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Periodic Solutions of a Neutral Difference System

Gen-Qiang Wang & Sui Sun Cheng

abstract: Sufficient conditions in terms of the matrix measure for the periodic
solutions of a neutral type delay difference system

∆[x (n) + cx (n− τ)] = A (n, x (n)) x (n) + f (n, x (n− σ))

are given.

Key words: Kransnolselskii fixed point theorem, periodic solution, neutral system

Contents

1 Introduction 117

2 Preliminaries 118

3 Main Results 122

1. Introduction

There are many studies related to periodic solutions of difference equations such
as

∆x(n) = A(n, x(n))x(n) + f(n, x(n− σ)), n ∈ Z,

see e.g. [1,2,3,4,5]. One basic assumption behind such an equation is that the
change x(n + 1) − x(n) is, aside from a perturbation, ‘proportional’ to x(n). Yet
there are cases when the effect of the change x(n−τ+1)−x(n−τ) is also important.
In this paper, we consider difference systems of the form

∆[x (n) + cx (n− τ)] = A (n, x (n)) x (n) + f (n, x (n− σ)) , n ∈ Z, (1)

where Z = {0,±1,±2, ...} , τ and σ are integers, c ∈ R and |c| < 1, A : Z ×Rs →
Rs×s and f : Z × Rs → Rs are continuous functions such that for some positive
integer ω, A (n + ω, x) = A (n, x) and f (n + ω, x) = f (n, x) for (n, x) ∈ Z ×Rs.

A solution of (1) is a real vector sequence of the form x = {x (n)}n∈Z which
renders (1) into an identity after substitution. As in the previous studies, we are
concerned with the existence of solutions which are ω-periodic, that is, solutions
that satisfy x (n + ω) = x (n) for n ∈ Z.

We will invoke the Krasnolselskii fixed point theorem for finding ω-periodic
solutions of (1): Suppose B is a Banach space and G is a bounded, convex and
closed subset of B. Let S, P : X → B satisfy the following conditions: (i) Sx+Py ∈
G, for any x, y ∈ G, (ii) S is a contraction mapping, and (iii) P is completely
continuous. Then S + P has a fixed point in G.
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2. Preliminaries

First of all, for any real (scalar) sequence {un}n∈Z , we define a nonstandard
summation operation:

⊕
β
n=αun =





∑β
n=α un, α ≤ β

0, β = α− 1
−∑α−1

n=β+1 un, β < α− 1
.

Next, we recall the matrix norms and matrix measures. Let C be the set of
complex numbers. Let |·|p be the standard p norm for the linear space Cs. For
each matrix A ∈ Cs×s, the quantity ‖A‖p defined by

‖A‖p = sup
|x|p 6=0

|Ax|
p

|x|P
(2)

is called the induced (matrix) norm of A corresponding to the vector norm |·|p .

The matrix measure corresponding to ‖·‖p is the function µp : Cs×s → R defined
by

µp (A) = lim
k→+∞

k

(∥∥∥∥I +
1
k

A

∥∥∥∥
p

− 1

)
. (3)

It is known (see e.g. [6]) that µp has the following properties:
(i) For each A ∈ Cs×s, the limit indicated in (3) exists and is well defined;
(ii) −‖A‖p ≤ −µp (−A) ≤ µp (A) ≤ ‖A‖p for A ∈ Cs×s,

(iii) µp (αA) = αµp (A) for α > 0 and A ∈ Cs×s,

(iv) for A,B ∈ Cs×s,

max {µp (A)− µp (−B) ,−µp (−A) + µp (B)} ≤ µp (A + B) ≤ µp (A) + µp (B) ,

(v) µp is convex, that is, for α ∈ [0, 1] and A,B ∈ Cs×s,

µp {αA + (1− α) B} ≤ αµp (A) + (1− α)µp (B) ,

(iv) −µp (−A) ≤ Reλ ≤ µp (A) whenever λ is an eigenvalue of A.

