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On a Transmission Problem for Dissipative Klein-Gordon-Shrödinger
Equations

J. A. Soriano1 and A. M. Lobeiro

abstract: In this paper we consider a transmission problem for the Cauchy
problem of coupled dissipative Klein-Gordon-Shrödinger equations and we prove
the existence of global solutions.

Contents

1 Introduction 79

2 Notation 80

3 Existence of solutions 81

1. Introduction

Let ]0, L3[ be a bounded open interval of IR such that L1, L2 ∈]0, L3[. We
denote by Ω the set ]0, L1[∪]L2, L3[.

In this work we prove the existence of strong and weak solutions of a transmis-
sion problem for the coupled Klein-Gordon-Shrödinger equations with dissipative
term, given by the following system:

iψt + ψxx + iαψ + φψ = 0 in Ω×]0,∞[ (1.1)
φtt − φxx + φ + βφt = |ψ|2 in Ω×]0,∞[ (1.2)

θtt − θxx = 0 in ]L1, L2[×]0,∞[ (1.3)

where α and β are positive constants.
The system is subjected to the following boundary conditions.

ψ(0, t) = ψ(L3, t) = φ(0, t) = φ(L3, t) = 0 (1.4)
φ(Li, t) = θ(Li, t) ; φx(Li, t) = θx(Li, t) ; i = 1, 2 (1.5)

ψx(Li, t) = 0 ; i = 1, 2 (1.6)

and initial conditions

ψ(x, 0) = ψ0(x) ; x ∈ Ω (1.7)
φ(x, 0) = φ0(x) ; φt(x, 0) = φ1(x) ; x ∈ Ω (1.8)
θ(x, 0) = θ0(x) ; θt(x, 0) = θ1(x) ; x ∈]L1, L2[ (1.9)
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Controllability for transmission problems has been studied by several authors,
and we mention a few works. The transmission problem for the wave equation was
studied by Lions [7], where he applied the Hilbert Uniqueness Method (HUM) to
show exact controllability. Latter, Lagnese [6], also applying HUM, extended this
result; he showed the exact controllability for a class of hyperbolic systems which
include the transmission problem for homogeneous anisotropic materials. The ex-
act controllability for the plate equation was proved by Liu and Williams [9]. Some
results about existence, uniqueness and regularity for elliptic stationary transmis-
sion problem can be found in Athanasiadis and Stratis [1] and Ladyzhenskaya and
Ural’tseva [5].

Concerning stability, Liu and Williams [8] studied a transmission problem for
the wave equation and showed exponential decay of the energy provided a linear
feedback velocity is applied at the boundary. Marzocchi et al.[10] proved that the
solution of a semi-linear transmission problem between an elastic a thermoelastic
material, decays exponentially to zero.

Let us mention some works related with the Klein-Gordon -Schrödinger equa-
tions. Fukuda and Tsutsumi[4] studied the initial-boundary value problem for the
coupled Klein-Gordon -Schrödinger equations in three space dimensions. In the
case of one space dimension, the existence of global smooth solutions has been
established by the authors [3]. Boling and Yongsheng [2] considerer the Cauchy
problem of coupled dissipative proved a existence Klein-Gordon -Schrödinger equa-
tions in IR3 and prove the existence of the maximal attractor.

The objective of this paper is to prove the existence of strong and weak solutions
to problem (1.1)-(1.9). The proof of the existence is based on the Galerkin method
and employed techniques in [2].

2. Notation

For brevity, we denote the space of complex-valued functions and real-valued
functions and real-valued functions by the same symbols.

