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Independence Number, Neighborhood Intersection and Hamiltonian
Properties ∗

Fan Yunzheng

abstract: Let G be a 2-connected simple graph of order n with the independence
number α. We show here that ∀u, v ∈ V (G) and any z ∈ {u, v}, w ∈ V (G)\{u, v}
with d(w, z) = 2, if |N(u) ∩ N(w)| ≥ α − 1 or |N(v) ∩ N(w)| ≥ α − 1, then G is
Hamiltonian, unless G belongs to a kind of special graphs.
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1. Introduction

Hamiltonian graph is a very useful graph class in graph theory and many appli-
cations [1,2,3]. The research on sufficient conditions of Hamiltonian graphs is very
active. Here we establish a new sufficient condition for Hamiltonian graphs using
only independence number and neighborhood intersection properties. The result is
very useful for the research of Hamiltonian graphs. By the new condition, it does
not need to check all pairs of nonadjacent vertices in G. The following is our main
result.

Theorem 1 Let G be a 2-connected simple graph of order n with the independence
number α. For any three vertices u, v, w ∈ V (G) with d(u,w) = d(v, w) = 2, if
|N(u) ∩N(w)| > α − 1 or |N(v) ∩N(w)| ≥ α − 1, then G is Hamiltonian, except
G ∼= G′(α− 1, α)

The outline of the paper is as follows. We propose our main result in the current
section. The proof of the main result is given in the next section. For the proof,
we shall prove the six useful lemmas. With several claims and these lemmas, we
complete our demonstration.

For the simplicity, we shall use following terms and notations throughout this
paper. G = (V, E) denotes an undirected connected simple graph of order n(≥ 3)
with the independence number α(G) = α. Let C ⊆ V (G), B ⊆ G and x be any
vertex in G. Define NC(x) = {v|v ∈ C and xv ∈ E(G)},NC(B) =

⋃
x∈B

NC(x).
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Specially, if C = V (G), we simply write it as N(x) and N(B). If no ambiguity can
rise,we sometimes write B instead of V (B).

Let G′(r, t) be a kind of special graph, V1, V2 is a pair of sets of vertices with
V (G) = V1 ∪ V2 and V1 ∩ V2 = ∅. Here |V1| = r,G[V1] is any simple graph;
V2 = C1 ∪ C2 ∪ · · · ∪ Ct, Ci ∩ Cj = ∅ (i 6= j) for any j with 1 ≤ j ≤ t, G[Cj ]
is complete and Cj = Cj1 ∪ Cj2 , Cj1 ∩ Cj2 = ∅, every vertex in Cj1 is adjacent to
each vertices of V1, as well as for any vertex of Cj2 is not adjacent to each vertices
of V1. For any u ∈ Ci, v ∈ Cj with i 6= j, satisfying uv /∈ E(G)

2. The proof of Theorem 1

Proof: The theorem is true for α = 1 because G is complete. Now we assume
that α > 2. With the conditions of the theorem, we shall show that if G is not
Hamiltonian, then G ∼= G′(α−1, α). Let C be a cycle of maximum length in G. It is
clear that |V (C)| < n. Let B be any component of G\V (C). Denote

−→
C as the cycle

with a given orientation. u
−→
C v means the consecutive vertices on C from u to v in

the direction specified by
−→
C for u, v ∈ V (C). The same vertices, in reverse order

are given by v
←−
C u. We here consider u

−→
C v and v

←−
C u both as paths and as vertex

sets. uBv stands for the path from u via B to v. We use u+ and u− to denote the
successor and predecessor respectively of u on

−→
C . We write u++ instead of (u+)+

and u−− instead of (u−)−. Put NC(B) = {v1, v2, · · · vm}, where vi occurs on−→
C in the order of their indices. Clearly, m ≥ 2 and N+ = {v+

1 , v+
2 , · · · v+

m , },
N− = {v−1 , v−2 , · · · v−m , }. For any j(1 ≤ j ≤ m), xj is a vertex in B adjacent
to vj . It is possible that xi = xj for i 6= j. Then the following claims are obvious
from results in [2,3].
Claim 1: For any j(1 ≤ j ≤ m), xjv

−
j /∈ E(G) and xjv

+
j /∈ E(G).