As examples (see e.g. [6]), let x = (x1, ..., xs)T , A = (aij)s×s ∈ Cs×s, then
|x|∞ = max0≤i≤s |xi| , ‖A‖∞ = max0≤i≤s

∑
j |aij | , µ∞ (A) = max0≤i≤s {aii +

∑
j 6=i |aij |} ,

|x|1 =
∑

i |xi| , ‖A‖1 = max0≤j≤s

∑
i |aij | , µ1 (A) = max0≤j≤s

{
ajj +

∑
i 6=j |aij |

}
.

LEMMA 1. Let A = (aij)s×s ∈ Rs×s and |aii| ≤ 1 for i = 1, 2, ..., s. Then for all
positive integer k,

‖I + A‖p ≤ k

∥∥∥∥I +
1
k

A

∥∥∥∥
p

− (k − 1) , p = 1,∞. (4)
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Proof: By definition, for each positive integer k, there is an integer i0 ∈ {1, 2, ..., s}
such that

∥∥∥∥
1
k

I +
1
k

A

∥∥∥∥
∞

=
ai0i0

k
+

1
k

+
1
k

∑
j 6=i0 |aij |

= 1 +
ai0i0

k
+

1
k

∑
j 6=i0 |aij | − k − 1

k

≤
∣∣∣1 +

ai0i0

k

∣∣∣ +
1
k

∑
j 6=i0 |aij | − k − 1

k

≤
∥∥∥∥I +

1
k

A

∥∥∥∥
∞
− k − 1

k
. (5)

It follows that

‖I + A‖p = k

∥∥∥∥
1
k

I +
1
k

A

∥∥∥∥
∞
≤ k

∥∥∥∥I +
1
k

A

∥∥∥∥
∞
− (k − 1) . (6)

The other case where p = 1 may similarly be proved.
Next we recall some basic facts about linear periodic difference systems. Con-

sider the system
∆x (n) = A (n)x (n) , n ∈ Z, (7)

where A (n) = (aij(n))s×s ∈ Rs×s, I + A(n) is nonsingular and A (n + ω) =
A (n) for n ∈ Z. Let Φ(n, n0) be the fundamental matrix of (7) which satisfies
Φ(n0, n0) = I. Recall that

Φ(n, n0) =
n−1∏

i=n0

(I + A(i)), n > n0

and

Φ(n, n0) =
n0−1∏

i=n

(I + A(i))−1, n < n0,

and any solution of (7) is of the form x(n) = Φ(n, n0)x(n0), and for n, δ, t ∈ Z,

Φ(n, δ) Φ (δ, t) = Φ (n, t) , (8)

and
Φ(n + 1, δ)− Φ(n, δ) = A (n)Φ (n, δ) , (9)

As a consequence, if {x(n)}n∈Z is any one nontrivial ω-periodic solution of (7),
then x(0) 6= 0 and

(I − Φ(ω, 0)) x(0) = (Φ(0, 0)− Φ(ω, 0)) x(0) = 0,

so that
det (I − Φ(ω, 0)) = 0.
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Conversely, if det (I − Φ(ω, 0)) = 0, then there is some x0 6= 0 such that Ix0 =
Φ(ω, 0)x0. Let x = {x(n)}n∈Z be the unique solution of (7) which satisfies x(0) =
x0. Since x(ω) = Φ(ω, 0)x0 = x(0), x is a nontrivial ω-periodic solution of (7).
LEMMA 2. Let {x (n)}n∈Z be a solution of (7). If A (n) = (aij (n))s×s ∈ Rs×s

and |aii (n)| < 1 for 1 ≤ i ≤ s and n,m ∈ Z, n > m, then

|x (n)|∞ ≤ |x (m)|∞ exp
{⊕

n−1
i=mµ∞ (A (i))

}
. (10)

Proof: In view of (7), we have

x (i + 1) = (I + A (i)) x (i) , i > m. (11)

By (11) and Lemma 1, we see that

|x (i + 1)|∞ ≤ ‖I + A (i)‖∞ |x (i)|∞ ≤
(

k

∥∥∥∥I +
1
k

A (i)
∥∥∥∥
∞
− (k − 1)