Let Lp(Ω) be the usual Lebesgue space of complex-valued or real-valued func-
tions whose p-times powers are integrable with norm:

|u|p =
(∫

Ω

|u(x)|pdx

)1/p

< +∞ (1 ≤ p < +∞).

|u|∞ = ess sup
x∈Ω

|u(x)| < +∞ (p = +∞).
(2.1)

In particular, L2(Ω) is the Hilbert space with inner product and norm:

(u, v) =
∫

Ω

u(x)v(x)dx, |u|2 = ‖u‖ = (u, u)1/2. (2.2)

Hm(Ω) (m is an interger ≥ 1) denote the complex or real Sobolev spaces whose
distributional derivatives of order ≤ m lie in L2(Ω) equipped with inner product
and norm:

(u, v)m =
m∑

j=0

∫

Ω

Dju(x)Djv(x)dx, ‖u‖m = (u, u)1/2
m . (2.3)



Klein-Gordon-Shrödinger Equations 81

Let us define the subspace

H1
L(Ω) = {w ∈ H1(Ω);w(0) = w(L3) = 0}

It follows that H1
L(Ω) is a Hilbert subspace of H1(Ω). We can prove that in H1

L(Ω)
the norm

‖w‖2 =
∫

Ω

|wx(x)|2dx (2.4)

and the H1
L(Ω) norm are equivalents. Consequently, we consider H1

L(Ω) equipped
with the norm (2.4) and the scalar product

((v, w)) =
∫

Ω

vx(x) · wx(x)dx (2.5)

Also let us define the subspace

V = {{u, v} ∈ H1
L(Ω)×H1(]L1, L2[) ; u(Li) = v(Li) , i = 1, 2}

Note that V is a closed subspace of H1
L(Ω)×H1(]L1, L2[) which together with

the norm

‖{u, v}‖2V =
∫

Ω

|ux(x)|2dx +
∫ L2

L1

|vx(x)|2dx (2.6)

is a Hilbert space.

3. Existence of solutions

In this section we establish existence and uniqueness results for problem [(1.1)−
(1.9)].

First of all, we define what we will understand for strong and weak solution of
the problem [(1.1)− (1.9)].

Definition 3.1 We say that (ψ, φ, θ) is a strong solution of [(1.1)− (1.9)] when

ψ ∈ L∞loc(0,∞;H2(Ω) ∩H1
L(Ω))

ψt ∈ L∞loc(0,∞;H1
L(Ω))

{φ, θ} ∈ L∞loc(0,∞; [H2(Ω)×H2(]L1, L2[)] ∩ V )
{φt, θt} ∈ L∞loc(0,∞;V )
{φtt, θtt} ∈ L∞loc(0,∞;L2(Ω)× L2(]L1, L2[))
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satisfying the identities

iψt + ψxx + iαψ + φψ = 0 in L∞loc(0,∞; L2(Ω))
φtt − φxx + φ + βφt = |ψ|2 in L∞loc(0,∞; L2(Ω))

θtt − θxx = 0 in L∞loc(0,∞; L2(]L1, L2[)
ψ(0, t) = ψ(L3, t) = φ(0, t) = φ(L3, t) = 0 ; t > 0

φ(Li, t) = θ(Li, t) ; φx(Li, t) = θx(Li, t) ; t > 0 , (i = 1, 2)
ψx(Li, t) = 0 ; t > 0 , (i = 1, 2)

ψ(x, 0) = ψ0(x) ; x ∈ Ω
φ(x, 0) = φ0(x) e φt(x, 0) = φ1(x) ; x ∈ Ω
θ(x, 0) = θ0(x) e θt(x, 0) = θ1(x) ; x ∈]L1, L2[

Definition 3.2 Let T > 0 be real. We say that (ψ, φ, θ) is a weak solution of
[(1.1)− (1.9)] when

ψ ∈ L∞(0, T ; H1
L(Ω))

