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Exponential Decay for the Semilinear Cauchy-Ventcel Problem with
Localized Damping

Ammar Khemmoudj and Mohamed Medjden

ABSTRACT: Le but de ce travail est d’ étudier la décroissance exponentielle de
I’énergie des solutions losque le temps tend vers l'infini du probléme aux limites
de Cauchy-Ventcel semi-linéaire dissipatif dans un domaine borné. On donne des
conditions suffisantes sur les non linéarités de f et g pour avoir la décroissance
exponentielle de I’énergie. Ce probléme décrit les vibrations d’un corps élastique
avec un raidisseur mince sur le bord. La méthode de démonstration est basée sur les
techniques de multiplicateurs et un principe de continuation unique qui permettent
d’estimer 1’énergie totale des solutions.

Key words: Cauchy-Ventcel problem, Exponential decay.

Contents
1_Introduction 97
2 The case of a globally Lipschitz nonlinearity 99
3 The superlinear case. 106
4 Appendix 112

1. Introduction

Let © be a bounded, open, connected set in R™ (n > 2) having a boundary
I' = 09 of class C2. We denote by \y7 the tangential-gradient on I', by Ar the
tangential Laplacien on I and by 0, the normal derivative towards the exterior of
T". This paper is devoted to the study of the exponential decay of solutions of the
following semilinear damped Cauchy-Ventcel problem:

uf — Aug + f(ur) + a(z)u) =0 in Qx]0,00]
ulf + Opus — Apug + g(ug) +b(x)uy =0 on T x]0,00] (1)
Uy)y = U2,

u(0) = (u1(0),u2(0)) = v/ (0) = (u};(0),uy(0)) =0 in Q@ x T.

This equation modelise the asymptotic vibrations of an elastic body with a thin of
high rigidity of its boundary.
We assume
a € L>®(Q), a(x) >ap >0, ae in w,
be L>*(), b(x) >by >0, ae.in I
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98 A. KHEMMOUDJ AND M. MEDJDEN

where w C €2 is an open, non-empty subset of 2and ag and by are constants,we
assume also the non-negativity of f and g:

f(s)s >0,
g(s)s >0, VseR. (3)

We shall distinguish two particular cases where condition (3) is satisfied.
In the first case , we will assume f and g globally Lipschitz i.e.

f,g € CY(R) and there exist some constants cy,ca >0, p>1, (n—2)p<n
such that
[£(s1) = F(s2)] < ea(1+ [s1"" 4 [so" ") 51 — sa,
l9(s1) — g(s2)| < ca(L+|s1|P"" + |s2P ") |s1 — 52|, for every s1,s5 € R.
(4)

In the second case, we will consider the case where f and g are super linear, i.e.

{ 361 >0: f(s)s > (2+61)F(s), VseR, (5)

362 >0:g(s)s > (2+ 52)0(5;

with

F@:A?@@,Q@;ﬁﬂ@mWeR (6)

This situation can not be treated as a perturbation of the linear case. We shall
therefore restrict our attention to the particular case where wis a neighborhood
of the boundary I'. We shall adapt the multiplier technique developed in J. L.
Lions [7] in order to obtain suitable energy estimates. In this case conditions
(5) will be sufficient to establish the uniform exponential decay.

This paper is organized as follows. In Section 2 we shall state and prove
the main results in the case where f and g are globally Lipschitz. The case where
f and g are superlinear will be treated in Section 3.

We set

V = {u = (ul,u2) € Hl(Q) X Hl(F) / U1 |F: UQ}
H = L2(Q) x L2(T).

Equipped with the canonical norms
2 2 2
|u|I{2: |u1|L2§Q) + |U2|L2(1*2) )
lullv = lluallz @) + llwallg ) »

V and Hare two Hilbert spaces and V is dense in Hwith continuous injection
. Under the conditions above, problem (1) is well posed in the space V x H, ie.
for any initial data {uo, ul} € V x H, there exists a unique weak solution of (1)
which belongs to the space

u € C([0,00); V) N CH([0,00) ; H). (7)
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Let us consider the energy

Bt = {Jq [|ua|2 + |vu1\2] dot Jo b+ [vrwflar} o
+ Jo F(uy)dz + [ G(uz)dr.