)
|x (i)|∞

≤ exp
{(

k

∥∥∥∥I +
1
k

A

∥∥∥∥
∞
− k

)}
|x (i)|∞

Taking limits on both sides as k → +∞, we see that

|x (i + 1)|∞ ≤ exp (µ∞ (A (i))) |x (i)|∞ , i > m, (12)

which implies (10). The proof is complete.
As an immediate consequence, the fundamental matrix of (7) satisfies

‖Φ (n,m)‖∞ ≤ exp
{⊕

n−1
i=mµ∞ (A (i))

}
, n > m. (13)

Let us seek a solution x = {x(n)}n∈Z of the following nonhomogeneous system
associated with (7):

∆x(n) = A(n)x(n) + F (n), n ∈ Z, (14)

where F : Z → Rs satisfies F (n + ω) = F (n) for n ∈ Z. By the method of
undetermined coefficients, we assume

x(n) = Φ(n, n0)y(n), n ∈ Z, (15)

where Φ(n, n0) is the fundamental matrix of (7) satisfying Φ(n0, n0) = I but y =
{y(n)}n∈Z is to be sought. Since

Φ(n + 1, n0) y (n + 1) = (I + A (n))Φ (n, n0) y (n) + F (n), (16)

and
Φ(n + 1, n0) = (I + A (n))Φ (n, n0) , (17)

we have
Φ(n + 1, n0)∆y (n) = F (n) . (18)
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Thus
∆y (n) = Φ (n + 1, n0)

−1
F (n) = Φ (n0, n + 1) F (n) , (19)

so that
y (n) = y (n0) +

⊕
n−1
i=n0

Φ(n0, i + 1) F (i) , n ∈ Z, (20)

We have thus found a solution {x(n)}n∈Z of (14) defined by

x (n) = Φ (n, n0)x (n0) + Φ (n, n0)
⊕

n−1
i=n0

Φ(n0, i + 1) F (i)

= Φ (n, n0)x (n0) +
⊕

n−1
i=n0

Φ(n, i + 1) F (i) (21)

for n ∈ Z.
THEOREM 1. Suppose (7) does not have any nontrivial ω-periodic solutions.

exp
{⊕

ω−1
i=0 µ∞ (A (i))

}
< 1. (22)

If the nonhomogeneous system (14) has an ω-periodic solution {x(n)}n∈Z , then
{x(n)}n∈Z is an ω-periodic solution of the system

x (n) = (I − Φ(n + ω, n))−1
⊕

n+ω−1
i=n Φ(n + ω, i + 1) F (i) , n ∈ Z. (23)

Conversely, if {x(n)}n∈Z is an ω-periodic solution of (23), then it is also an ω-
periodic solution of (14).

Indeed, recall that (7) does not have any nontrivial ω-periodic solutions if, and
only if, det (I − Φ(ω, 0)) 6= 0. Let {x (n)}n∈Z be an ω-periodic solution of (14).
Then in view of (21),

x (n0) = (I − Φ(ω, 0))−1
⊕

n0+ω−1
i=n0

Φ(n0 + ω, i + 1) F (i) . (24)

By (21) again and relations (13) and (22),

x (n) = (I − Φ(n + ω, n))−1
⊕

n+ω−1
i=n Φ(n + ω, i + 1) F (i) , n ∈ Z. (25)

The converse is easily seen by reversing the arguments above. The proof is com-
plete.

For the sake of simplicity, let the norm |·|∞ , induced norm ‖·‖∞ and the cor-
responding matrix measure µ∞ (·) be denoted by |·| , ‖A‖ and µ (A) respectively.
Let lω be the Banach space of all real vector ω-periodic sequences of the form
x = {x (n)}n∈Z (where x (n) ∈ Rs) endowed with the usual linear structure
as well as the norm ‖x‖2 = ‖x‖0 + ‖x‖1 where ‖x‖0 = max0≤i≤ω−1 |x (i)| and
‖x‖1 = max0≤i≤ω−1 |∆x (i)|.
LEMMA 3. A subset D of lω is relatively compact if and only if D is bounded.
Proof: It is easy to see that if D is relatively compact in lω, then D is bounded.
Conversely, if the subset D of lω is bounded, then there is a subset

