 in Qx RT

ug—Auz—i—aul:O in QxR

U =up =0 on 00 x RT (1.1)
(u1,uy)(0) = (uf, ui) n Q

(u2,u5)(0) = (uf, u3) in

In this paper, we only consider a feedback which depends on the velocity in a
linear way, i.e. a(x)u;. One can remark that this local damping term appears only
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in the first equation. Our purpose is to prove that the full system is polynomi-
ally stable, i.e. that the energy of the solution decays polynomially for sufficiently
smooth initial data. We refer to [3] for the proof that this system is not exponen-
tially stable.

The problem of stabilization of the wave equation in a bounded domain using
a locally distributed damping has been studied by several authors. When the
feedback depends on the velocity in a linear way, Zuazua [14] proved thanks to the
multiplier method that the energy decays exponentially when the damping region
contains a neighborhood of 9 or a neighborhood of I'(z?) := {z € 9Q, (x—2°).v >
0}, where v is the outward unit normal to Q and 2° € IRY. Martinez [12], using the
piecewise multiplier method introduced by Liu [11], weakened the usual geometrical
conditions on the localization of the damping.

The problem of stabilization of weakly coupled systems has also been studied by
several authors. Under certain conditions imposed on the subset where the damping
term is effective, Kapitonov [5] proves uniform stabilization of the solutions of a
pair of hyperbolic systems coupled in velocities. Alabau and al. [3] studied the
indirect internal stabilization of weakly coupled systems where the damping is
effective in the whole domain. They prove that the behavior of the first equation is
sufficient to stabilize the total system and to have polynomial decay for sufficiently
smooth solutions. Alabau [I] proves indirect boundary stabilization (polynomial
decay) of weakly coupled equations. She establishes a polynomial decay lemma for
non-increasing and nonnegative function which satisfies an integral inequality.

Our purpose in this paper is to study the indirect internal stabilization of cou-
pled systems with a local damping term applied only to the first equation and to
prove that the full system is polynomially stabilized. We therefore generalize the
result of [3] to the case of a non-coercive feedback operator in the case of wave
equations.

We denote by A the unbounded operator in the energy space :

H = H}(Q) x H}(Q) x L*(Q) x L*(Q) defined by :

D(A) = (H*() N HY(Q))? x (H}(2))? and
AU = (—us3, —ug, —Auy + aug + a(x)uz, —Auy + cur)’ and U = (uy, uo, uz, ug)’.
The problem (1.1) can then be reformulated under the abstract form

U + AU =0

The existence and the regularity of the solution of (1.1) is given by the following
theorem.

Theorem 1 For all U° = (uf,ul,ut,ul) € H, the system (1.1) has a unique
solution U such that U € C(IRY, H).

Moreover if U° = (u,uy,ui,ul) € D(A*) for k € IN*, then the solution U is
more regular and satisfies U € C*=7 (IR, D(A?)) for j =0, ..., k.

Proof : To establish the well-posedness of our problem, we prove that A is a
maximal monotone operator in the energy space i.e. A is monotone and I + A is
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onto. That is why we choose for U = (u1, ug,u3,us)?” and V = (v1, v, v3,v4)7 in
‘H the appropriate scalar product on H :

<0V >H:/

[Vu1.Voi + Vua.Vog + a(ujve + ugvy)] de + / [usvs + uqvy] da
Q

Q

The proof is standard and thus is left to the reader.
We define the partial energies :

1 / )
E;(ui(t)) = §/§l(|uz|2 +|Vu?) de i=1,2

and the full energy :

BEU)) = Bx(us(t)) + Bs(us(®)) + o /Q s dz

associated to a solution U = (u1, ug, uy, uy) of (1.1).

Let us denote by C generic positive constants which do not depend on the initial
data. « is supposed to be here a sufficiently small positive number. However the
results are valid for sufficiently small negative o as well.

We make the following geometric assumptions. These assumptions have been
introduced in [I1] for the piecewise multiplier method (see also [12]).

e Let w be an open subset of €.