For every solution of (1)-(7) the following identity holds

E(tz) — E(t1) =

{ * o al (z,t) |? dxdt+f [ b(x) | ub(x,t) |? dE}

Vio >t > 0
9)
and therefore the energy is a non increasing function of the variable ¢ . The aim
of this paper is to give sufficient conditions on the nonlinearities of f and g and
the open subset w (where the damping term is effective) ensuring the exponential
decay of the energy, i.e. the existence of some constants C' > 1 and v > 0 such

that

E(t) < Ce ™ "E(0), Vvt >0, (10)

for every solution of (1)-(7).

2. The case of a globally Lipschitz nonlinearity

In the sequel we set Q = Q x]0,T[, ¥ =T x]0,T[, and we define for arbitrary
20 in R™ arbitrary we define

and the domain of A by
Dy={ueV, AucH}.

Let us consider the following linear Cauchy-Ventcel problem

o — Ap =0,
{ ©(0) = ¢°, ©,(0) = ¢, (11)

then we have the result
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Lemma 2.1. Let Q be a bounded, open, connected set in R™ (n > 2) having a
boundary T = 0Q of class C?. Let z° € R™ be arbitrary and T > T (xo) =

2R(2%). Let O be a neighborhood of I'(20) and w = O NQ. Then, for every
solution ¢ of (11), there exist some constant C > 0 such that

Eo < C{Jy [, e, 0 dudt + [, |eh(w, 1) dS+

(12)
+Jo IVeiliaq dt+ Jy [Vrealia di}, V(@ ¢!) € V x H.
Proof ( cf. Appendix).
From A. Ruiz [10], we have also the following result:
Lemma 2.2.If b€ L*>°(Q), 0 € HY(Q), then we have
0" —AO+b0 =0 in Q,
6=0 on wx%, »=0=0. (13)
81,9 =0 on EO

In the sequel we assume the existence of the following limits

() Lim f'(s) = ' (+00); Lim f'(s) = J' (~o0),

Limg'(s) = ' (+o0); Lim g(s) =g’ (~00).
(i) Limg/(s) =g (+00); Lim g'(s) = g’ (~o0)

The main result of this section is the following.
Theorem 2.1: Let f and g € CY(R) be such that (3) is satisfied, f' €
L>*(R), ¢’ € L*(R) and the limits (i)-(ii) exist. Assume that

a€ L>®(Q), a(x) >ap >0, ae in w,
be L*(T), blx) >by >0, ae in T

for some ag > 0, by > 0 and some open subset w C Q such that (12) and (13)
hold.

Then, there exist some constants C > 1 and v > 0 such that the estimate (10)
holds for every solution u = u(z,t) of (1) with initial data (u°,u') € V x H.
Proof: We note that it is sufficient to prove the following estimate

(14)

E(T) SC’Q{/Qa(:U) |l (1) |2dwdt+/2b(x)\u’2(x,t) 2 dE}. (15)

From (9) and (15), we easily deduce

C
Mﬂ§1+aE@. (16)

This estimate, combined with the semigroup property (cf.J. Rauch et M.
Taylor [8]) implies (10) with

- = plos( ). (a7

1+ & 1+ &
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In order to prove (15) we write the solution u = u(x,t) of (1) as

u=o+ T
where ® = ®(z,t) solves (11) with initial data
®(0) = u°, ®.(0) = u'
and U = U(x,t) satisfies

AN = —f(u1) — a(x)uj in Qx]0,00],
UL+ 0,9 — Ar¥y = —g(ua) — b(x)uh on TI'x]0,00],

(18)
Uy, =Wy

U(0) = (¥1(0), ¥5(0)) = ¥'(0) = (W1 (0), ¥5(0)) =0 on 2 x T

Lemma 2.3: Let Q) be a bounded, open, connected set in R™ (n > 2) having
a boundary T = 0Q of classC?. Let x° € R™ be arbitrary, w a neighbourhood of
I (29) in Q and T > T(2°).

Then, for every solution ¢ of (11), there exists some constant C > 0 such that

B(T) < B(O) ,
< {1} + [t} (19)
< C{Jy 1@ () dadt + [o @ (e, ) a= + [ @[ dt},

V(u,u') € V x H.
Proof: (cf. Appendix).
By using the embedding of V in H, we obtain

S0 ae < el de+ f) 1 de}
<O {fy ulfpdt+ fy w3 dt

and the standard energy estimates for (18) yield

T
Iy [l + ey at

7112 / 2 (20)
<C {Hf(“l) + a(@)ui 1 0,7522(0)) + 19(u2) + b(z)us ||L1(0,T;L2(F))} :

