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The Homotopy Type of Seiberg-Witten Configuration Space

Celso M. Doria

abstract: Let X be a closed smooth 4-manifold. In the Theory of the Seiberg-
Witten Equations, the configuration space is Aα ×Gα Γ (S+

α ), where Aα is defined
as the space of u1-connections on a complex line bundle over X, Γ (S+

α ) is the space
of sections of the positive complex spinor bundle over X and Gα is the gauge group.
It is shown that Aα×Gα Γ (S+

α ) has the same homotopic type of the Jacobian Torus

T b1(X) =
H1(X,R)

H1(X,Z)
,

where b1(X) = dimRH1(X,R).
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1. Introduction

Although the physical meaning of the Seiberg-Witten equations (SWα-eq.) is
yet to be discovered, the mathematical meaning is rather deep and efficient to
understand one of the most basic phenomenon of differential topology in four di-
mension, namely, the existence of non-equivalent differential smooth structures on
the same underlying topological manifold. The Seiberg-Witten equations arose
through the ideas of duality described in Witten [12]. It is conjectured that the
Seiberg-Witten equations are dual to Yang-Mills equations; the duality being at
the quantum level. A necessary condition is the equality of the expectation values
for the dual theories. In topology, this means that fixed a 4-manifold its Seiberg-
Witten invariants are equal to Donaldson invariants. A basic reference for SWα-eq.
is [2].

Let (X, g) represent a fixed riemannian structure on X. Originally, the SWα-
equations were 1st-order differential equations and their solutions (A,φ) satisfying
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φ 6= 0 were called SWα-monopoles. These equations were not obtained by a varia-
tional principle. In [12], Witten used some special identities to obtain an integral
useful to prove that the moduli spaces of sw-monopoles were empty, but a finite
number of them. This integral defines the SWα-functional on the configuration
space Aα ×Gα

Γ (S+
α ) and satisfies the Palais-Smale condition, as proved by Jost-

Peng-Wang in [7].
The nature of the SWα-monopoles is rather subtle than the anti-self-dual con-

nections considered in the Donaldson theory. It is known that the scalar curvature
kg plays a important role to the non-existence of SWα-monopoles on X, e.g.: on
S4 endowed with the round metric, the only solution is the trivial one (0, 0). It
is a open question to find necessary and sufficient conditions for the existence of
a SWα-monopoles in Aα ×Gα

Γ (S+
α ). In [11], Taubes shows that if X admits a

symplectic structure then the spinc-structure α defined by the canonical class ad-
mits a SWα-monopole. In [5], Fintushel-Stern proved that whenever there is a
class α ∈ Spinc(X) which SWα-invariant is non-zero, then we can construct many
closed 4-manifolds Y , all non diffeomorphic to X, admitting a SWβ-monopole for
some β ∈ Spinc(Y ).

Once the Seiberg-Witen theory can be formulated in a variational framework,
and the functional satisfies the Palais-Smale condition, it is natural to search for
a Morse Theory framework. As a first step, our attempt is to prove that the
homotopy type of the configuration space is completely determined by the classical
Hodge theory . This fact contrast with Donaldson theory, where there are an
abundace of instantons and the Atiyah-Jones conjecture shows the interplay among
the homotopy type of the moduli space of connections and the homotopy type of
the moduli space of instantons.

By considering the embedding of the Jacobian Torus

i : T b1(X) =
H1(X,R)
H1(X,Z)

↪→ Aα ×Gα Γ (S+
α ), b1(X) = dimRH

1(X,R)

in the configuration space, the variational formulation of the SWα-equations give
us a interpretation to the topology of Aα ×Gα Γ (S+

α ).

Theorem 1.1. Let X be a closed smooth 4-manifold endowed with a riemannian
metric g which scalar curvature is kg. Let

1. If kg ≥ 0, then the gradient flow of the SWα-functional defines an homotopy
equivalence among Aα ×Gα Γ (S+

α ) and i(T b1(X)).