We denote by v the outward unit normal vector to its boundary.
IfQ; C IRY is a lipschitz domain, then we denote by v; the outward unit normal
vector to its boundary 0f2;.

e Assumptions on the local damping :
a € C°(Q) and there exists a constant v which satisfies : V x € w, a(z) > v >0
H,

Geometric assumptions for 2 and w :
We assume that there exist e > 0, domains Q; C , 1 < j < J with a lipschitz
boundary 0f2; and points x; € RN so that :

QN =0ifi#j
QON[U;T(25) U (2 \U; Q)] Cw
with V() = {x € RY :infyeolr —y| < e} where
0 C RN, Tj(z;) = {x €09, : (v — x;).v;(x) > 0}

We obtain then our main result :

Theorem 2 For every initial data U° = (uf,u3,ul,ud) € D(A), the full energy of
the solution U of system (1.1) decays polynomially, i.e.

C

vi>0,  EU®) < S (EU0)+EU(0)
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Moreover if the initial data are more regular, i.e. U° = (uf,u3, ui,ul) € D(A™)
for a certain positive integer n, then the following inequality holds :

O

n

MH

Vi>0, EU(@)< E(U?(0))

~~
Il
o

p

2. Proof of the main result

We first verify that (1.1) is a dissipative problem :

Lemma 2.1 For every initial data in H, the energy of the corresponding solution
U of system (1.1) is dissipative, i.e.

VO<S<T<+o0, BUS)) - // D)2 dx dt

center

Proof : This is a well-known result. Let U° € D(A) and denote by U the solution
of (1.1). Differentiating E;(u;(t)) and Ea(u2(t)) and using the first and second
equations of (1.1), we have :

’

Ei(ui(t) = — /Q uy(a(z)uy + aus) de and  Ey(us(t)) = —/Q uyouy dx

’

which leads to : E (U®)) = —/ a(a:)|u/1|2 dx <0 for a(z) > 0.
Q
Then integrating on [S;T], we obtain :

E(U(S)) - / / )|l 2 de dt.

By density of D(A) in H, this result holds for every U° € H.
One can prove the following elementary inequality between Fj(u1,t), Ea(us,t)
and E(U,t) for « sufficiently small. Its proof is left to the reader :

Lemma 2.2 For every initial data in H and for every U solution of the system
(1.1), we have the following estimates, provided that « is sufficiently small

= Cp, C1 > 0, CoE(U(t)) S El(ul(t)) + EQ(Ug(t)) S ClE(U(t))

T
To prove Theorem 2, we first estimate / E1(ui(t)) dt using piecewise multi-
S

T
plier techniques to obtain Proposition 1. Then we estimate easily / Es(us(t)) dt.

s
Finally, summing these two estimations, we use the result of Alabau [I] to conclude.
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Proposition 2.1 Assume the hypothesis Hy. Then there exists a constant C > 0,
such that for all U° = (ul,uY,ui,ud) in D(A), the solution U of system (1.1)
satisfies :

T T ,
/ Er(ua(t)) dt < C(El(ul(S))+E1(u1(T)))+C/ /uf do dt (2.1)
S S w

T T
+C’/ / a?(x)u? do dt + Ca/ / u2 dx dt.
s Ja s Jo

We need several intermediate steps to prove this estimate. The first proposition
is based on the use of the piecewise multiplier method for a single wave locally
damped equation.

The multiplier method was introduced by K. Liu [I1] for a single wave damped
equation when the damping term is locally distributed. P. Martinez [12] weakens
the usual geometrical conditions on the localization of the damping.

2.1. STEP 1. We first prove an intermediate estimation concerning the partial
energy Ei(ui(t)) :

Proposition 2.2 Suppose Hy and set Q; = N, [U;T(z;) U (2 \U;Q;)] i =
{0,1,2}  with 0<ey<e <ea <e. Then the followmg inequality holds

T
/ Ei(ui(t)) dt < C[E1(u1(S)) + E1(ui (T +C/ / 2 dx dt (2.2)
s
+C’/ / (u? + |Vur|?) da dt—l—C’a/ lug|? da dt.
QNQ: s Jo

Proof : Let © be an open subset of  and h a vector field of class C! from © to
RN . We set M(uy) = 2h.Vuy + (N — 1)u;. As usual, we use the multiplier M (u;)
in the first equation (1.1) and integrate on [S;T] x ©.