Combining (19) and (20), we obtain finally

E(T) SC{/Qa(gc) |u’1|2dxdt+/zb(a;) |u’2(9c,t)|2d2+/0 |uildt} (21)

(we have implicitely used the fact that
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[f(s)] < Culs|,
l9(s)| < Cals|,
[F(s)] < Clsl,

G(s)] < C|s]*,Vs € R

Remark 3.1: We note that the constant C' > 0 in (21) depends on Hf/”Loc(R)
and |¢'[| ;o () in a bounded manner .
It remains to prove the estimate

/OT Jul gy dt < C’{/Qa(a:) |u’1|2da:dt—|—/2b(x) |u'2($7t)|2d2}. (22)

We argue by contradiction. If (22) is not satisfied for some C' > 0, there exists a
sequence of solutions {u,} of (1)-(7) verifying

T 2
nler dt
lim . Jo Itnlis = +oo. (23)
n=o [ a(@) [uh,|” dedt + [ b(@) [uh, (2, t)]" dE
We set
T 3
A = {/ 2, dt} , (24)
0
and
Uin(z, Udn(x,
Un(xvt) = (Uln(z,t)av2n(m,t)) = (Mv 2nlzt) ) (25)
An An
The function v, (z, t) satisfies
(vin)tt — Avip + fr(V1n) + a(x) (v1n): =0 in Qx]0,00[,
(van)et + OuV1n — Arvon + gn(van) +b(z)(v2n): =0 on I' x]0,00[,
vl’ﬂ]" = V2n , Vt > 0,
(26)
where 1 1
fn(s) = rf(/\ns)a gn(s) = /\79(>‘n5)7 Vs € Ra Vn € N. (27)
On the other hand -
/ [ dt =1, (28)
0
and
/ a() |0, 2 dedt + / b(@) ol (2, 1)]2 A5 — 0. (29)
Q b

Taking into account the fact that

fall oo @y = 115Nl oo gy »
||9:7,HL<>0(1R) = Hg/HLOO(]R)
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and the fact that the estimate (21) is therefore uniform on n, we deduce from
(28)-(29) that

{v,} is bounded in L>(0,00; V) N W (0, c0; H). (30)

We extract a subsequence (still denoted by {v,}) such that

v, — v weakly in H(Q) x H (%), (31)
v, — v strongly in L?(Q) x L?(X), (32)
v, = v ae in (Q) x (X).
From (28) and (32), we deduce that
T
| el =1, (33)
0
and (29) implies
(vi,v5) = (0,0) ae. in {wx]0,T[} x X. (34)

On the other hand we note that

where

Remark that h and I € L*°(R), (h (resp. I) is bounded by the Lipschitz constant
of f' (resp. of ¢’)), h > 0 and I > 0. Thus

fn(vln) = hn(vln)wlna
gn(UZn) = In(v2n)v2n7
with {hp(v1n)}and {I,,(ve,)} uniformly bounded in L*°(Q) and L°°(X). There-

fore we may extract some subsequences (still denoted by {h,,(v1,)}and {I,,(v1,)})
such that

hy(v1n) — p(z,t) in L*°(Q), weak star,
I, (van) — q(x,t) in L>®(X), weak star,

for some (p,q) € L(Q) x LP(X). This allows us to extend to the limit in (26)
obtaining (from 34)

(V1)1 — Avy + p(z, t)v; =0 in Q,
(v2)er + Oyv1 — Apvg + g(z,t)ve =0 on X, (35)
V1y, = V2.



104 A. KHEMMOUDJ AND M. MEDJDEN

However, the fact that, in principle the potentials p(x,t) and g(x,t) might depend
on t does mnot allow us to prove directly (from (34) and (35)) that v = 0 in
order to contradict (33).

In order to solve this difficulty we distinguish the following three situations:
a) there exist a subsequence of {\,} (still denoted {\,}) such that

An, — A €10, 00]

In this case we easily see that

p(m,t)vl = %f(Avl)a
36
e tyva = Sg0wa) (%)
Then, w = v; satisfies:
(w1)e — Awip + f/(Av1)wy =0 inQ,
(w2)et + pwr — Arwa + ¢'(A\vz)wa =0 on X, (37)
’wl): = ’U}Q’
with
(w1, ws2) = (0,0) a.e. on wx]0,T[xX. (38)

b) We are not in situation (a) and there exists a subsequence {A,} such that

An, — 0.
In this case
)= f(0)  ae nQ
q(z,t) =¢'(0) ae. on X,

and w = v satisfies, in addition to (38),

(w1)er — Awy + f/(0)wy =0 inQ,
(w24t + Opwy — Apwa + ¢’ (0)we =0 on X, (40)
Wiy, = W2,

c¢) The sequence {\,} goes to infinity.
In this case we take the derivative of (26) with respect to ¢ and deduce that
wy, = (vy)¢ satisfies

(wln)tt - AU)l'rL + f/<An'Uln)wln + a(l‘> (wln)t =0 in Q7
(W2n) et + Opwin — Arwan + ¢ (Anv2n)wa, +b(z)(w2n)e =0 on X,
Wiy, = W2.