2. If kg < 0, then Aα ×Gα Γ (S+
α ) has the same homotopy type of T b1(X).

2. Basic Set Up

From a duality principle applicable to SUSY theories in Quantum Field Theory,
Seiberg-Witten discovered a nice coupling of the self-dual(SD) equation, of a U1

Yang-Mills Theory, to the Diracc equation. The coupling is performed by a partic-
ular isomorphism relating the space Ω2

+(X), of self-dual 2-forms, and the bundle
End0(Sα

+).
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By considering the projection p1 : H2(X,Z) ⊕ H1(X;Z2) → H2(X,Z), the
space of
Spinc-strutures on X is given by

Spinc(X) = {α ∈ H2(X,Z)⊕H1(X;Z2) | w2(X) = p1(α) mod 2}.
For each α ∈ Spinc(X), there is a representation ρα : SO4 → Cl4, induced by a
Spinc representation, and consequently, a pair of vector bundles (Sα

+,Lα) over X
(see [8]), where

• Sα = PSO4 ×ρα
V = Sα

+ ⊕ Sα
−.

The bundle Sα
+ is the positive complex spinors bundle (fibers are Spinc

4 −
modules isomorphic to C2).

• Lα = PSO4 ×det(α) C.
It is called the determinant line bundle associated to the Spinc-struture α.
(c1(Lα) = α).

Thus, for a given α ∈ Spinc(X) we associate a pair of bundles:

α ∈ Spinc(X) Ã (Lα,Sα
+).

From now on, we consider

• a Riemannian metric g over X,

• a Hermitian structure h on Sα.

Remark 2.1. Let E → X be a vector bundle over X;

1. The space of sections of E (usually denoted by Γ (E)) is denoted by Ω0(E).

2. The space of p-forms (1 ≤ p ≤ 4) with values in E is denoted by Ωp(E).

3. For each fixed covariant derivative O 1 on E, there is a 1st-order differential
operator dO : Ωp(E) → Ωp+1(E).

For each class α ∈ Spinc(X) corresponds a U1-principal bundle over X, denoted
Pα, with c1(Pα) = α. Also, we consider the adjoint bundles

Ad(U1) = PU1 ×Ad U1 ad(u1) = PU1 ×ad u1.

Ad(U1) is a fiber bundle with fiber U1, and ad(u1) is a vector bundle with fiber
isomorphic to the Lie Algebra u1. Once a covariant derivative is considered on
ad(u1), it induces the sequence

Ω0(ad(u1))
dO

−−−−→ Ω1(ad(u1))
dO

−−−−→ Ω2(ad(u1))
dO

−−−−→
dO

−−−−→ Ω3(ad(u1))
dO

−−−−→ Ω4(ad(u1))..
(2.1)

1 on E, connection 1-form A ↔ OA covariant derivative
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The 2-form of curvature FO, induced by the connection O, is the operator

FO = dO ◦ dO : Ω0(ad(u1)) → Ω2(ad(u1)).

Since Ad(U1) ∼ X×U1 and ad(u1) ∼ X×u1, the spaces Ω0(ad(u1)) and Γ (Ad(U1))
are identified, respectively, to the spaces Ω0(X, iR) and Map(X, U1). It is well
known from the theory (see in [3]) that a u1-connection defined on Lα can be iden-
tified with a section of the vector bundle Ω1(ad(u1)), and a Gauge transformation
with a section of the bundle Ad(U1).

On a complex vector bundle E over (X,g), endowed with a hermitian metric and
a covariant derivative O, we consider the Sobolev Norm of a section φ ∈ Ω0(E) as

|| φ ||Lk,p=
k∑

|i|=0

(
∫

X

| Oiφ |p) 1
p

and the Sobolev Spaces of sections of E as

Lk,p(E) = {φ ∈ Ω0(X,E) | || φ ||Lk,p< ∞}

Now, consider the spaces

• Aα = L1,2(Ω0(ad(u1))),

• Γ (Sα
+) = L1,2(Ω0(X,Sα

+),

• Cα = Aα × Γ (Sα
+),

• Gα = L2,2(X, U1) = L2,2(Map(X, U1)).