By Claim 1, for any j(1 ≤ j ≤ m)

d(xj , v
−
j ) = d(xj , v

+
j ) = 2 (1)

Claim 2: Let x be any vertex in B, then N+ ∪{x} and N− ∪{x} are independent
sets.
Claim 3: N(x) ∩N(v−j ) ⊆ NC(B) and N(x) ∪N(v+

j ) ⊆ NC(B).
Hence,

|N(x) ∩N(v+
j )| ≤ m and |N(x) ∩N(v−j )| ≤ m (2)

By (1) and the conditions of theorem, we have:

α− 1 ≤ |N(x) ∩N(v−j )| or α− 1 ≤ |N(x) ∩N(v+
j )| (3)

It follows from claims that there are the following two cases:
Case 1: By (2) and (3),α− 1 ≤ m
and
Case 2: By Claim 2,|N+ ∪ {x}| ≤ α =⇒ m + 1 ≤ α =⇒ m ≤ α− 1.
Combining Cases 1 and 2, we have that

m = α− 1 (4)
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Claim 4 For any j, 1 ≤ j ≤ m, N(xj) ∩ N(v−j ) = NC(B) or N(xj) ∩ N(v+
j ) =

NC(B).
Based on claims above, we shall prove the following 6 lemmas to complete the

proof of the theorem.

Lemma 1 For any u, v ∈ N+

1. uw /∈ E(G), or vw− /∈ E(G), when w ∈ u+−→C v−

2. uw /∈ E(G) or vw+ /∈ E(G) when w ∈ v+−→C u−

Proof of Lemma 1: Suppose that u = v+
i , v = v+

j , (i 6= j). We get

1. uw ∈ E and vw− ∈ E when w ∈ u+−→C v−

2. uw ∈ E and vw+ ∈ E when w ∈ v+−→C u−.

Then,

1. the cycle v+
i w

−→
C vjBvi

←−
C v+

j w−
←−
C v+

i is longer than C;

2. the cycle v+
i w

←−
C v+

j w+−→C viBvj
←−
C v+

i is also longer than C.

both cases lead to a contradiction. 2

Remark: Similarly, Lemma 1 holds as well for N+ when N+ is substituted by
N− in Lemma 1.

Lemma 2 For any v−i ∈ N− and v+
j ∈ N+ with i 6= j + 1, v−i v+

j /∈ E(G).
Proof of Lemma 2: Assume that there exist vertices v−i ∈ N− and v+

j ∈ N+ with
i 6= j + 1, and v−i v+

j ∈ E(G). Without loss of generality, Claim 4 implies that
if viv

+
j+1 ∈ E(G), then the cycle v−i v+

j

−→
C vj+1Bvj

←−
C viv

+
j+1

−→
C v−i is longer than C

which is a contradiction. 2

For any v+
j ∈ N+, 1 ≤ j ≤ m, Let Cj = {u|u ∈ v+

j

−→
C v−j+1} and C0 = V (B).

Then we can prove the following lemma.

Lemma 3 For any j with 0 ≤ j ≤ m, G[Cj ] is complete graph.
Proof of Lemma 3: It follows immediately from Claim 2 and 4 that G[C0] is com-
plete. For any j 6= 0, while |Cj | = 1, 2, Lemma 3 holds. We here consider only
|Cj | ≥ 3. Suppose that v−j+1v

+
j /∈ E(G). By Claim 1 and Lemma 2, N+∪{xj , v

−
j+1}

is an independent set of cardinality m + 2 which contradicts α = m + 1. Thus
v−j+1v

+
j ∈ E(G). Moreover, by Lemma 1 with w = v−j+1, we have for any v+

k ∈ N+

with k 6= j, v+
k v−−j+1 /∈ E(G). If v+

j v−−j+1 /∈ E(G). then N+ ∪ {xj , v
−−
j+1} is

also an independent set in G. Note that|N+ ∪ {xj , v
−−
j+1}| = m + 2 = α + 1

leads a contradiction. Hence v+
j v−−j+1 ∈ E(G). Similarly, we have that v+

j is
adjacent to each vertex of Cj , by symmetry, v−j+1 is adjacent to each vertex of
Cj . Up to now, if G[Cj ] is not complete yet, we take vertex s and t from Cj ,
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such that st /∈ E(G) and the s
−→
C t as long as possibly. By the choice of s, t,

