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A class of global weak solutions to the axisymmetric isentropic Euler
equations of perfect gases in two space dimensions

Paul Godin

We consider the compressible isentropic Euler equations for a perfect gas (t >
0, x ∈ RN ) :

∂tρ +
∑

1≤k≤N

∂k(ρuk) = 0 (1)

(conservation of mass),

∂t(ρui) +
∑

1≤k≤N

∂k(ρukui) + ∂ip = 0, (2i)

1 ≤ i ≤ N (conservation of momentum), where ρ is the density, u =




u1

...
uN


 the

velocity, and p(ρ) the pressure. We assume that p(ρ) = aργ , a > 0, 1 < γ ≤ 1+
2
N

.
We impose the initial conditions

u(x, 0) = u0(x), ρ(x, 0) = ρ0(x). (3)

One has the following results.

(I) If ρ0 = ρ̄ + ρ1, where ρ̄ > 0 is a constant, ρ1 and u0 ∈ Hs(RN ) with s an

integer >
N

2
+ 1 and inf ρ0 > 0, one can find a solution to (1), (2), (3) for t

small (see [7]).

(II) If ρ
γ−1

2
0 and u0 ∈ Hs

ul(RN ), s integer > N
2 + 1 and ρ0 > 0, one can find

a solution to (1), (2), (3) for t small (Chemin [2]). Here Hs
ul(RN ) = {v ∈

Hs
loc(RN ), supx∈RN ||ϕxv||s < +∞ if ϕ ∈ C∞0 (RN )}, where ϕx(y) = ϕ(x− y)

and || ||s is the standard Hs norm.

In general, solutions to (1), (2), (3) are not global in t (Sideris [10], Rammaha
[8]). In case (I), when N = 2 and ρ0, u0 are rotation invariant around 0 with
ρ1 = ερ̃1, u0 = εũ0, ρ̃1, ũ0 ∈ C∞0 (R2) and |ρ̃1|+ |divũ0| 6≡ 0, Alinhac [1] has shown

that the lifespan of solutions is ∼ 1
ε2

(ε small); see also Sideris [11].
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Grassin-Serre [5] and Grassin [4] have obtained global results (see also [9]) that
we are going to describe now. If ρ never vanishes, it follows from (1), (2) that

∂tui +
∑

1≤k≤N

uk∂kui +
∂ip

ρ
= 0 (2′i)

for 1 ≤ i ≤ N . One can symmetrize (1), (2′i) (1 ≤ i ≤ N) by introducing π =

C−1
1

√
p′(ρ), C1 =

γ − 1
2

. (1), (2′i) (1 ≤ i ≤ N) become

∂tπ +
∑

1≤k≤N

uk∂kπ + C1π
∑

1≤k≤N

∂kuk = 0, (4)

∂tui +
∑

1≤k≤N

uk∂kui + C1π∂iπ = 0, (5i)

1 ≤ i ≤ N . This symmetrization has already been used by Chemin [2] for (II).
Consider the initial data

u(x, 0) = u0(x), π(x, 0) = π0(x). (6)

Grassin-Serre and Grassin have introduced the following assumptions :

∂αu0 ∈ L∞(RN ) if |α| = 1, ∂αu0 ∈ Hs−1(RN )

if |α| = 2, infx∈RN dist(sp du0(x),R−) > 0,

π0 ∈ Hs(RN ) and ||π0||s is small (s integer >
N

2
+ 1).





(7)

Theorem 1 ( [5], [4]). If (7) is satisfied, (4), (5), (6) has a global solution when
t > 0, x ∈ RN .

This theorem is obtained by comparing (π, u) with (0, ū), where (0, ū) is the
solution to (4), (5i),1 ≤ N , with initial data (0, u0).

The purpose of this talk is to describe a result of the same type (contained in
[3]) for a class of non-smooth initial data.

We shall assume that N = 2 and consider initial data which are rotation invari-
ant around 0, so u0(Sx) = Su0(x) and π0(Sx) = π0(x) for every rotation S with
center 0. It follows that

u0(x) = A0(r)
x

r
+ B0(r)

x⊥

r
and π0(x) = Π0(r) with r = |x|,

x⊥ = (−x2, x1).

We start with ū0(x) = Ā0(r)
x

r
+ B̄0(r)

x⊥

r
, satisfying (7) with s = 3, and consider

two small perturbations of ū0, namely u
(1)
0 , u

(2)
0 , rotation invariant around 0. We

assume that
∑

|α|≤1

|∂α(u(j)
0 − ū0)|+

∑

|α|=2

||∂α(u(j)
0 − ū0)||2 ≤ ε.
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Consider π
(j)
0 (x) ≡ Π(j)

0 (r) > 0, j = 1, 2, such that ||π(j)
0 ||3 ≤ ε and Π(j)

0 (r) ≥ C0ε
if 0 ≤ (−1)j(r − 1) ≤ Cε (C > 0 large enough). Put

(π0, u0) =





(π(1)
0 , u

(1)
0 ) if r < 1,

(π(2)
0 , u

(2)
0 ) if r > 1.

Write u0(x) = A0(r)
x

r
+ B0(r)

x⊥

r
, π0(x) = Π0(r), and assume that

0 < [A0 ±Π0](1) ≤ C2ε
2+θ,

0 < |[B2
0 ](1)| ≤ C3ε,

where C2, C3 are small and 0 < θ <
1
2
. Here [F ](1) = lim

r
>→1

F (r)− lim
r

<→1
F (r).

Theorem 2 ( [3]). If ε is small, there exists a weak solution to (1), (2) which
is rotation invariant around 0 and global in t > 0, such that ρ|t=0 = C̃π

1/C1
0 ,

u|t=0 = u0, where C̃ = C
1/C1
1 (aγ)−1/2C1 . This solution consists of two centered

waves (in the (r, t) variables) and one contact discontinuity.
Local existence is obtained by adapting results and ideas of [6]. The global

results can be proved by a continuation method.
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