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On a Transmission Problem for Dissipative Klein-Gordon-Shrodinger
Equations

J. A. Soriano! and A. M. Lobeiro

ABSTRACT: In this paper we consider a transmission problem for the Cauchy
problem of coupled dissipative Klein-Gordon-Shrédinger equations and we prove
the existence of global solutions.
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1. Introduction

Let )0, L3 be a bounded open interval of IR such that Li, Ly €]0,L3[. We
denote by © the set ]0, L1 [U] Lo, Ls].

In this work we prove the existence of strong and weak solutions of a transmis-
sion problem for the coupled Klein-Gordon-Shrodinger equations with dissipative
term, given by the following system:

i + Yuo +iap + dp =0 in Qx]0, 00| (1.1)
$tt — bux + &+ B = [Y? in Qx]0, 0] (1.2
Oi — 0y =0 in Ly, Lo[x]0, 0] (1.3)

where a and [ are positive constants.

The system is subjected to the following boundary conditions.
¥(0,t) = (L, t) = ¢(0,t) = ¢(Ls, t) =0 (1.4)
Y (Liyt) =0 5 i=1,2 (1.6)
and initial conditions

P(x,0) =o(z) ; z€Q (1.7)
o(x,0) = po(z) ; oe(x,0) =d1(x) ; x€Q (1.8)
0(x,0) = Op(x) ; Oi(x,0) =061(x) ; x€]Lq, L] (1.9)
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Controllability for transmission problems has been studied by several authors,
and we mention a few works. The transmission problem for the wave equation was
studied by Lions [7], where he applied the Hilbert Uniqueness Method (HUM) to
show exact controllability. Latter, Lagnese [6], also applying HUM, extended this
result; he showed the exact controllability for a class of hyperbolic systems which
include the transmission problem for homogeneous anisotropic materials. The ex-
act controllability for the plate equation was proved by Liu and Williams [9]. Some
results about existence, uniqueness and regularity for elliptic stationary transmis-
sion problem can be found in Athanasiadis and Stratis [1] and Ladyzhenskaya and
Ural’tseva [5].

Concerning stability, Liu and Williams [8] studied a transmission problem for
the wave equation and showed exponential decay of the energy provided a linear
feedback velocity is applied at the boundary. Marzocchi et al.[10] proved that the
solution of a semi-linear transmission problem between an elastic a thermoelastic
material, decays exponentially to zero.

Let us mention some works related with the Klein-Gordon -Schrédinger equa-
tions. Fukuda and Tsutsumi[4] studied the initial-boundary value problem for the
coupled Klein-Gordon -Schrodinger equations in three space dimensions. In the
case of one space dimension, the existence of global smooth solutions has been
established by the authors [3]. Boling and Yongsheng [2] considerer the Cauchy
problem of coupled dissipative proved a existence Klein-Gordon -Schrédinger equa-
tions in IR® and prove the existence of the maximal attractor.

The objective of this paper is to prove the existence of strong and weak solutions
to problem (1.1)-(1.9). The proof of the existence is based on the Galerkin method
and employed techniques in [2].

2. Notation

For brevity, we denote the space of complex-valued functions and real-valued
functions and real-valued functions by the same symbols.
Let LP(Q2) be the usual Lebesgue space of complex-valued or real-valued func-
tions whose p-times powers are integrable with norm:
1/p

= ([ luoas) < boo (1< poc) o

|t|oo = esssup |u(z)] < +oo0  (p = +00).
e

In particular, L?(12) is the Hilbert space with inner product and norm:

(u,v) = /QU(JT)@dw, Julz = [lu]l = (u,u)'/2. (2.2)

H™(Q) (m is an interger > 1) denote the complex or real Sobolev spaces whose
distributional derivatives of order < m lie in L?(f2) equipped with inner product
and norm:

uvm:m Ju(z)Div(z)dz, um:u,u},{2. )
(u,0) jZO/QD()D()d el = (s, 0) (2.3)
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Let us define the subspace
H(Q) = {w € H'(Q);w(0) = w(Lz) = 0}

It follows that H} () is a Hilbert subspace of H'(2). We can prove that in H} ()
the norm

WW:AWMWM (2.4)

and the H} () norm are equivalents. Consequently, we consider H} () equipped
with the norm (2.4)) and the scalar product

(v, w)) = /Q Vo) - wa(@)de (2.5)

Also let us define the subspace
V = {{u,v} € HL(Q) x H'(|L1, La[) ; u(L;) = v(L;) , i = 1,2}

Note that V is a closed subspace of H} () x H'(]L1, L2[) which together with
the norm
Lo
Moot = [ fun@Pde+ [ posto)de (2.6
1

is a Hilbert space.

3. Existence of solutions

In this section we establish existence and uniqueness results for problem [(1.1)) —
(L.9)].