(41)

From (31) we know that

w, —w=1v; weakly in L*(Q) x L*(%). (42)
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On the other hand {f"(A,v1n)}(resp. {¢'(Anv2,)}) is uniformly bounded in L*°(Q)
(resp.in L>°(X)) but this does not suffice to extend to the limit in (41). However,

' Apvin)wi, — 21(x,t) weakly in L?(Q),
' (Anvon)way — 2o(z,t) weakly in L2(X).

for some subsequences.
Therefore,

(w1) — Awy + 21 (, 1) =01inQ,

(wa)e + Opwy — Apwy + 29(x,t) =0 on X, (43)
U)lE = W2

In order to identify the limit (z1,22) we divide the sets@Q = Q x ]0,T[ and ¥ =

I' x )0, T into the following subsets
Q=Q1UQy with Q1 ={v1 #0}, Q2 = {v; =0},
Y =3, UXy with ¥ Z{UQ#O}, ZQZ{UQZO}.
From (i) and from (32), we easily deduce, by Lebesgue’s theorem, that

f/()\nvln) - f/(foo)x{'u1< 0} + f/(+oo)x{v1> 0} = @1 (I7 t)a StI‘OIlgly in L2(Q1)7
g (Apvapn) — g’(—oo)x{v2<0} + ¢’ (+00) y {vs> 0} = G2(z,t), strongly in L2(%).
(44)

(We note by x4 the characteristic function of A). Therefore
(21,22) = (qrw1, gaw2) in Q1 x Xy. (45)

On the other hand, the fact that (by definition)

v=(0,0) ae. in Qg XXy

nd
" v e H(Q) x HI(%),
(v1)ee — Avy € L2(Q)»
(Ug)tt + 0 v1 — Arvg € L2(E),

imply
(1)1t — Avy =0 ae. inQo,
(v2)¢t + Opv1 — Apvy =0 a.e. on Xo.
But clearly , z € L?(Q) x L?(X) satisfies
in Q,

{ 21 = _%((01)& — Avy)
= — 3 ((v2)er + Opv1 — Agwg) in X,

and therefore
z = (0, 0) a.e. QQ X 22. (46)



106 A. KHEMMOUDJ AND M. MEDJDEN

From (43), (45) and (46), we conclude that, in addition to (38),w satisfies

(w1)et — Awy + q1(z, t)ws =0 inQ,
(w2)#t + Opwi — Apwa + G2(z,t)we = 0in X,
Wiy, = wg,

with _ B _
Qi(z,t) e L®(Q), 1 =qin @1, ¢ =0in Qo,
G2(z,t) € L®(X), 2=¢q2in X1, g2 =01in Xs.

Recapitulating, we see that, in each of these three possible situations a), b) and
c), the function w € L?(Q) x L?(X) satisfies (38) and a Cauchy-Ventcel problem
of type

(w1)ee — Awy + by (0, t)wy =0 inQ,
(w2)t + Opwy — Apwy + ba(z,t)wy =0  on X, (47)
U.)lE = Wwa,

for some potential b € LT (Q) x L (X).

In order to apply (13) we must prove that w € HY(Q) x H!(X). This can
be done by proving (by the same perturbation argument that we have used
above) and estimate of type (21) for system (47). Applying (13) we deduce w =0
and therefore v = v(z).

Taking into account that v = v(z) is a stationary solution of (35), we deduce
that

—Avy + p1(z,t)vy =0 in Q, Vte]0,T],
0,v1 — Apvg + pa(z,t)ve =0 on I', Vte]0,T][,
U1y = V2,

and since p; > 0, p2 > 0, then v = 0.This clearly contradicts (33) and the proof of
the theorem is now completed.

3. The superlinear case.

In this section we study the exponential decay of solutions of (1)-(7) in the
case where the nonlinearities f and g € C*(R), in addition to (3), satisfies (5),
i.e. f and g are superlinear.