{φ, θ} ∈ L∞(0, T ; V ) , {φt, θt} ∈ L∞(0, T ; L2(Ω)× L2(]L1, L2[))

satisfying the identities

∫ T

0

∫

Ω

[−iψΨ̄t − ψxΨ̄x + iαψΨ̄ + φψΨ̄
]
dxdt =

∫

Ω

iψ0(x)Ψ̄(x, 0)dx

∫ T

0

∫

Ω

[
φΦtt + φxΦx + φΦ− βφΦt − |ψ|2Φ

]
dxdt

+
∫ T

0

∫ L2

L1

[θΘtt + θxΘx] dxdt

=
∫

Ω

φ1(x)Φ(x, 0)dx−
∫

Ω

φ0(x)Φt(x, 0)dx + β

∫

Ω

φ0(x)Φ(x, 0)dx

+
∫ L2

L1

θ1(x)Θ(x, 0)dx +
∫ L2

L1

θ0(x)Θt(x, 0)dx

for all Ψ ∈ C1([0, T ];H1
L(Ω)), {Φ, Θ} ∈ C2([0, T ];V ) and a.e t ∈ [0, T ] such that

Ψ(T ) = Φ(T ) = Φt(T ) = Θ(T ) = Θt(T ) = 0

The existence of strong solution to system [(1.1)−(1.9)] is given in the following
theorem:

Theorem 1 Given

ψ0 ∈ H2(Ω) ∩H1
L(Ω)

{φ0, θ0} ∈ [H2(Ω)×H2(]L1, L2[)] ∩ V
{φ1, θ1} ∈ V
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with

ψ0x(Li) = 0 ; (i = 1, 2)
φ0x(Li) = θ0x(Li) ; (i = 1, 2)

there exists only a strong solution of [(1.1)− (1.9)].

Proof. We follow a standard Faedo-Galerkin method and we divide the proof
in four steps.

Step 1 (Approximate System). Let us denote by {ui; i ∈ IN} a basis of H2(Ω)∩
H1

L(Ω) and by {{vi, wi}; i ∈ IN} a basis of [H2(Ω)×H2(]L1, L2[)] ∩ V . We denote
by

Hν = span{u1, u2, · · · , uν}
Vν = span{{v1, w1}, {v2.w2}, · · · , {vν , wν}}

Let

ψν(x, t) =
ν∑

i=1

aiν(t)ui (aiν(t) : Complex− valued)

and

{φν(x, t), θν(x, t)} =
ν∑

i=1

biν(t){vi, wi} (biν(t) : Real − valued)

be solutions of the system (j = 1, 2, · · · , ν) of ordinary differential equations
∫

Ω

[iψν
t ūj − ψν

xūj,x + iαψν ūj + φνψν ūj ] dx = 0 (3.1)

∫

Ω

[
φν

ttvj + φν
xvj,x + φνvj + βφν

t vj − |ψν |2vj

]
dx

+
∫ L2

L1

[θν
ttwj + θν

xwj,x] dx = 0
(3.2)

which satisfy the initial data

ψν(0) = ψ0 , {φν(0), θν(0)} = {φ0, θ0} , {φν
t (0), θν

t (0)} = {φ1, θ1}
Standard theorems in the theory of ordinary differential equations ensure that

this system has the solutions {ψm, φm, ψm} (m = 1, 2, 3, · · · ) locally in time which
are uniquely determined by initial data, for each m.

Step 2 (Estimate I). Multiplying (3.1) by ajν(t), summing over j and taking
imaginary parts, we have

1
2

d

dt
‖ψν(t)‖2 + α‖ψν(t)‖2 = 0

It follows that

‖ψν(t)‖2 + α

∫ t

0

‖ψν(s)‖2ds = ‖ψ0‖2 (3.3)
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From (3.3) it follows that:

ψν is bounded in L∞(0,∞;L2(Ω)) (3.4)

Step 3 (Estimate II). Multiplying (3.1) by −a′j(t) and summing over j, we have

−i‖ψν
t (t)‖2 + (ψν

x(t), ψν
xt(t))

−iα(ψν(t), ψν
t (t))−

∫

Ω

φνψνψν
t dx = 0 (3.5)

Multiplying (3.1) by −αaj(t) and summing over j, we have

−iα(ψν
t (t), ψν(t)) + α‖ψν

x(t)‖2

+iα2‖ψν(t)‖2 − α

∫

Ω

φν |ψν |2dx = 0 (3.6)