In the different following estimates, we omit to write the differential elements
to simplify the expressions.

e To evaluate / / (N = Duy (u), — Auy + a(z)u, + auy) = 0, we integrate by
s Je

parts to obtain :

(N —1) U ulul} —(N-1) / /ul 1)/ST/9|Vu1|2 (2.3)
—1/ /u1 u1+auﬂ (N_l)/s a@&,ul Uy

T
e Then we evaluate / / 2h - Vug (u) — Auy + a(z)u) + auy) = 0 and have
s Je
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/ /Qh Vu1u1 / / (2h-Vuy) AulJr/ /Qh Vuja(x u1+0£/ /Qh'
C]

U1’U,2
Hence after integrating by parts

0 = [/ 2u/1h Vul} / /2u1h Vul / / 20,urh - Vuy
00
/ /Vu1 2h Vul / /2h Vula U1+OL/ /Zh VU1UQ

T T T
Remark that/ /2U/1h'vu/1 Z/ / h-uu/12—/ /(divh) w2 and
s Jo s Joe s Je

Vur-V(2h-Vuy) =2 dguy [(Okhi)Oiur + hiOkdua] =2 OpurOius Oxhi+h-V (| Vi)

ik i,k

Considering all the boundary integrals on the left-hand side, we deduce the
following equality :

T
/ / 20, urh - Vus + (h - ) (W2 — |Vur 2)
S 00

= {/ 2u/1h Vul} / /dzvh — |[Vuy)?) —|—2/ /Za hiOju1 O uq
+2//h Vulaxu1+a//2h Vui us

The main problem is to estimate the boundary terms of previous equality. Usu-
ally, we choose ©® = () and an adequate vector field h so that the estimate of the
boundary integral is possible using the boundary condition : it is easy on the part
of the boundary where {u = 0} N {m.r < 0} and on the other part, we choose
h=0.

In our case, we estimate the boundary integral on each subset ;. We use the
vector field h; as introduced in Martinez in [12].
U (z)m;(x) ifx e Q;
0. (o) — J J J

We choose © = Q; and h;(x) { 0 ife €0\UQ,
the function ¥} is defined as follows : Since Q; \ Q1NQo = 0, there exists a function
W, € C5°(RY) verifying :

where
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Hence :
T !
/ / 20,u1 ¥ m; - Vuy + (¥5my - v) (u? — [V [?)
s Jogy

/ 2u/1\I/jmj . Vu1

J

T T
+2/ / Z@i(\lljmj)kaiulﬁkul + 2/ / \I/jmj -Vuq a(x)u;
s Jo, s Jo,

i ik

T
+Oé/ / 2\I/jmj . Vu1 us
S Q;

First we show that the boundary integral in the above expression is negative.
We remark that by construction: ¥; = 0 outside ((9Q; \T';(z;)) NON) and u; =0
on ((9€;\ T'j(x;)) N O%).

We deduce that the boundary integral term in (2.4) is equal to:

T T
] divm) @E - VaP) @)
s s Jo

T
/ / 20,u1¥;m;.Vur + (\Iljmj.u)(u/l2 — |Vuy )
S J((0925\I';(z;))NOQ)
T
= / / ‘Ilj(mj.yj)(aujul)Q
5 J((09;\T;(2;))NOQ)

By definition of I';(z;), we deduce that

T
/ / \Ilj(mj.yj)(ayjul)Q S 0.
5 J((0925\I'; (%5))NO)

Hence, since ¥; = 0 on (o, using the previous inequality in (4) and summing
the resulting inequalities on j, we obtain :

T T
Z / 2, W, m; Vuy | + Z/ / div(V;m;) (u)? — |Vuy|?)
i s g 78 TH\@
T , T
+Z </ / 20,m; - Vuy a(x)u; + a/ / 20 ,m; - Vuy uz>
j S J2;\Qo S J2\Qo
T ) T
— Z / / div(\Iljmj) (uf — |VU1|2) +/ / ZQ@i(\Iljmj)kﬁiulé)kul
; S J;nQ. S J9NQ1 g