The proofs of our estimations are based on multiplier techniques.

The main result of this section concerns the simplest case where w is a neigh-
bourhood of the wole boundary T'.

Theorem 3.1: Assume that hypotheses (2)-(4) are satisfied . Assume also that
(the superlinear case), there exist some constants 61 and 63 > 0 such that

{ 301 >0: f(s)s>(2+61)F(s), VseR

2 > 0:g(s)s > (2+ 62)G(s),

Then there exits some constants C' > 1, v > 0 such that the estimate (10) holds
for every solution u = u(x,t) of (1)-(7) with initial data (u°,u') € V x H.
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Proof: As in the proof of Theorem 2.1, we note that it is sufficient to prove
an estimate of type (15) to obtain (10) with C  and v > 0 given by (17).

In order to prove (15) we proceed in several steps.

Step 1

Lemma 3.1: Let Q be a bounded, open, connected set in R™ (n > 2) having a
boundary T = 0Q of class C? and q € (WH>(Q))"™. Then, for every weak solution
wof (1) we have the following identity

L (o) [[usf? = [7rual® + 0, ] dx

= (u},q- vV ur)a [§ +(uy, qr. 77 u2)a [§

3 Jo(divg) [y — [ | dwdt + § [ (divar) ||usf* = [vrus| dS g
+ fQ Vu1.Vq.Vuidzdt + fz: Vrus . NVrqr . Vrusds

= Jo(divg)F(u)dzdt — [ (divgr)G(uz)dE+

+ fQ auyq. 7 urdzdt + [g bubgr. 7 uady,

where qr is the tangential component of q and ~/rqr are the components of
tangential gradient .
Proof:  We proceed as in J. L. Lions|[7]. In a first step we take the data
u® € Dy and wu! € V. We multiply the equation (1);and (1), respectively by
q.\Ju1 and qr. /T uz, we integrate over @ and ¥ and do sommation. Integrating
by parts, we obtain the identity for regular data. In the general case of a weak
solution for u” € Vand u' € H, we approximate by regular data and use the
proposition 2 of K. Lemrabet, D. E. Teniou [6] and pass to the limit.
Lemma 3.2: We have the following identity

(uh,m. 7 ur)a [§ +(ug,m. 77 u2)s [§

+5 fQ [|ul1|2 - |VU1|2} dxdt + fQ |7uy|? dadt

+% Js(n—1) [|Ul2|2 - |VTU2|2:| d¥ + [y |VTuQ|2 dx (49)
-n fQ F(uy)dzdt — [, (n — 1) G(ug)dX + fQ auym. 7 uydzdt

=Js (my#”“éf - |VTU2|2]CZE — [x m.vTrB.G(uz)d%

+ Jy T ) — [rual® + 29| + 2B. (Vruz, Vrus) }dE

where B is the second fundamental form of T (the curvature operator) and T, is
the trace.

Proof: To obtain (49) , we apply (48) withg(x) = 2 — 2° = m(x) forz® € R™ and
remark that

Vim=n, Vermr=n—1—m.vTrB

Lemma 3.3: We have the following identity
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Jr Gua(ugt252)lg + Jo €ua (i +25) o
= & [t = [y ] daat
+ Jou € v wydwdt— [, §f (uy)u,dadt (50)
+ € [Jul = [vrual’] dx
+ [ ue € T puadS— [§ Eg(uy)u,dS
Proof:We multiply the equations (1); and (1)2 by {(z)u; and £(x)uz respectively,
with ¢ € C1(Q). Integrating by  parts we obtain (50).
Lemma 3.4: We have the following identity

fr u2(“/2+bu72‘§+ fQ ul(“/1+aul) |0

fQ [|u’1|2 - |VU1|2} dxdt— fQ (uy)uydadt
+ s “U/ﬂ2 - |VTU2|2} d¥— [ g(uy)uydX

Proof: We apply (50) with & = 1.
Combining (49) and (51) we obtain the following Lemma
Lemma 3.5: The following identity holds:

(uh, m. 7 ur + oqug (u] + %2 ))o [§ +(ub, mr. Vi s + agua(usy + 752))r o

+(5 —a1) Jo | |* dedt + (1 +a; — 2) ) Jo |7uy|? dadt
+ay fQ (uq uldlL'dthLfQ (u1) d:c+ (2L —ay ) Js |u2| dx
+(1+ g — 251 fz |V rus|® dS + az Js 9(u2)uzd® — [ [n — 1] G(uz)dX
+ fQ auim. 7 uldxdt + [ bubmep. 77 ugdX
= fo, @B 1012 | pus*)dE — [y mwTrB.G (us)dS
+ [ B Jub)? — [vrual® + [Oyus |* + 2B. (Vruz, Vru)}dE, Ya € R