The space Gα is the Gauge Group acting on Cα by the action

Gα × Cα → Cα; (g, (A,φ)) → (g−1dg + A, g−1φ). (2.2)

Since we are in dimension 4, the vector bundle Ω2(ad(u1)) splits as

Ω2
+(ad(u1))⊕Ω2

−(ad(u1)), (2.3)

where (+) is the seld-dual component and (-) the anti-self-dual. The 1st-order
(original) Seiberg-Witten equations are defined over the configuration space Cα =
Aα × Γ (Sα

+) as {
D+

A(φ) = 0,

F+
A = σ(φ),

(2.4)

where

• D+
A is the Spincc-Dirac operator defined on Γ (S+

α ),
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• The quadratic form σ : Γ (S+
α ) → End0(S+

α ) given by

σ(φ) = φ⊗ φ∗ − | φ |2
2

.I (2.5)

performs the coupling of the ASD-equation with the Diracc operator. Lo-
cally, for φ = (φ1, φ2) the quadratic form takes the value

σ(φ) =

(
|φ1|2−|φ2|2

2 φ1.φ̄2

φ2.φ̄1
|φ2|2−|φ1|2

2

)
.

The SWα-monopoles form the set of solutions of equations ( 2.4), this space can
be described as the inverse image F−1(0) by a map Fα : Cα → Ω2

+(X)⊕ Γ (Sα
−),

defined as
Fα(A,φ) = (F+

A − σ(φ), D+
A(φ)).

The SWα-equations are Gα-invariant.

3. The W-Homotopy Type of Aα ×Ĝα
Γ (S+

α )

The space Aα×Gα Γ (S+
α ) isn’t a manifold since the action isn’t free. We observe

that the isotropic group G(A,o) of a element (A, 0) ∈ Cα is formed by the constant
maps g : X → U1, since

g.(A, 0) = (A, 0) ⇔ g−1dg = 0 ⇔ g is constant.

Therefore, G(A,0)
iso' U1 and we consider the Gauge Group

Ĝα =
Gα

{g : X → U1 | g=constant}
iso' Gα�U1.

From now on, instead of the Gα-action, we consider on Cα the Ĝα-action; conse-
quently, the quotient space Aα ×Ĝα

Γ (S+
α ) is a manifold. Nevertheless, the spaces

Aα/Gα and Aα/Ĝα are diffeomorphic because all elements A ∈ Aα have the same
isotropic group.

In this section, the hypothesis of the theorem A.4 are checked to the space
Aα ×Ĝα

Γ (S+
α ), and the study of its weak homotopy type is performed.

We begin with the following remarks;

1. The quotiente spaces Bα = Aα�Gα and Γ (S+
α )�Gα are Hausdorff spaces

( [6]).

2. the Gα-action on Aα is not free since the action of the subgroup of constant
maps g : M → U1, g(x) = g, ∀x ∈ M , acts trivially on Aα.
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As mentioned before, instead of the Gα-action, we consider on Cα the Ĝα-action.
On Aα, the Ĝα-action is free, and so, the space B̂α = Aα/Ĝα is a manifold.

The Ĝα-action on Γ (S+
α ) is free except on the 0-section, where the isotropic

group is the full group Ĝα. The action also preserves the spheres in Γ (S+
α ), conse-

quently, the quotient space is a cone over the quotient of a sphere by the Ĝα-action.
Therefore, the quotient space is contractible.

It follows from the Corollary of A.3 that there exists the fibration

Γ (S+
α ) → Aα ×Ĝα

Γ (S+
α ) → B̂α.

By the contractibility of Γ (S+
α ), it follows that

Aα ×Ĝα
Γ (S+

α )
htpy∼ B̂α.