T
zj:/s/nj\glz(]])k 10ku1

ik

IN
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Thus,

IN

IN

T
T
e[ diwm) - VP
J S j 7S S\
T
+2 / / 0; \Il-m-)kaiulakul
zj: s Jojo (Vym;
T ) T
+Z / / 2U,m; - Vuy a(x)u; + a/ / 2U,m; - Vuy us
T /s o S J25\Qo
T ) T
— Z / / div(\Ifjmj)(ulz — ‘VU1|2) +/ / ZQ@i(\Iljmj)kaiulakul
; S JnQ. S5 J9NQ1 g
T 2 2 2
C / / u;” — |Vuq|® + 2|Vu
; s Jono ™ V| V|
T !
C / / u? + |V [?
zj: s J;n@: v

T
c// ug? + |V |2
s JaonQ@,

Z / 2u'1\Ifjmj . Vul
2

Using now the definition of A,

T T
U 2u’1h-w1] +/ Nu? + (2= N)|Vu 2
Q S S Q\Q1
T ) T
+ / 2 a(x)uyh - Vuy + a/ / 2h - Vui usg (2.5)
s Ja s Ja

T
S C/ / ’LL12 + |V’LL1|2
S JONnQ:

Computing (2.3) with © = Q and (2.5), we have :

UQ M(ul)ull]:—F/ST/QM(ul)a(x)u;

T
+/5 /(2\@1(_(N_1)+N)u1 +((N_1)+(2—N))|Vu1\

T T
+(N - 1)/ / |Vu1|2 - u12 +a/ / M(uy) usg
s Jano, s Ja

T
< C’/ / u® + \Vu1|2
s Jano:
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Using then the definition of partial energy FEj(up), we obtain the following
inequality :

T

2/STE1(ul(t)) it < (C+1)/T/m@1(u;2+|vu12) da dt U M(uy)i, dtL

/ /Mu1 uldxdt—oz/ /Mu1 ug dx df2.6)

We now estimate the right-hand side terms as follows :
o It is easy to verify that |[M(u1)||r2(q) < [|2h - Vui|[12(q) and thus we have :

/ M (uy)u)y dx‘ < CE;(uy(t)) where C is a positive constant. We can then
Q

replace the second term of inequality (2.6) by C[E;(u1(S)) + E1(uq(T))].
o We estimate now the third term of (2.6) as follows :

/ / M2 (up) de dt + — / / 2 dx dt
5 /S B (ua (1) dt+% /S /Q ()2 de dt

where C' is a positive constant and « is supposed a sufficiently small positive num-
ber.
o Using the same argument, we estimate the last term of (2.6) by

T T
a5/ Eq(uq(t)) dt+Ca/ / lug|? da dt
S s Ja

Choosing now « and § small enough, we conclude the proof of Proposition 2.

IN

/Mu1 u1 dx dt

IN

2.2. STEP 2. In this section, we want to get rid of |Vu;|? in the estimate of
Proposition 2.

Lemma 2.3 There exists a positive constant C such that, for all 6 >0 :

T T
/ / Vui]? dedt < C[Ev(u(S)) + B (ur (T))] + C’a/ / o2 da dt
s Jano, s Jong,

T
—I—C/ / (u? + a®(z)u)? + u?) da dt
s JanQ.

Proof : Since RY \Qg N Q1 = 0, there exists a function & € C3°(RRY) such that :
0<¢<
§=1 on @1
£E=0 on RN \ Q2
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Multiplying the first equation of the initial system by £u; and applying the
Green’s formula, we get :

T / T T )
/ Vuy - V(€uy) de dt = — [/ Euquy da:] +/ / €u? da dt
s Ja Q s Js Ja

T T
+/ / §u1a(a:)u/1 dx dt — a/ / ugfuy dx dit
s Ja s Ja

T T
1
Note that / / Vuy - V(&uy) dx dt = / / (§|Vu1|2 - U%AE) dx dt and so
s Jo s Ja 2

we have

T ) T T
/ /E|Vu1|2 de dt = -— {/ Euquy dx} —a/ / ugfuy dx dt
s Ja Q s s Ja
T ’ T ’
f/ /fula(az)ul dx dt+/ /fuf dx dt
s Ja s Ja