Taking real parts in [(3.5)− (3.6)], we obtain

1
2

d

dt
‖ψν

x(t)‖2 −Re(iα(ψν(t), ψν
t (t)))

−Re

(∫

Ω

φνψνψν
t dx

)
= 0

(3.7)

−Re(iα(ψν
t , ψν(t))) + α‖ψν

x(t)‖2 − α

∫

Ω

φν |ψν |2dx = 0 (3.8)

Summing (3.7) and (3.8), we obtain

1
2

d

dt
‖ψν

x(t)‖2 + α‖ψν
x(t)‖2

−Re(φνψν , ψν
t )− α(φνψν , ψν) = 0

(3.9)

Noticing that

−Re(φνψν , ψν
t ) = −1

2
d

dt
(φν , |ψν |2) +

1
2
(φν

t , |ψν |2) (3.10)

We infer from (3.9) that

1
2

d

dt

(
‖ψν

x(t)‖2 −
∫

Ω

φν |ψν |2dx

)
+ α‖ψν

x‖2

+
1
2

∫

Ω

φν
t |ψν |2dx− α

∫

Ω

φν |ψν |2dx = 0
(3.11)

or

d

dt

(
2‖ψν

x(t)‖2 − 2
∫

Ω

φν |ψν |2dx

)
+ 4α‖ψν

x‖2

+2
∫

Ω

φν
t |ψν |2dx− 4α

∫

Ω

φν |ψν |2dx = 0
(3.12)
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We introduce the transformations

ην(t) = φν
t (t) + δφν(t)

and
γν(t) = θν

t (t) + δθν(t)

where δ = min{β
2 , 1

2β }. Them (3.2) is equivalent to.

(ην
t (t), vj) + (β − δ)(ην(t), vj) + (1− δ(β − δ))(φν(t), vj)

+(φν
x(t), vj,x) +

∫ L2

L1

γν
t wjdx + δ2

∫ L2

L1

θνwjdx +
∫ L2

L1

θν
xwjdx =

+
∫

Ω

|ψν |2vjdx + δ

∫ L2

L1

γνwjdx

(3.13)

Multiplying (3.13) by b′j(t) + δbj(t) and summing over j, we have.

1
2

d

dt

[‖ην(t)‖2 + (1− δ(β − δ))‖φν(t)‖2 + ‖φν
x(t)‖2]

+
1
2

d

dt

[∫ L2

L1

|γν |2dx + δ2

∫ L2

L1

|θν |2dx +
∫ L2

L1

|θν
x|2dx

]

+(β − δ)‖ην(t)‖2 + δ(1− δ(β − δ))‖φν(t)‖2

+δ‖φν
x(t)‖2 + δ3

∫ L2

L1

|θν |2dx + δ

∫ L2

L1

|θν
x|2dx =

+
∫

Ω

ην |ψν |2dx + δ

∫ L2

L1

|γν |2dx =

+
∫

Ω

φν
t |ψν |2dx + δ

∫

Ω

φ|ψν |2dx + δ

∫ L2

L1

|γν |2dx

or

d

dt

[‖ην(t)‖2 + (1− δ(β − δ))‖φν(t)‖2 + ‖φν
x(t)‖2]

+
d

dt

[∫ L2

L1

|γν |2dx + δ2

∫ L2

L1

|θν |2dx +
∫ L2

L1

|θν
x|2dx

]

+2(β − δ)‖ην(t)‖2 + 2δ(1− δ(β − δ))‖φν(t)‖2

+2δ‖φν
x(t)‖2 + 2δ3

∫ L2

L1

|θν |2dx + 2δ

∫ L2

L1

|θν
x|2dx =

+2
∫

Ω

ην |ψν |2dx + 2δ

∫ L2

L1

|γν |2dx =

+2
∫

Ω

φν
t |ψν |2dx + 2δ

∫

Ω

φ|ψν |2dx + 2δ

∫ L2

L1

|γν |2dx

(3.14)

then (3.12) + (3.14) implies that

d

dt
Hν(t) + Iν(t) = 0 (3.15)
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where