In [1], they studied the homotopy type of the space B∗ = A�G∗, where A is
the space of connections defined on a G-Principal Bundle P and

G∗ = {g ∈ G | g(x0) = I},
is a subgroup of the Gauge Group G = Γ (Ad(P )). They observed that G∗ acts
freely on A, and so, the quotiente space B∗ is a manifold. We need to compare the
Ĝα and G∗α actions on Aα, neverthless, they turn out to be equal.

Proposition 3.1. The gauge groups Ĝα and G∗α are diffeomorphic and perform the
same action on Aα.

Proof. The projection ρ in the exact sequence

1 → U1 → Gα
ρ→ G∗α → 1, ρ(g) = g(x0)−1.g,

induces the diffeomorphims. Let g∗ = ρ(ĝ), ĝ ∈ Ĝα, so

g∗.A = A + (g∗)−1dg∗ = A + ĝ−1.ĝ(x0)−1.ĝ(x0).dĝ = A + ĝ−1dĝ = ĝ.A.

The same computation implies that [g] = [h] ∈ Ĝα ⇒ g.A = h.A ∀A ∈ Aα.

Consequently, Aα/Ĝα = Aα/G∗α.
In this way, the results of [1] can be applied to the understanding of the topology

of the space Aα/Ĝα.
The weak homotopy type of B∗α has been studied in [1] and [3] where they

proved the following;

Theorem 3.2. Let Lα be a complex line with c1(Lα) = α, EU1 be the Universal
bundle associated to U1 and

Map0
α(X,CP∞) = {f : X → CP∞ | f∗(EU1)

iso∼ Lα, f(x0) = y0}.
Then,

B∗α
w-htpy∼ Map0

α(X,CP∞).
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Corollary 3.3. The space Aα ×Ĝα
Γ (S+

α ) is path-connected and

πn(Aα ×Ĝα
Γ (S+

α )) = πn(Map0
α(X,CP∞)), n ∈ N.

The set of path-connected components of Map0(X,CP∞) is equal to the space
of homotopic classes f : X → CP∞, denoted by [X,CP∞]. From Algebraic Topol-
ogy, we know that

1. There is a 1-1 correspondence

{L | L is a complex line bundle over X} ↔ Map0(X,CP∞),

2. The space of isomorphic classes of complex line bundles is 1-1 with [X,CP∞],
i.e., if L is isomorphic to Lα then f ∈ Map0

α(X,CP∞).

3. [X,CP∞] = H2(X,Z).

In other words,
π0(Map0(X,CP∞)) = H2(X,Z). (3.1)

Theorem 3.4. Let α ∈ Spinc(X). For each n ∈ N, the homotopy group
πn(Map0

α(X,CP∞)) is isomorphic to

H = H1(Sn,Z)⊗H1(X,Z),

Consequently,

πn(Map0
α(X,CP∞)) =

{
0, if n 6= 1,
H1(X,Z), if n=1.

(3.2)

Proof. Since
πn(Map0(X,CP∞)) ' H2(Sn ×X,Z),

we can perform the computation of πn(Map0
α(X,CP∞)) by fixing a class of

[X,CP∞].
For a class α ∈ H2(X,Z), we fix a map f : X → CP∞ representing α, x0 ∈ X

and a ∈ Sn. Thus,

πn(Map0
α(X,CP∞)) = [(Sn ×X, {a} ×X ∪ Sn × {x0}), (CP∞, f(x0))] =

= [(Sn ×X, {a} ×X ∪ Sn × {x0}),CP∞].

However,

[(Sn ×X, {a} ×X),CP∞] = H2(Sn ×X,Z)/H2({a} ×X ∪ Sn × {x0},Z).

Let H = H2(Sn ×X,Z)/H2({a} ×X ∪ Sn × {x0},Z). By Kuneth’s formula,

H2(Sn ×X,Z) = H2(X,Z)⊕ {H1(Sn,Z)⊗H1(X,Z)} ⊕H2(Sn,Z).

and
H2({a} ×X ∪ Sn × {x0},Z) = H2(X,Z)⊕H2(Sn,Z).