s, t ∈ v++
j

−→
C v−−j+1, and t is adjacent each vertex in v+

j

−→
C s−, and s is adjacent

each vertex in t+
−→
C v−j+1. So ts− ∈ E(G) and t+v+

j ∈ E(G) imply that for any
v+

k ∈ (N+ \ {v+
j }), sv+

k /∈ E(G) and tv+
k /∈ E(G). If it is not true, assume

sv+
k ∈ E(G), then the cycle t+v+

j

−→
C s−t

←−
C sv+

k

−→
C vjBvk

←−
C t+ is longer than C which

is a contradiction. If tv+
k ∈ E(G), then the cycle t+v+

j

−→
C tv+

k

−→
C vjBvk

←−
C t+ is longer

than C. This is a contradiction as well. Therefore, (N+ \ {v+
j }) ∪ {s, t, xj} is an

independent set of cardinality m + 2 which contradicts to. α = m + 1. 2

Lemma 4 For any u ∈ Ci, v ∈ Cj with i 6= j, uv /∈ E(G).
Proof of Lemma 4: If there exists a vertex u ∈ Ci and v ∈ Cj , ( we may let i < j ),
then uv ∈ E(G) It follows from Claim 2 and Lemma 2, without loss of generality,
that u ∈ v++

i

−→
C v−−i+1 and v ∈ v+

j

−→
C v−j+1. Note that Lemma 3 and Claim 4 imply

v+
j+1vj ∈ E(G). Hence, the cycle

vi
−→
C u−v−i+1

←−
C uv

←−
C v+

j v+−→C vj+1Bvi+1
−→
C vjv

+
j+1

−→
C vi

is longer than C which is a contradiction. 2

Lemma 5 V (G) = V (C) ∪ V (B).
Proof of Lemma 5: Assume that the lemma is not true. Suppose that B1 is another
component of G\V (C). Then froallx ∈ B, ∀y ∈ B1, there is yx /∈ E(G). It follows
from Claim 2 and and α = m + 1 that there exists vertices v+

k ∈ N+ such that
yv+

k ∈ E(G). By Lemma 4, N(y)∩Cj = φ for any j, 1 ≤ j ≤ m, j 6= k. N(y)∩Ck ⊆
{v+

k , v−k+1}, because C is a longest cycle in G. By |Cj | ≥ 3, there exists at least a
vertex u ∈ v++

k

−→
C v−−k+1, such that yu /∈ E(G). Then (N− \ {v−k+1})∪ {x, y, u} is an

independent set of cardinality m + 2 which is a contradiction. 2

In terms of the definition of Cj , there is V (C) = NC(B) ∪C1 ∪ · · · ∪Cm where
Ci ∩ Cj = ∅ for i 6= j. Lemma 5 tells us that

V (G) = NC(B) ∪ C1 ∪ · · · ∪ Cm ∪ V (B).

Since C0 = V (B), define V1 = NC(B) which leads

|V1| = m = α− 1. (5)

Therefore, V (G) = V1 ∪ C0 ∪ C1 ∪ · · · ∪ Cm where C0 ∩ Cj = ∅ for all j. Set
V2 = C0 ∪ C1 ∪ · · · ∪ Cm and

V (G) = V1 ∪ V2 and V1 ∩ V2 = ∅. (6)

Lemma 6 For any x ∈ C0, if there exists vj ∈ V1 such that xvj ∈ E(G) then
xvk ∈ E(G) for any k(1 ≤ k ≤ m).
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Proof of Lemma 6: Suppose that vj ∈ V1 and xvj ∈ E(G). From the definition of
NC(B) and xj (1 ≤ j ≤ m), there is x = xj . By Claim 4, NC(B) ⊆ N(x). Hence,
xvk ∈ E(G), for any k (1 ≤ j ≤ m) 2

By symmetry of C0 and Cj , by replacement of Cj (1 ≤ j ≤ m) instead of C0 in
Lemma 6, Lemma 6 is true for Cj .

Set Cj1 = {x ∈ Cj | vkx ∈ E(G), ∀vk ∈ V1} and Cj2 = Cj

setminusCj1. Then ∀j (0 ≤ j ≤ m),

Cj = Cj1 ∪ Cj2 and Cj1 ∩ Cj2 = ∅. (7)

Finally, G ∼= G′(α − 1, α) follows from (5)-(7) and Lemmas 3, 4, and 6. The
proof of the theorem is complete. 2
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