(52)
We note that (5) implies the existence of some constant (ai,az) € (%52, 251) x
(253, 21) such that
ntv, F
fs)s =2 = F(s),

g(s)s > %G(s) Vs € R,

where 7, and 7, are two constants > 0. With this choice of (a1, as), from (52) we
deduce, for some C' > 0, the estimate

C Jy Bt < § [omv) [[us = |7ruzl® + [0, ] dz

(53)
UQ auim. 7 uldxdt‘ + |fZ bubmr. /7 u2d2| +X+Z
where
X = |(uf,m. 7 ur + oqus (v + L))o |§
+(u’2,mT T U2 + 042U2(u2 2) |O |
Z= ‘fz W[I%I - |VTU2| |d¥ — fzm vT'rB.G(ug)dX% (54)

+ [5 W28 (Vrus, V) }dZ‘ .
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We have
UQ auim. 7 uldxdt‘ <e HmHiZ(Q) Jo |7uy |* dadt (55)
+az llall 20y Jq a | * dadt
| Js bubmr. 7 uadS| < € |mrl7a ) [y [Vrusl® dS (55)
+i ||bHL2(F) fz b |“/2|2 dx

for any e.

Combining (53) with (55) and (55’) where € > 0 is taken small enough, we deduce

Iy Bt < ¢ { fmv) [l = [vrual® + 10, ]| a5

+ [ alu | dedt + | b|u'|2d2+X+Z} (56)
Q 1 ) 2

Step 2
We now estimate the quantity

[ ) [l = 19 7al + 10,12 @
z

in term of

/a|u’1|2dxdt+/ b(x) |uy|” X,
Q =

Following the method of proof of Lemma 2.3, Chap. VII in J.L.Lions [7], we
construct a neighbourhood @ of I'(xY) such that

ONQCw
and a vector field h € (W1>°(Q))" such that
h=v onT(z%), hv>0 ae. in T. (57)
and
h=0 on Q\ & (58)
(See Remark 3.2 Chap.I of J. L. Lions [7] for the construction of this vector field).
Applying identity (48) with ¢ = h , we easily deduce the existence of some
constant C' > 0 such that
Sy (141 = 19 7sl? + 10,0 ] a5
< Jolh) [l = [7ruzl® + 10, ] d=
< C{ o L [l + 17wl + F(wn)] dudt (59)
+ Jy [[bl + [Trus + Glus)| ds} +
2([q uhh. 7 urdx) |§ +2(p ubhe. 71 uada) |
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We construct then a function n € W1°°(Q) satisfying

0<n<1 ae in
n=1 a.e. in o,
n=0 ae in Q \w,

and )
[¥nl® € L (w).
n

(60)

(62)

(See Lemma 2.4 Chap.VII in J. L. Lions [7] for the construction of this function).

Applying identity (50) with £ = n we deduce

Jon [Vl + flunyu | dedt = four 9.7 widadt
+ fE n |:|VTu2|2 + g(UQ)’LLQ:| dx — fZ uaVrn. \Jr ugdd
<C {fOT I P dadt + [ |ub]? dS + Y}

where
bUQ

au
/nT.uz<u;+ )T +/ s (udy + 20y 7).
. 2 o 2

On the other hand we have

Y =

‘fQ Uy /1. vuldxdt‘ < sz77|vu1|2 dzdt + ?15 fQ \V;z|2 |u1|2 dzdt,

2
| fyu2 V1 0. V1 uadS| < e [y rus?dS + 3 [y % juz|* dadt.

Combining (63) with (65) for € € |0, 1], we deduce

By L IVl + F(w)| dedt + [y [[Vus + Gluz) | a5

< fQ n |Vu1|2 + F(ul)} dzdt + [ n [|Vuz|2 + G(uQ)] dy

< Jou [[Vel + flu)u | dudt + [ [[Vual® + gu)uz | 5
<C{Jy Vil dadt + [ |s* S+ [ lun? dadt + [y Jual a5+ Y }

From (59) and (66), we obtain
fE(wO) [|U/2|2 - |VTu2|2 + |0,,u1|2} dx <

C{an|u’1|2dxdt+be|u’2|2§]+fQ u | dadt + [y, |us|? d
+ [quih. v uide [T + [ ubhr. 7 uoda [T +Y'}

Combining (56) and (67) we get
TE(T) < [ E(t)dt <

C’{an|u'1|2dxdt++fzb|u’2|2d2+fQ Jus |? dadt + [, |u2|2d2}
+ Jquih. v urde |§ + [ ubhr. V1 ueda |§ +Y + X + Z.