Γ := {x ∈ lω| ‖x‖0 ≤ H, ‖x‖1 ≤ H},
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where H is a positive constant, such that D ⊂ Γ. It suffices to show that Γ is
relatively compact in lω. To see this, note that for each ε > 0, we may choose
numbers y0 < y1 < ... < ym such that y0 = −H, ym = H and yi+1 − yi < ε/4, for
i = 0, ..., m− 1. Then the set Γ1 of all real ω-periodic vector sequence of the form

{
(v1 (n) , v2 (n) , ..., vs (n))T

}
n∈Z

that satisfies vj(i) ∈ {y0, y1, ..., ym−1} for j = 1, 2, ..., s and i = 0, ..., ω − 1 is
a finite ε-net of Γ. Indeed, it is easy to see that Γ1 is a finite subset of lω,
furthermore, for any x = {x (n)}n∈Z ∈ Γ, we can let ν = {v (n)}n∈Z ∈ Γ1

such that |xj (n)− vj (n)| < ε/4 for j = 1, 2, ..., s and n = 0, ..., ω − 1. Then
|x (n)− v (n)| ≤ ε/4 and

|∆x (n)−∆v (n)| ≤ |x (n + 1)− v (n + 1) |+|x (n)− v (n)| ≤ ε/2,

for n = 0, ..., ω − 1, so that

‖x− ν‖2 = ‖x− ν‖0 + ‖x− ν‖1 ≤ ε/4 + ε/2 < ε.

The proof is complete.

3. Main Results

We first recall the conditions imposed on (1): |c| < 1 and A : Z × Rs →
Rs×s and f : Z × Rs → Rs are continuous functions such that for some positive
ω, A (n + ω, x) = A (n, x) and f (n + ω, x) = f (n, x) for (n, x) ∈ Z × Rs. Let
A(n, x) = (aij(n, x))s×s .
THEOREM 2. Suppose there is a nontrivial ω-periodic sequence {α (n)}n∈Z

such that
β = exp

(⊕
ω−1
i=0 α (i)

)
< 1

and |aij (n, x)| < 1 for 1 ≤ i, j ≤ s and (n, x) ∈ Z ×Rs and

µ (A (n, x)) ≤ α (n) , n ∈ Z. (26)

Suppose further that there is M > 0 such that

⊕
ω−1
n=0 sup

|x|≤M

|f (n, x)| < (1− β)M (1− 2 |c|)
M0

− ML + b0

(1− |c|) |c|ω (27)

where
L = sup

|x|<M,0≤n≤ω

‖A (n, x)‖ , (28)

b0 = sup
0≤n≤ω−1,|x|≤M

|f (n, x)|

and
M0 = sup

0≤s≤t≤ω−1
exp

(⊕
t
i=sα (i)

)
.
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Then (1) has an ω-periodic solution.
Proof: For each u = {u (n)}n∈Z ∈ lω, consider the periodic system of the form

∆x (n) = A (n, u (n)) x (n) , n ∈ Z, (29)

and

∆x (n) = A (n, u (n))x (n) + f (n, u (n− σ))− c∆u (n− τ) , n ∈ Z. (30)

Since |aij (n, x)| < 1 for 1 ≤ i, j ≤ s and (n, x) ∈ Z × Rs, I + A(n, u(n)) is
nonsingular for each n ∈ Z. Let Φu(n, n0) be the fundamental matrix of (29) which
satisfies Φu(n0, n0) = I. By (13) and our assumption, we have

‖Φu (ω, 0)‖ ≤ exp
{⊕

ω−1
i=0 µ (A (i, u (i)))

}
≤ exp

(⊕
ω−1
i=0 α (i)

)
< 1, (31)

thus (I − Φu (ω, 0))−1 exists, which shows that (29) has no nontrivial ω-periodic
solutions.

Define the mappings S : lω → lω and P : lω → lω by

(Su) (n) = −cu (n− τ) , (32)

and

(Pu) (n) = cu (n− τ) + (I − Φu (n + ω, n))−1 ×⊕
n+ω−1
i=n {Φu (n + ω, i + 1) [f (i, u (i− σ))− c∆u (i− τ)]}(33)

for n ∈ Z. Then

(Su + Pu)(n) = (I − Φu (n + ω, n))−1 ×⊕
n+ω−1
i=n {Φu (n + ω, i + 1) [f (i, u (i− σ))− c∆u (i− τ)]}

for n ∈ Z. Thus if u is a fixed point of the operator S + P, then by Theorem 1, it
is also an ω-periodic solution of (30).