1 T
+—/ /U%Ag d dt
2 S Q

Finally, using the definition of the function &, we obtain the following inequality

T ) T T
/ / Vg |* de dt < — {/ Euquyg dm] - a/ / ugéuy dx dt  (2.7)
s Jong: Q s s Ja

T
+/ / —&uya(z)uy + Eus® + 1u%A§ dx dt
s Ja 2

We need to estimate every term of the right-hand side of this inequality to prove
Lemma 3.

o The first term of (2.7) can be easily estimated as follows :

T

H/ §u1u/1] dz
Q S

o For the second term of (2.7), using the definition of &, we obtain :

T T W 2
—a/ /u2§u1 dz dt a/ /£(1+2> dx dt
s Jo s Ja \2 2
T T
C’/ / u%dmdt—i—aC’/ / u3 dr dt
S QNQ2 S QNQ2

< ClEy(u1(S)) + Er(ur(T))]

IN

IN
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¢ For the last term :

/ / ( Cuja(x ul +§u1 + ul f) dzx dt
= / / <—§u1a(x)u/1 +EuP + 1u§A§> dx dt
s Jang, 2

T ’ ’
C/ / (u% + (a(z)uy)? + uf) dx dt
5 Jan.

Hence, using these estimates in (2.7), we get the inequality announced in Lemma

AN

3.

2.3. STEP 3. Now we want to get rid of the new term / / u? dx dt intro-
QNQ2
duced in Lemma 3.

Lemma 2.4 There exists a positive constant C such that, for allm >0 :

/ / ui de dt < C[El(ul(S))+E1(u1(T))]—|—Cn/ Ey(up(t)) dt
QNQ2

—// ul d:cdtJr—/ /ul dz dt
+—/ /ugdxdt
2 Js Ja

Proof : Since RY \ wN @y = 0, there exists a function 3 € C5°(RY) such that :

0<p<1
p=1 on Q2
6=0 on RN\w

Multiplying the first equation of initial system (1.1) by z, we have :

T B T T / T
/ / zuy dx dt—/ / zAuy dx dt—l—/ / a(x)uyz dr dt+/ / azug drdt =0
s Ja s Ja s Ja s Ja

Then, using the boundary conditions and the system verified by z, we have :

T
/ / Bul de dt = [/ 2y da:} / / 2wy dr dt (2.8)
s Ja
—|—/ /a(x)ullz dx dt—|—a/ /zuz dx dt
s Ja s Ja

We first give some well-known results which will be used to estimate the different
right-hand side terms of inequality (2.8).
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For each ¢, we consider the solution z of the following elliptic problem :

Az = B(x)uy in Q
z=0 on 0N

Hence using the Green’s formula, we have :

/|Vz|2 dr = f/ﬂulz dx
Q Q
c(/ fua dx>2 (/ 122 d;v>2
Q Q

1
2 2
Then using Poincaré’s inequality, we have : </ |2 dx) <C </ |y |2 da:) .
Q Q

IA

In a similar way with the derived system, we obtain: [ [2'[*>dz < C [ Bu? dx.

We are now ready to estimate the different right-hand side terms of inequality
(2.8) as follows.

1
2 2
Thanks to (/ |2|? dx) <C (/ |uz |2 dx) , we get :
Q Q
/ T
H/ ZUq dm} <
Q S

Thanks to / |,z/|2 de < C / 6u/12 dz and Young’s inequality, we have for every
Q Q

n>0:
T T
Q/ /5u’12dxdt+@/ /u/lzdxdt
nJs Ja 2 Js Ja
c [* 2 g 2
< — uy” dx dt +nC uy dx dt
nJs Jw s Ja
C T , T
< —/ /ul2 dx dt+nC’/ Eq(uq(t)) dt
nJs Jw s
For the third term of (2.8), we have :
T ’
/ / a(x)zuy dx dt —/ / 2)uy)? do dt + - / / 2 dx dt
s Ja
< —/ / ul dxdt+C’77/ Eq(uq(t)) dt