First of all, we define what we will understand for strong and weak solution of
the problem [(T.1)) — (1.9)].

Definition 3.1 We say that (¢, ¢, 0) is a strong solution of [(L1) — (1.9)] when

¥ € LS,(0,00; HA(Q) N HE(Q))
e € L, (0,00, Hi (D))
{60} € Li5.(0,00; [H*(Q) x H*(|L1, L)) NV)
{60.0:} € Li(0,00,V
{6, 0} € L75.(0,00; L2(Q) x L2(]Ly, La))
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satisfying the identities

ithy + har +io) + ¢ =0 in Li5.(0, 00; L*(Q2))
b1t — Gux + O+ By = [YI* in L35, (0,00; L*(R))
Ot — O =0 in  L72.(0,00; L*(] L1, La)
P(0,t) = (Ls, t) = ¢(0,t) = (L3, t) =0 ; ¢>0

¢(List) = 0(Lit) 3 ¢o(Lit) = 0a(List) 5 >0, (i=12)
bo(List) =0 ; t>0, (i=12)

U(2,0) = dho(z) ; 2

¢(2,0) = do(x) e ¢1(2,0) = ¢1(z) ; z€Q

0(x,0) = 0p(z) e 0,(x,0) =01(x) ; €Ly, Lo|

Definition 3.2 Let T > 0 be real. We say that (¥, $,0) is a weak solution of
[(TT) — (1.9)] when
€ L0, T3 H ()

{.0y € L*(0,T;V) . {¢r.0:} € L=(0,T5 L*(Q) x L*(]L1, L2))

satisfying the identities

T
/ / [—ipWy — Uy + i ¥ + o] dadt = / io(x) ¥ (z,0)dw
o Ja Q

T
/ / (0P + G2 Py + ¢P — B, — |1/’|2<I>] dxdt
RN LR
o JI,
— / ¢1(x)®(x,0)dx — / ¢o(x)Py(z,0)dr + ﬂ/ ¢o(x)®(x,0)dx
@ Lo @ Lo Q
+/ 01(2)O(z,0)dx + / 0o(2)O¢(x,0)dx

L, Ly
for all ¥ € CH([0,T); HE (), {®,0} € C*([0,T};V) and a.e t € [0,T] such that
W(T) = B(T) = B(T) = O(T) = 6,(T) = 0

The existence of strong solution to system [(I.1)) — (1.9)] is given in the following
theorem:

Theorem 1 Given
o € HA2Q)N HE(Q)
{¢0,00} € [H*(Q) x H*(JLy, L)) NV
{¢17 91} eV
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with
You(Li) = 05 (i=1,2)
boo(Li) = boz(Li) ; (i=12)
there exists only a strong solution of [(L.1) — (1.9)].

Proof. We follow a standard Faedo-Galerkin method and we divide the proof
in four steps.

Step 1 (Approximate System). Let us denote by {u;;i € IN} a basis of H2(2)N
H}(Q) and by {{v;,w;};i € IN} a basis of [H?(2) x H%(]L1, L2[)] N V. We denote
by

HI/ = Span{ula U, 7uV}
VI/ = Span{{'l}h wl}; {U2'w2}a Ty {UV7 wl/}}

Let

Y (x,t) = Z aiy(D)u;  (aiy(t) : Complex — valued)
i=1

and

{¢"(x,t),0"(x,t)} = wa(t){vi,wi} (b (t) : Real — valued)
i=1
be solutions of the system (j = 1,2,---,v) of ordinary differential equations

[ ity — vt oy + 6t de =0 (3.1)
Q

/ (0405 + 620;0 + 0705 + Betv; — |6 20;] da
@ L (3.2)
N / 00w, + 67w, ] de =0
Ly

which satisfy the initial data
P(0) = o, {97(0),07(0)} = {¢o, b0} , {¢/(0),67(0)} = {¢1,061}

Standard theorems in the theory of ordinary differential equations ensure that
this system has the solutions {¢™, ¢™, ™} (m =1,2,3,---) locally in time which
are uniquely determined by initial data, for each m.

Step 2 (Estimate I). Multiplying (3.1) by a;,(t), summing over j and taking
imaginary parts, we have

1d

v 2 v 2
50 O +ally (]2 =0

It follows that

[ @ + a/o 1" (5)|2ds = [lo]® (3-3)
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From (3.3) it follows that:

¥” is bounded in L*°(0, 00; L*(£2))

(3.4)