We now show that the asusmptions in the Krasnoselskii’s Theorem are satisfied,
so that a fixed point of S + P can indeed be found. Let

N =
ML + b0

1− |c| . (34)

Define
G =

{
x ∈ lω : ‖x‖0 ≤ M, ‖x‖1 ≤ N

}
, (35)

it is easy to see that G is a bounded, closed and convex subset of lω.
It is easily seen that the condition |c| < 1 implies S is a contraction mapping.

Next we assert that for any u, v ∈ G, that satisfy ‖Su + Pv‖0 ≤ M. Indeed, since

‖Φu (n + ω, s)‖ ≤ exp
{⊕

n+ω−1
i=s µ (A (i, u (i)))

}

≤ exp
(⊕

n+ω−1
i=s α (i)

)
< M0, n ≤ s ≤ n + ω − 1, (36)
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and by using (13) get
∥∥∥(I − Φu (n + ω, n))−1

∥∥∥ =
∥∥∥
⊕∞

i=0 (Φu (n + ω, n))(i)
∥∥∥

≤
⊕∞

i=0

∥∥∥(Φu (n + ω, n))(i)
∥∥∥ ≤

⊕∞
i=0β

i =
1

1− β
.(37)

From (27), (32), (33), (34), (35), (36) and (37), we have

|(Su) (n) + (Pv) (n)|
≤ |(Su) (n)|+ |(Pv) (n)|

≤ 2 |c|M +
∥∥∥(I − Φv (n + ω, n))−1

∥∥∥
⊕

n+ω−1
i=n ‖Φu (n + ω, i + 1)‖

[
sup
|x|≤M

|f (n, x)|+ |c|N
]

≤ 2 |c|M +
M0

1− β

[⊕
n+ω−1
i=n sup

|x|≤M

|f (n, x)|+ |c|Nω

]

≤ M0

1− β

{
1− β

M0
2 |c|M + |c|Nω +

⊕
n+ω−1
i=n sup

|x|≤M

|f (n, x)|
}

≤ M0

1− β

{
1− β

M0
2 |c|M +

ML + b0

1− |c| |c|ω + M

[
(1− β)

M0
(1− 2 |c|)− ML + b0

M (1− |c|) |c|ω
]}

= M. (38)

Since
∆((Su) (n)) = −c∆u (n− τ) . (39)

and
∆ (Pv) (n) = A (n, v (n)) {(Pv) (n) + (Sv) (n)}+ f(n, v (n− σ)), (40)

we have

|∆((Su) (n) + Pv (n))|
≤ ‖A (n, v (n))‖ {|(Pv) (n) + (Sv) (n)|}+ |f(n, v (n− σ))|+ |c∆u (n− τ)|
= LM + b0 + |c|N = N,

so that ‖Su + Pv‖1 ≤ N. We have now proved that for u, v ∈ G, Su + Pv ∈ G.
Next, we prove that P is a completely continuous operator from G into G. For

u, v ∈ G, let V = Pu− Pv. By (40), we know that

∆(V (n)) = A (n, u (n)) {(Pu) (n) + (Su) (n)}+ f(n, u (n− σ))
−A (n, v (n)) {(Pv) (n) + (Sv) (n)} − f(n, v (n− σ))

= A (n, u (n)) V (n) + [A (n, u (n))−A (n, v (n))] (Pv) (n)
+A (n, u (n)) [(Su) (n)− (Sv) (n)]
+ [A (n, u (n))−A (n, v (n))] (Sv) (n)
+f(n, u (n− σ))− f(n, v (n− σ)). (41)
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Let

w (t, u (n) , v (n)) = −A (n, u (n)) c [u (n− τ)− v (n− τ)]
+ [A (n, u (n))−A (n, v (n))] [(Pv) (n) + (Sv) (n)]
+f(n, u (n− σ))− f(n, v (n− σ)). (42)