At last using Poincaré’s inequality, we have :

c(E1(u1(T)) + E1(u1(5)))

zul dzx dt

IN

IN
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T T T
//zugda:dt < ﬂ/ /u%dmdt—l—g/ /u%dxdt
s Ja 2 Js Ja 2Js Jo
o (T T
—/ /ug dx dt+C’a/ Eq(uq(t)) dt
2J)s Ja s

Choosing « small enough and using these estimates in (2.8), we obtain :

/T/ Bu? dr dt < C[El(ul(S))JrEl(ul(T))}+Cn/TE1(u1(t)) dt
S Q

—/ / ul 2 de dt + — / /u1 dz dt
+f/ /ugd:pdt
2 J)s Ja

T T

Since / pu? dr dt > / / u? dx dt, we obtain the announced in-
5 Jo QNQ:

equality of Lemma 4.

2.4. STEP 4. We can now conclude the proof of Proposition 1.

T T
While Q1 C Q2, we estimate / / u/12 dx dt by / / ulf dx dt. Using
nQ1 QNQ2

both lemmas 3 and 4 in Proposition 2, we easily obtain :
T
/ El(ul(t)) dt S C[El(ul(S’)) + E1 u1 / /U1 dx dt

S
T
+9/ /aQ(oc)ull2 dx dt—l—C’a/ /ug dx dt
nJs Ja s Ja
T
—|—C’77/ Eq(uq(t)) dt
s

Finally, for c¢n < 1, we have proved the claim announced in Proposition 1, that
is :

/TEl(ul(t)) dt < C[E(u1(S)) + E1(ul (T / / dx dt

s
T
+C/ / a?(x)u? da dt + C’a/ / u3 dr dt
s Ja s Ja

2.5. STEP 5. Let us now estimate the three integral terms on the right hand side
of Proposition 1 to obtain a first inequality between the partial energy Fj(u1(t))
and the full energy E(U(t)).
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T

The estimation of C' /
s
the damping is effective : on w, a(z) >~y > 0. Then :

v /w u? dx < /w a(z)u? do < /Q a(z)u? do = —E (U(t))

Integrating on [S; T], we obtain :

’
/ u;® dz dt is easy because we are on the subset where
w

T ‘o T , B s
3 [ [uaras [ B w0) @ = BEOOL < BUEG)

Thus we have : C/ u? do dt < C’E(U(S))

v
We estimate the second term as follows :

T
C’/ /a2($)u/12 de dt < CM/ /a(az)u/l2 dx dt
s Jo

= c/ ) dt < CE(U(S)).  (2.9)

T

To estimate the term C / / u2 dx dt, we multiply the first equation of the
s Jo
initial system (1.1) by us and the second equation by w;. We compute then and

integrate on 2x[S; T| and thanks to the initial data we obtain the following equality

T T T " 1" T ’
a/ / u2 dr dt = a/ / u? dx dt+/ / (u1ug —uguy ) dx dt—/ / a(x)uqug dz dt.
s Ja s Ja 5 Jo 5 Jo

We estimate as usual the right hand side terms :

T T
/ /u% de dt < a/ /u% dx dt + CE(U(S))
s Jo
/ /Qa ul 2 dx dt+/ /7u2 dz dt

Let us send now the term with us to the left hand side to obtain :

a [T 2 g 2
5 uyde dt < Ca uj dx dt + CE(U(5))
s Ja s Ja
c (" :
_’_7/ / la(x)u,|? do dt (2.10)
@ Js Ja

Ca /T Er(ui(t)) dt+ CEU(S))  (2.11)
S

Hence using (2.9) we obtain :

T
g/ /u%dwdt
2Js Ja

IN
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Computing (2.10) in Proposition 1, we get that :

(1—004)/5 Er(us(t)) dtSC[El(ul(s))+E1(U1(T))]+%E(U(S))+CE(U(S))

Hence using Lemma 2 and for a small enough we obtain the announced result :

/ U B & < CEUS)) (2.12)
S

2.6. STEP 6. Let us now give an estimation of the second partial energy

/ " Ea(un(t)) dr.
S

It is easy to obtain this estimation because the damping term doesn’t appear on
the second equation of the initial system.