(67)
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We now remark that

X+Y+ |fQ ulh. 7 uldx|OT + |fr ubhp. 71 uzdxlf (69)
< CLE(0) + B(D)} < C {2B(1) + [y alui]* dodt + [ b(a) |usl* S},

and that
Zg/|u;|2dz++/|vTu2|2dz+/|u2|2dz.
b)) b b

Combining (67) with (68) for T > 0 large enough, we obtain

T
B(T) g(]{/ a|u’1|2dxdt+/ b(x)\ug\22+/ |u|;dt}. (70)
Q = 0

Step 3
As in the proof of Theorem 2.1, we must obtain the following estimate

T
/0 |uildtgo{/Qa|ug|2dxdt+/Eb(z) |u’2|2d2}. (71)

We will argue by contradiction. If (71) were not satisfied for some constant
C > 0, there will exist a sequence {uy,}of solutions of (1); and (1) verifying
(23). We define {\,} and {v,} by (24) and (26). The functions {v, } satisfy (26)
with the nonlinearities f,, and g, given by (27). On the other hand the sequence
{v,,} satisfies also (28)-(29).

We now remark that the constant C' > 0 in the estimate (70) dependson the
nonlinearities f and g but only in terms of the constants 0; and J2 of hypothesis
(5). But those constants ¢;, i = 1,2, are uniform with respect to the rescaled
family of nonlinearities (27). Therefore, the constant C' of (70)  is uniform on
{fn} and {gn}.

Thus, from (28)-(29) we deduce that {v,} is bounded in H'(Q) x H'(X).
Therefore, we may extract  some sequences verifying (31) and (32). The limit
v e HY(Q) x HY(X) will satisfy (33) and (34).  In order to contradict (33), we
want to apply again a uniqueness argument showing that v = 0. But the the
question is now simpler than in Theorem 2.1.

We remark that the sequence {\,} is necessarily bounded. Indeed, assume that
there is a subsequence (still denoted by {\,}) such that

Ap — 00. (72)

From the uniform estimate (70) we know that

F.(z) = fOT fn(2)dz = 5 F,(An2) is uniformly bounded in L'(Q),
Gn(z) = fOT gn(2)dz = 3 Gp(A\,2) is uniformly bounded in L'(X).

bYd

(73)
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But from (5) one easily deduce that

F(s) > e |s]**r
G(s) > ez |52, Vs|>1

with ¢ = min {F(1), F(—-1)}, ¢ = min{G(1),G(-1)}.
Combining (73) et (74) we conclude that

1 T 1) T
)‘fL fO f{vl,,LZ)\;l} |v1n|2+ '+ fo f{va)\;l} Fo(Anvin) < Cy
T 1) T
Aflz fO f{vznZAﬁl} |U2n|2+ 2 + fO f{anAgl} Gn(/\nUQH) < 02

//l’[}ln‘2+61 — 0, //|’U2n‘2+62 — 07 n — oo,

and therefore a contradiction of (33).

The sequence {\,} being bounded we must only consider the situations (a) and
(b)of step 3 of the proof of Theorem 2.1.

In the situation (a) we proceed as follows. Since vy, is bounded in

which imply

(L%(0,T5 H () N WH(0, T; L*(2))) N (L0, T5 HY(T)) n WH(0, T; L*(I))),

then v, is relatively compact in (L>(0,T; H1=¢(Q))N(L>°(0,T; H'~¢(T)) for every

€ >0. Taking into account that p satisfies (n — 2)p < 2n, we deduce that
the sequence f,(v1y) (resp. gn(van)) converges  strongly to A™'f(\v;) in
L®(0,T; L7 () (resp. to A~ g(Avy) in L®(0,T; L7 (%)) for every
rE [2, %} (when n =2 the convergence holds in L>(0,T’; L™ (£2) (resp.

ins L*°(0,T; L"(I")) for every r > 1). Therefore we may go to the limit in (26)
and we deduce that w = v; (where v is the limit of v,,) satisfies (37)-(38). On the
other hand , since (n —2)p < 2n  we deduce that

b= (b1,b2) = (f'(\), 9(N)) € L(0, T L™()) x LF(0,T; L™ ("))

(whenn =2, be LF(0,T;L"(Q)) x L(0,T;L"(T")) for every r > 1).