Noting that A (n, x) and f(n, x) for 0 ≤ n ≤ ω − 1 are continuous on G and
Pv + Sv is bouned, we see that when ‖u− v‖2 → 0, |w (t, u (n) , v (n))| → 0 holds
for 0 ≤ n ≤ ω − 1. By (41), we have

∆ (V (n)) = A (n, u (n)) V (n) + w (t, u (n) , v (n)) , (43)

that is, V (n) is an ω-periodic solution of (43). By Thereom 1 we have

|V (n)| ≤
∥∥∥(I − Φu (n + ω, n))−1

∥∥∥
⊕

n+ω−1
i=n Φu (n + ω, i + 1) |w (t, u (i) , v (i))|

≤ M0

1− β

⊕
n+ω−1
i=n |w (t, u (i) , v (i))| . (44)

Thus, we see that when ‖u− v‖0 → 0, ‖Pu− Pv‖0 = ‖V ‖0 → 0. On the other
hand, in view of (41), we see that ‖u− v‖0 → 0 and ‖Pu− Pv‖1 = ‖V ‖1 =
‖∆V ‖0 → 0. Hence if ‖u− v‖2 → 0, then ‖u− v‖0 → 0 and so ‖Pu− Pv‖2 =
‖Pu− Pv‖0 + ‖Pu− Pv‖1 → 0, that is, P is a continuous mapping on G. On the
other hand, note that PG ⊂ G and G is bounded, from Lemma 3, we know that
PG is relatively compact. Thus P is a completely continuous mapping from G into
G. By means of the Krasnoselskii’s thereom, we know that P +S has a fixed point
in G. By Theorem 1, (1) has an ω-periodic solution. The proof is complete.
COROLLARY 1. Suppose there is a nontrivial ω-periodic sequence{α (n)}n∈Z

such that
β = exp

(⊕
ω−1
i=0 α (i)

)
< 1,

and |aii (n, x)| < 1 for 1 ≤ i, j ≤ s and (n, x) ∈ Z ×Rs and

µ (A (n, x)) ≤ α (n) ≤ 0.

Suppose further that there is M > 0 such that

⊕
ω−1
i=0 sup

|x|≤M

|f (i, x)| < (1− β)M (1− 2 |c|)− ML + b0

(1− |c|) |c|ω,

where
L = sup

|x|<M,0≤n≤ω

‖A (n, x)‖

and
b0 = sup

0≤n≤ω−1,|x|≤M

|f (n, x)| .

Then (1) has an ω-periodic solution.
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As an example, consider the two dimensional nonlinear neutral difference system
of the form

∆
[
x (n)− 1

16
x (n− τ)

]
= A (n, x (n)) x (n) + f (n, x (n− σ)) , n ∈ Z, (45)

where τ and r are positive integers,

A (n, x) =

(
−1
4

(−1)n

8 exp
(−x2

1 − x2
2

)
(−1)n

8 exp
(−x4

1 − x4
2

) −1
4

)
, n ∈ Z,

and

f (n, x) =

(
(−1)n

4 exp
(−x2

1 − x2
2

)
(−1)n+1

8 exp
(−x8

1 − x8
2

)
)

, n ∈ Z.

It is easy to see that |aii (n, x)| = 1
4 < 1 for i = 1, 2, µ∞ (A (n, x)) ≤ − 1

8
and sup0≤n≤1,|x|≤M |f (n, x)|∞ ≤ 1

4 . If we let α (n) = − 1
8 and M = 16, then

β = exp
(⊕ ω−1

i=0 α (i)
)

= e−
1
4 and L = sup|x|<M,0≤n≤ω ‖A (n, x)‖∞ = 3

8 , b0 =
sup0≤n≤1,|x|≤M |f (n, x)| = 1

4 ,
⊕ ω−1

i=0 sup|x|≤M |f (n, x)| ≤ 1
2 . In view of these cal-

culations, we may see that the conditions of Corollary 1 are satisfied. Hence (45)
has a 2-periodic solution. This solution is also nontrivial, since f(n, 0) 6= 0.
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