Hence,
H = H1(Sn,Z)⊗H1(X,Z).
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4. Aα ×Gα Γ (S+
α ) has same homotopy type as T b1(X) ⊂ Aα ×Gα Γ (S+

α ).

Let us to consider the functional

SW (A,φ) =
1
2

∫

X

{| F+
A − σ(φ) |2 + | D+

A(φ) |2}dvg. (4.1)

Proposition 4.1. For each α ∈ Spinc(X), let Lα be the determinant line bundle
associated to α and (A,φ) ∈ Cα. Also, assume that kg=scalar curvature of (X,g).
Then,

1. < F+
A , σ(φ) >= 1

2 < F+
A .φ, φ >.

2. < σ(φ), σ(φ) >= 1
4 | φ |4.

3. Weitzenböck formula

D2φ = O∗Oφ +
kg

4
φ +

FA

2
.φ.

4. σ(φ)φ = |φ|2
2 φ.

5. The intersection form of X QX : H2(X,R)×H2(X,R) → R is given by

Q(ω, η) =
∫

X

ω ∧ η.

6.
∫

X
| F+

A |2 dvg =
∫

X
1
2 | FA |2 dvg + 2π2α2.

The identities above are applied to the functional ( 4.1) and, as consequence, a
new functional turns up into the scenario. The new functional is defined as follows;

Definition 4.1. For each α ∈ Spinc(X), the Seiberg-Witten Functional is the
functional SWα : Cα → R given by

SWα(A,φ) =
∫

X

{1
4
| FA |2 + | OAφ |2 +

1
8
| φ |4 +

1
4
kg | φ |2}dvg + π2α2, (4.2)

where kg= scalar curvature of (X,g).

Let kg,X = minx∈Xkg and

k−g,X = min{0,−k
1
2
g,X}. (4.3)

Remark 4.2.

1. Since X is compact and || φ ||L4<|| φ ||L1,2 , the functional is well defined on
Cα ,

2. Once the SWα-functional (4.2) is Gauge invariant, it induces a functional
SWα : Aα ×Gα Γ (S+

α ) → R.
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3. The SWα-functional is bounded below by 0, and it is equal to 0 if and only
if either there exists a SWα-monopole or an self-dual U1-connection.

Proposition 4.2. The Euler-Lagrange equations of the SWα-functional (4.2) are

∆Aφ +
| φ |2

4
φ +

kg

4
φ = 0, (4.4)

d∗FA + 4Φ∗(OAφ) = 0, (4.5)

where Φ : Ω1(u1) → Ω1(Sα
+).

Remark 4.3. Locally, in a orthonormal basis {ηi}1≤i≤4 of T ∗X, the operator Φ∗

can be written as

Φ∗(OAφ) =
4∑

i=1

< OA
i φ, φ > ηi, where OA

i = OA
Xi

(ηi(Xj) = δij).

The regularity of the solutions of ( 4.4) and ( 4.5) was studied by Jost-Peng-
Wang in [7]. They observed that the L∞ estimate of φ, already known to be
satisfied by the SWα-monopoles, is also obeyed by the solutions of ( 4.4) e ( 4.5).
The estimate is the following;

Proposition 4.3. If (A,φ) ∈ Cα is a solution of ( 4.4) and ( 4.5), then

|| φ ||∞≤ k−g,X , (4.6)

where k−g,X = maxx∈X{0,−k
1
2
g (X)}.

In [7], Jost-Peng-Wang studied the analytical properties of the SWα-functional.
They proved that the Palais-Smale Condition, up to gauge equivalence, is satisfied.
Therefore, by the Minimax Principle the SWα-functional always attains its mini-
mum in Aα×Ĝα

Γ (S+
α ) and, consequently, on Aα×Gα Γ (S+

α ). In this way, it is left
the following question: Under which conditions the minimum in Aα ×Ĝα

Γ (S+
α ) is

a SWα-monopole ?
As a consequence of the estimate ( 4.6), if the Riemannian metric g on X has

non-negative scalar curvature then the only solutions are (A, 0), where

d∗FA = 0.