In the situation (b) we proceed as in the proof of Theorem 2.1.and we deduce
that w satisfies (38)-(40). In both cases we see that w € L?(Q) x L*(Z) solves an
equation of type (37) with

b= (by,by) € LT(0,T; L(Q)) x L°(0,T; L' (T))

and verifies (38). Applying the unique continuation result of A. Ruiz[9] we
deduce, T' >diameter of 2, w = 0 which contradicts (33).
The proof of the theorem is now complete.
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4. Appendix

For the proof of Lemma 2.1 and Lemma 2.2, we assume that the domain 2 has
a boundary I of class C? . For z° € R™ arbitrary, we consider, for € > 0 the sets

O, = wEFngO)B(x,E); we = 0. NQ,

where B(z, ) is the ball of centre z and of radius € in R™.
Proof of Lemma 2.1.
The first estimation is the following: if T' > 2R(zY),

-6 B[ [ (147 -1Vrel)as+ [omPas] @

for any solution ¢ of (11) which corresponds to the data (¢°,¢') € V x H. This
estimation is proved in K. Lemrabet, D. E. Teniou [5].
Let a > 0 be such that T — 2a > 2R(2°). From (75) and for C' > 0 large enough,

By < C [ fy (Iebl” = [Vreol’) 2
0 oo BuerPdS] V(0 61) € V X HL

It remains to prove the following estimation

(76)

T-a T—o
I o (168l = 1970l ) d 4 [ Jyuoy 1001 45
<c{Jy L Iei O dedt + [ [ b DI a5 (77)
+ foT |V801|2L2(Q) dt + foT |VT802|%2(F) dt} .

We use the multiplier method and we apply the identity (48) with
o(x,t)=t(T —t)h(zx), (78)

where h € [C" (2)]" is the vector field introduced in Remark 3.2 of Chap. I of J.
L. Lions [7], which satifies

h=v onT(z"), hww >0 ae. on T, Supp{h}C w. (79)
We obtain

2 o (166 = 19002 ) 4 4 ST fogao) 1001 [ 45

< Jyow (164 = V202 ) a5 + [ fruo) 00 0001 45

<C@{Jy L@ 0P dedt + [ |ph(e,t) d=

+fy |V<P1\2L2(Q) dt+ Jy |VT<P2|2L2(F) dt} :

(80)

which ends the proof.
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Proof of Lemma 2.3. Consider the case where w = w, with € > 0. Let © = w, /5
be.We fixe a > 0 such that T — 2a > 2R(z") . From Lemma 2.1 and for C' > 0
large enough,

Eo < C{ [ [ (@) dedt + [ [u|¢h(a.t) d=

+f5_a |V‘P1|2Lz(fz) dt + ff_a ‘VT(P2&2(I‘) dt} . oy
(We recall C' = C(1/¢))
We consider a sequence of functions
e € W (0e)
which we denote by 1 and such that
0<n<1inO,n=1in0=w.. (82)
It is clear that we can take 7 such that
ol e .
1) | a0,

Indeed, we can take for example
1 in 05/2
= 2", 84
n { L (e—d(2,0w.s2) in 0O (84

where d (x, Bws/g) is the distance from x to the boundary dw, /5.
We use the multiplier method of Lemma 2.1, here with

§(z,t) =t(T —t)n(p1,02)- (85)
We denote by ¢ (t) =¢(T —t).
Multiplying (11) by &, integrating in @ and on ¥ and doing sommation, we obtain
Jolc® (m) (17 + ¢ (0)1(2) @1 | dodt
+ Js [COM @)1l + ¢ (0 (@) ot drat
= Jo [¢Wn @) Ve, + ¢ (1) 0, V0.V, | dadt
+ s [C O @) [Vrea + ¢ (1) 92 Ve Vg, | drdt.

On the other hand, for every € > 0, we have

‘fQ t) V.V dadt + [5 ¢ gogan vadz(
< foC B0 (@) Vel dwdtwa ) L |V, [ dwdt (87)

t+e [x C(t)n (@) Voo dS + +£ f2<< 'V(—< |V, | d5,

(86)

Combining (81), (86) and (87) for e < 1, we obtain, for C > 0 large enough,
the estimation (19) where the order of C' is C' = O(1/£?).
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