Hν(t) = 2‖ψν
x(t)‖2 − 2

∫

Ω

φν |ψν |2dx + ‖ην(t)‖2

+(1− δ(β − δ))‖φν(t)‖2 + ‖φν
x(t)‖2

+
∫ L2

L1

|γν |2dx + δ2

∫ L2

L1

|θν |2dx +
∫ L2

L1

|θν
x|2dx,

(3.16)

Iν(t) = +4α‖ψν
x‖2 − 2(2α + δ)

∫

Ω

φν |ψν |2dx + 2(β − δ)‖ην(t)‖2

+2δ(1− δ(β − δ))‖φν(t)‖2 + 2δ‖φν
x(t)‖2

+2δ3

∫ L2

L1

|θν |2dx + 2δ

∫ L2

L1

|θν
x|2dx− 2δ

∫ L2

L1

|γν |2dx

(3.17)

For arbitrary ε1, ε2 > 0,

∣∣∣
∫

Ω

φν |ψν |2dx
∣∣∣ ≤ ε1‖ψν

x(t)‖2 + ε2‖φν
x(t)‖2 + c(ε1, ε2)‖ψν(t)‖6 (3.18)

Taking ε1 =
1
2
, ε2 =

1
4

in (3.18), we deduce that

Hν(t) ≥ ‖ψν
x(t)‖2 + ‖ην(t)‖2 + (1− δ(β − δ))‖φν(t)‖2 +

1
2
‖φν

x(t)‖2

+
∫ L2

L1

|γν |2dx + δ2

∫ L2

L1

|θν |2dx +
∫ L2

L1

|θν
x|2dx− c‖ψν(t)‖6,

(3.19)

Hν(t) ≤ 3‖ψν
x(t)‖2 + ‖ην(t)‖2 + (1− δ(β − δ))‖φν(t)‖2 +

3
2
‖φν

x(t)‖2

+c‖ψν(t)‖6 +
∫ L2

L1

|γν |2dx + δ2

∫ L2

L1

|θν |2dx +
∫ L2

L1

|θν
x|2dx,

(3.20)

Taking ε1 =
α

2α + δ
, ε2 =

δ

2(2α + δ)
in (3.18), we see that

Iν(t) ≥ +2α‖ψν
x‖2 + 2(β − α)‖ην(t)‖2 + 2δ(1− δ(β − δ))‖φν(t)‖2

+δ‖φν
x(t)‖2 − c‖ψν(t)‖6 + 2δ3

∫ L2

L1

|θν |2dx

+2δ
∫ L2

L1

|θν
x|2dx− 2δ

∫ L2

L1

|γν |2dx

(3.21)

Thus from (3.20) and (3.21) we find a β1 > 0 such that

β1H
ν(t) ≤ Iν(t) + C‖ψν(t)‖6 + C

∫ L2

L1

|γν |2dx. (3.22)
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Therefore we derive from (3.15) and (3.22) that

d

dt
Hν(t) + β1H

ν(t) ≤ C‖ψν(t)‖6 + C

∫ L2

L1

|γν |2dx. (3.23)

From (3.4) and (3.23) we obtain

d

dt
Hν(t) + β1H

ν(t) ≤ C + C

∫ L2

L1

|γν |2dx. (3.24)

It follows that

Hν(t) ≤ C|Hν(0)|+ C

∫ L2

L1

|γν |2dx. (3.25)

From (3.25) and observing that |Hν(0)| is bounded, we have

Hν(t) ≤ C + C

∫ L2

L1

|γν |2dx. (3.26)

From (3.19), (3.26) and using Gronwall inequality we obtain

‖ψν
x(t)‖2 + ‖ην(t)‖2 + ‖φν(t)‖2 + ‖φν

x(t)‖2

+
∫ L2

L1

|γν |2dx +
∫ L2

L1

|θν |2dx +
∫ L2

L1

|θν
x|2dx ≤ C(T ).