Multiplying the second equation of system (1.1) by us , integrating on  x [S; T
and using Green’s formula, we have :

T

T T ) T )
/ / |Vu2|2 dx dt = / / u22 dx dt — a/ / uiuy dz dt — [/ UgUg dl’:|
S Q S Q S Q Q S

Thus,

T 2 2 T T T
’ 1 ’
/ / M dx dt = / / uy dx dt—g/ / urug dr dt—— {/ UyU2 dx]
s Ja 2 s Ja 2 /s Ja 2 e s

Using then the definition of E2(uz(t)) and for o small enough, we get that :

T T , T u2
/ Ey(ua(t)) dt < C/ /u22 dz dt+a/ /71 dx dt
S S Q S Q 4

T u2 1 ’ r
—l-a/ / 2 dx dt — = / UgUy dx (2.13)
s Jo 4 2 e s

Let us estimate the right-hand side terms :
Using the fact that the full energy is non-increasing, we obtain easily that :

T

{ /Q Wiy dx] < CE(U(S)).

S

For the second and third terms, we have :

T T
C’a/ /u% dx dt < C’a/ Eq(uq) dt
s Ja s
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T T
C’a/ / u3 de dt < C’a/ Es(ug) dt.
s Ja s

T
The only term whose estimation is not easy is the last term / / uy’ dx dt
s Ja

and

Using inequality (2.10) with the derivatives, we obtain :

Tr Tr c . c [r "
C/ / uy dr dt < C/ / u? do dt+ —E(U (S)) + —2/ / la(x)u, |* de dt
s Ja s Ja « a”Js Ja

The second and third terms of the right-hand side are easily estimated by

© B (s)).

a?
T
For the first term, we use (2.12) to obtain : C/ / w? do dt < CE(U(S)),
s Jo

so that, we have

/

T C
[l drae < co@is) + SEW(5)

Using this last estimate in (2.13), we obtain for sufficiently small o :

T C ,
/S Byun(t)) dt < CEU(S) + B (S))

T T
+Ca /S Br(ua(t)) dt+ C [S By (un(t)) dt

The constant of the last term does not depend on «a, so we need to use (2.12)
to estimate this term and finally we obtain :

T T
C ,
/ By(ua(t)) dt < CE(U(S)) + 5 B(U'(8) + Ca / By (us (b)) dt
s s
2.7. STEP 7. We can now complete the proof of Theorem 2. We add both estimates

of the partial energies E;(u;(t)) and Ea(ua(t)) obtained in steps 5 and 6, and so
we have :

/T(El(ul(t)) + By(ua(t)) dt < CE(U(S)) + CEU (S)) + Ca /T Bu(ua (1) dt
S S

For a small enough we deduce that :

T
/S (Er(ur(t)) + B2 (ua(t))) dt < CE(U(S)) + CE(U (S))
Hence :

/ CBU®) di < CEWUS) 4 CEU(S) (2.14)
S
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Using then the following result of Alabau [I], we prove the polynomial energy
decay of the solution of the system (1.1) :
If F is a non-increasing function which verifies (13) for all U € D(.A), then the full
energy of the solution U of system (1.1) decays polynomially, i.e.

C /
Vt>0, EU®)< T(E(U(O)) + E(U (0)))
Moreover if the initial data are in D(A™) for a certain positive integer n, then

the following inequality holds:
C'=
Vi>0, EU®) <Y EUP(0)
tm =0

This completes the proof of Theorem 2.
Remark : We obtain the same result for the system of two coupled wave equations
with different speeds of propagation with locally distributed damping.

Let Q be a non-empty bounded set in IRY of class C2 and I’ = 9 its boundary.

u; — e Auy +a(z)u; +aug =0 in Qx RF

Uy — c2Augy + aug =0 in QxR

Uy = ug =0 on 00 x RT (2.15)
(w1, u7)(0) = (uf, ui) in

(2, u2)(0) = (u,u3) in Q

where a € C°(2) is a positive function in €, ¢; and ¢z are two different constants
in R*.
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