The following result is well known [3];

Proposition 4.4. Let X be a closed, smooth 4-manifold. The solutions of d∗FA =
0, module the Gα-action, define the Jacobian Torus

T b1(X) =
H1(X,R)
H1(X,Z)

, b1(X) = dimRH
1(X,Z).
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Proof. Let’s recall that α = i
2π

∫
FA. The equation d∗FA = 0 implies that FA is

an harmonic 2-form, and by Hodge theory, it is the only one. Let A and B be
solutions and consider B = A + b, so,

d∗FB + d∗FA + d∗db = 0 ⇒ db = 0,

from where we can associate B Ã b ∈ H1(X,R) (and FB = FA).
If a connection B1 is gauge equivalent to B2, then there exists g ∈ Gα such

that B = A + g−1dg and FB = FA. However, the 1-form g−1dg ∈ H1(X,Z).
Consequently, if b1, b2 are the respectives elements in H1(X,R), then b2 = b1 in
H1(X,R)
H1(X,Z) .

The fact that T b1(X) has the same the homotopy type as Aα ×Ĝα
Γ (S+

α ) ( 3.4)
leads to the main result;

Theorem 4.5. The space of solutions of d∗FA = 0 and Aα ×Ĝα
Γ (S+

α ) have the
same homotopy type. Beyond, if kg ≥ 0 then there exists a homotopy equivalence
among Aα ×Ĝα

Γ (S+
α ) and T b1(X).

{
0, if n 6= 1,
H1(X,Z), if n=1.

(4.7)

Proof. The computaions of the homotopy groups has been performed in 3.2. When-
ever
kg ≥ 0, the Deformation Lemma of Morse Theory implies that the gradient flow of
SWα defines a homotopy equivalence among Aα ×Ĝα

Γ (S+
α ) and T b1(X), since

kg ≥ 0 ⇒ SWα(A, 0) < SWα(A,φ), ∀φ 6= 0 ∈ Γ (S+
α ).

Whenever kg is non-positive, may be a SWα-monopole is present and the ho-
motopy equivalence can’t be performed by the gradient flow.

If (A, 0) is a solution of the 1st-order SWα-equation (minimum for SWα), then
F+

A = 0. It is known ( [3]) that if b+
2 > 1, then such solutions do not exists for a

dense set of the space of metrics on X. Therefore, these facts can be packed in the
following proposition;

Proposition 4.6. Suppose that b+
2 (X) > 1. There exists a dense set of metrics

on X such that;

1. For a finite number of classes α ∈ Spinc(X) there exists a SWα-monopole
attaining the minimum,

2. If α ∈ Spinc(X) is none of the classes considered in the previous item, then

inf
(A,φ)∈Aα×Gα Γ (S+

α )
SWα(A, φ) > 0.
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Final Remark: The main result implies that the nature of the SWα-monopoles
are rather subtle than we may expect. The following questions were not reached
by the methods applied to prove the main result;

1. Is SWα a Morse function for a generic subset of metrics on X ? If the answer
is positive, is it possible to transform SWα into a perfect Morse function ?

2. Under which condition there exists a SWα-monopole in Aα ×Gα
Γ (S+

α )?

3. Are there unstable critical points of the SWα-functional?

A. The Diagonal Action and its Quotient Space

Let M, N be smooth manifolds endowed with G-actions αM , αN (respec.).
About the G-actions, we will assume that;

1. There exists a subgroup H of G such that for all m ∈ M Gm is conjugate to
H.

2. The quotient spaces M�G and N�G are Hausdorff spaces.

The product action of G×G on the manifold M ×N , is defined by

αM × αN : G×G× (M ×N) → M ×N,

αM × αN (g1, g2,m, n) = (αM (g1,m), αN (g2, n)),

or equivalently,

(g1, g2).(m,n) = (g1.m, g2.n).