(3.27)

From (3.27) it follows that:

ψν is bounded in L∞(0, T ; H1
L(Ω)) (3.28)

(φν , θν) is bounded in L∞(0, T ; V ) (3.29)

(φν
t , θν

t ) is bounded in L∞(0, T ;L2(Ω)× L2( ]L1, L2[ )) (3.30)

Step 4 (Estimate III) First, we are going to estimate ‖ψν
t (0)‖, ‖φν

tt(0)‖ and
‖θν

tt(0)‖. Indeed, from (16)-(17) and observing that

ψ0x(Li) = 0 ; (i = 1, 2)

φ0x(Li) = θ0x(Li) ; (i = 1, 2)

we have

‖ψν
t (0)‖2 + ‖φν

tt(0)‖2 + ‖θν
tt(0)‖2 = i(ψν

0xx, ψν
t (0))− α(φ0, ψ

ν
t (0))

+i(φ0ψ0, ψ
ν
t (0)) + (φ0xx, φν

tt(0))
−(ψ0, φ

ν
tt(0))− β(φ1, φ

ν
tt(0))

+(|ψ0|2, φν
tt(0)) + (θ0xx, θν

tt(0))

(3.31)



88 J. A. Soriano and A. M. Lobeiro

If follows that

‖ψν
t (0)‖+ ‖φν

tt(0)‖+ ‖θν
tt(0)‖ ≤ C ; ∀ ν ∈ IN (3.32)

Now, taking the derivate of (3.1) and (3.2) with respect to t and, using argu-
ments of step 3, we get that

1
2

d

dt

[‖ψν
t (t)‖2 + ‖φν

tt(t)‖2 + ‖φν
xt(t)‖2 + ‖φν

t (t)‖2]

+
1
2

d

dt

[∫ L2

L1

|θν
tt|2dx +

∫ L2

L1

|θν
xt|2dx

]
+ α‖ψν

t ‖2 + β‖φν
tt‖2

= −Im

∫

Ω

(φν
t ψνψν

t )dx + 2
∫

Ω

ψνψν
t φνdx

≤ C[‖ψν
t (t)‖2 + ‖φν

xt(t)‖2 + ‖φν
xt(t)‖2]

(3.33)

Integration (3.33) from zero to t, for 0 ≤ t ≤ T , T > 0 any real number and
observing the estimate (3.32), we have

‖ψν
t (t)‖2 + ‖φν

tt(t)‖2 + ‖φν
xt(t)‖2 + ‖φν

t (t)‖2

+
∫ L2

L1

|θν
tt|2dx +

∫ L2

L1

|θν
xt|2dx

≤ C + C

∫ T

0

[‖ψν
t (s)‖2 + ‖φν

xt(s)‖2 + ‖φν
tt(s)‖2]ds

(3.34)

Applying Gronwall inequality to (3.34), we obtain:

‖ψν
t (t)‖2 + ‖φν

tt(t)‖2 + ‖φν
xt(t)‖2

+‖φν
t (t)‖2 +

∫ L2

L1

|θν
tt|2dx +

∫ L2

L1

|θν
xt|2dx ≤ C

(3.35)

independent of ν, for all t in [0, T ].
From (3.35) it follows that:

ψν
t is bounded in L∞(0, T ;L2(Ω)) (3.36)

(φν
t , θν

t ) is bounded in L∞(0, T ; V ) (3.37)

(φν
tt, θ

ν
tt) is bounded in L∞(0, T ;L2(Ω)× L2( ]L1, L2[ )) (3.38)

The rest of the proof of the existence of strong solution is a matter routine.
The existence of weak solution to system [(1.1)− (1.9)] is given in the following

theorem:

Theorem 2 Given

ψ0 ∈ H1
L(Ω) , {φ0, θ0} ∈ V and {φ1, θ1} ∈ L2(Ω)× L2(]L1, L2[)

there exists only a weak solution of [(1.1)− (1.9)].
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Proof. Given ψ0 ∈ H1
L(Ω), {φ0, θ0} ∈ V and {φ1, θ1} ∈ L2(Ω) × L2(]L1, L2[),

there exists ψν
0 ∈ H2(Ω) ∩ H1

L(Ω), {φν
0 , θν

0} ∈ [H2(Ω) × H2(]L1, L2[)] ∩ V and
{φ1, θ1} ∈ V such that

ψν
0 −→ ψ0 strongly in H1

L(Ω)
{φν

0 , θν
0} −→ {φ0, θ0} strongly in V

{φν
1 , θν

1} −→ {φ1, θ1} strongly in L2(Ω)× L2(]L1, L2[)
(3.39)

and

ψ0x(Li) = 0 ; (i = 1, 2)
φ0x(Li) = θ0x(Li) ; (i = 1, 2)

With ψν
0 , {φν

0 , θν
0} and {φν

1 , θν
1}, above defined, we determine an unique strong

solution {ψ, φν , θν} satisfying all conditions of Theorem (1).
Using similar arguments of step 3 of Theorem (1). we have

ψν is bounded in L∞(0, T, H l
L(Ω))

{φν , θν} is bounded in L∞(0, T, V )
{φν

t , θν
t } is bounded in L∞(0, T, L2(Ω)× L2(]L1, L2[))

If follows that

ψν ∗
⇀ ψ in L∞(0, T, H1

L(Ω))
{φν , θν} ∗

⇀ {φ, θ} in L∞(0, T, V )
{φν

t , θν
t } ∗

⇀ {φt, θt} in L∞(0, T, L2(Ω)× L2(]L1, L2[))

We suppose that {ψν , φν , θν} and {ψσ, φσ, θσ} are two strong solutions of
[(1.1)− (1.9)] with initial data

{ψν
0 , φν

0 , θν
0} and {ψσ, φσ, θσ}

After direct calculations, we have

1
2

d

dt
Eνσ(t) + α‖ψν − ψσ‖2 + β‖φν

t − φσ
t ‖2

≤ C
[‖ψν(t)− ψσ(t)‖2 + ‖φν

t (t)− φσ
t (t)‖2 + ‖φν(t)− φσ(t)‖2]

(3.40)

where

Eνσ(t) = ‖ψν(t)− ψσ(t)‖2 + ‖φν
t (t)− φσ

t (t)‖2 + ‖φν
x(t)− φσ

x(t)‖2

+‖φν(t)− φσ(t)‖2 +
∫ L2

L1

|θν
t − θσ

t |2dx +
∫ L2

L1

|θν
x − θσ

x |2dx
(3.41)

By Gronwall inequality, we have

Eνσ(t) ≤ C(T )Eνσ(t) (3.42)
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From (3.39) and (3.42), we obtain

ψν −→ ψ in C([0, T ]; L2(Ω))
{φν , θν} −→ {φ, θ} in C([0, T ]; V )
{φν

t , θν
t } −→ {φt, θt} in C([0, T ]; L2(Ω)× L2(]L1, L2[))

(3.43)

The rest of the proof of the existence of weak solution is a matter routine.

REFERENCES

1. C. Athanasiadis and I. G. Stratis, On some elliptic transmission problems,
Annales Polonici Mathematici, 63 (1996), 137-154.

2. G. Boling and L. Yongsheng, Attractor for Dissipative Klein-Gordon-Shrödinger
Equations in IR3, Journal of Differential Equations 136, 356-377 (1997).

3. I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations,
I, Bull. Sci. Engrg. Res. Lab. Waseda Univ. 69 (1975), 51-62.

4. I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger Equa-
tions, II, J. Math. Anal. Appl. 66 (1978), 358-378.

5. O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear e Quaselinear Elliptic
Equations, (1968), London: Academic Press.

6. J. Lagnese, Boundary controllability in problems for a class of second order
hyperbolic systems, ESAIM Control Optm. Calc. Var. 2 (1997), 343-357.
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