Definition A.1. The diagonal action αD : G× (M ×N) → M ×N is defined as

αD(g, (m,n)) = (αM (g.m), αN (g, n)),

and denoted as g.(m,n)=(g.m,g.n). The quotiente space is denoted by M ×G N .

Definition A.2. Let m ∈ M and n ∈ N . The corresponding orbits are defined as
follows;

1. For the action αM on M, let OM
m = {g.m | g ∈ G}.

2. For the action αN on N, let ON
n = {g.n | g ∈ G}.

3. For the product action (P -action) αM × αN on M ×N , let

OP
(m,n) = {(g1.m, g2.n) | g1, g2 ∈ G}.

4. For the diagonal action D-action) αD on M ×N , let

OD(m,n) = {(g.m, g.n) | g ∈ G}.
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The orbit of (m,n), by the product action, is easily described by the orbits in
M and N as

OP
(m,n) = OM

m ×ON
n .

Consequently,

(M ×N)�(G×G) = (M�G)× (N�G),

which induces the fibration

N�G −→ (M ×N)�(G×G) −→ M�G.

In order to describe the topology of the space M ×G N , we consider the com-
mutative diagram

M ×N
p1−−−−→ M

πM×N

y πM

y
M ×G N

p−−−−→ M�G

, (A.1)

where

1. p1 : M ×N → M is the projection on the 1st factor;

2. πM×N : M ×N → M ×G N is the projection induced by the quotient;

3. p : M×G N → M�G is the natural map induced by the projection OD(m,n) →
OM

m .

From now on, we fix [m0] ∈ M�G in order to describe p−1([m0]).
From the diagram, we get that

1. (πM )−1([m0]) = OM
m0

2. (πM ◦ p1)−1([m0]) = OM
m0
×N ,

3. (πM×N )−1([m0, n0]) = OD[(m0,n0)]

Proposition A.1. The subspace OM
m0
×N is a G-space with respect to the D-action.

Proof. The proof is splited into two easy claims;

1. If (m,n) ∈ OM
m0
×N , then OD(m,n) ⊂ OM

m0
×N .

Let m = g.m0;

g,.(m,n) = (g,g.m0, g
,.n) ∈ OM

m0
×N.
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2. If (m,n) ∈ OM
m0
×N , then there exits g ∈ G and n, ∈ N such that (m,n) ∈

OD(m0,n,)

Let m = g.m0 and n, = g−1.n;

(m, n) = g.(m0, g
−1.n) ⇒ (m,n) ∈ OD(m0,n,).

Consequently,
p1([m0]) = OM

m0
×G N.

Proposition A.2.

OD(m,n) ∩ p−1
1 (m0) = {g.n | g ∈ Gm0}

Proof. Let m = g.m0; so (m,n) = g.(m0, g
−1.n) ⇒ OD(m,n) = OD(m0,g−1.n). Never-

theless,

g.(m0, n) ∈ p−1
1 (m0) ⇔ ∃g ∈ G such that g.(m,n) = (m0, n

,),

this implies that g ∈ Gm0 and n, = g.n

Therefore, every D-orbit meets the set p−1
1 (m0), and, beyond that, the inter-

section of the D-orbits with p−1
1 (m0) defines a Gm0-action on N ;

g.(m0, n) = (m0, g.n). For each n ∈ N , the isotropic group is given by Gm0 ∩Gn,
where Gn stands for the isotropic group relative to the G-action on N. Consequently,
the orbit space of the D-action on Om0 ×N can be identified with N/Gm0 .

Proposition A.3.
M ×G N =

⋃

[m]∈M/G

N/Gm.

Proof. Since it was concluded that p−1([m0]) = N/Gm0 , the claim follows from the
discussion above.

Corollary A.4. 1. If the G-action on M is free, then there is a fibration

N −→ M ×G N −→ M/G. (A.2)

2. Suppose that there exists a subgroup H of G such that for all m ∈ M the
isotropic group Gm is conjugate to H. So, there is a fibration

N/H −→ M ×G N −→ M/G, (A.3)

whose fiber N/H may be is a singular space.
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