Step 3 (Estimate II). Multiplying (3.1) by —a’; ( ) and summing over j, we have

O RO ORI )
(g (1), ¢ (1)) - / ST = 0
Q

Multiplying (3.1) by —aa;(t) and summing over j, we have

(t)
—ia(yy (), ¥V (1) + al[gy ()]
+ia?||yp¥ (t)]|> — /<z>”|w Pde = 0

Taking real parts in [(3.5) — (3.6)], we obtain

5£||w ()17 = Re(ia (4" (), ¥f ()))
—Re( Qci)l’?ﬂyd’ftjdx) =0

~Re(ia(w? 0" (1)) + a2 ()] — o / ¢ |0 Pdz = 0

Summing (3.7) and (3.8), we obtain

- (¢1/J 1l)t)—04(¢”1/}”7¢”) =0
Noticing that

1
—Re(¢" ", yf) = *5%@” 1" )?) + §(¢?,|1/)V|2)

We infer from (3.9) that

5 (I = [ otvpac) +alusl?
1
+y [t P —a [ olePas = o

or
d
& (tosor -2 [ owas) + aalz?
+2/Q¢>t”|1/)”|2dx*404/Q¢”|w”\2dx = 0

(3.5)

(3.10)

(3.11)

(3.12)
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We introduce the transformations

" (t) = ¢ () + 69" (t)
and
V() = 07 (t) + 06" (t)
where § = mim{g7 %} Them (3.2)) is equivalent to.
(0} (1), v5) + (B = 0) (" (1), vj) + (1 = 6(8 = 9)) (" (£), v;)
Lo Lo
+(opu(t),vj2) + / v wjdz + 62 0" w;dx + / O w;idx

Ly
/\1/1”|2vjdx—|—(5/ Y wjdx

Multiplying (3.13) by b’ (t) + db;(t) and summing over j, we have.

(3.13)

Sdq [Iln O + @ =88 =" O + oz )]
Lo Lo

+5 o . |7”|2d:1:+§2/L1 |9”|2d:c+/Ll 0;|2dxl

+(B = 0)lln” ()||2+5(1— 6(8 — 5))||¢>”()||

+ollos(t)])? + 8° / 0" da + 6 / 0 Pdr =
i

+/77|1/J |2dx+5/ IV |2de =
Q L

y
+ / Yl Pde + 6 / ol Pz + 5 / P
Q Q L1

or

[IIW”()II2 (1 =38(8 = a))lle" I + gz ()117]

d Lo Lo

T [ [P dw + 67 /L 9”|2dx+/Ll IGZIdel
+2<ﬁ—6>||n"<t>||2L+26< 56 = 8))llo" 1)

+25||¢;(t)||2+253/ 16" | da:—|—26/ 0/)2de = (3.14)

Ly

SRS

+2/n|¢”| dx+25/ " 2dz =
+2/¢t|¢ |2dx+26/¢|1/)”| dac—|—25/ | |2 da

then (3.12)) + (3.14) implies that

d v v _
ZH ) +17(1) =0 (3.15)
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where

H"(t) = 2||¢Z(t)||2*2/Q¢V|¢V|2d$+||7lu(t)||2

+(1—-0(6 - 5))||¢”(lﬁ)ﬁ2 + gz (0]

Lo 2 La
+/ IV |?dz + 52/ 0¥ |2da +/ 0% |2dz,
Ly Ly Ly

) = +404||1/Jg”c||2—2(20é+5)/Q<25”|1/J”I2d~"6+2(5—5)“77”(75)”2
+20(1 - 5(8 - O)lle” B + 26]l¢z ()1

2 Lo Lo
+253/ |9”|2dx+25/ |9;|2dx—25/ I [2da
L1 L1 L1
For arbitrary €1, €3 > 0,

| [ orBaa] < alvzOF + eléo + el OfF

1
e =g in (3.18), we deduce that

DN | =

Taking €; =

HY(t) =[O + " @I + (1 = 6(8 = 8))ll¢” (D)1 + %II%’Z(UHQ

Lo Lo Lo
[ ppdsr [ pdes [ lenPds - lur o),

Ly Ly Ly

HY (W) < [N + In* @2 + (1= 503 - 6) 6" DI + 2601

Lo Lo 22
wellr @1 + [ prPde s s [l Pde s [ o
Ly L, L,y
Takin S = 0 in (3.18), we see that
e 1 T 22a ) W
IY(t) = 42y +2(8 — a)lln” ()]? +L25(1 —8(B—9)lle”(®))1?

+o]l 0% (6)] *Cllw”(t)||6+253/ 6”]*dx

Ly

L2 L2
+25/ 0% |2da — 25/ IV [2dx
L

1 Ly

Thus from (3.20) and (3.21) we find a (1 > 0 such that

Lo
BUHY (1) < I (t) + C[0* (1) + C / Iy P

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Therefore we derive from (3.15) and (3.22)) that

d ba
%H”(t) + BLH"(t) < Clly* (#))° + C’/ IV |?da. (3.23)
Ly

From (3.4) and (3.23) we obtain

Lo

d
%H”( )+ H () <C+C Iy |*d. (3.24)
Ly
It follows that
Lo
H”(t) < C|H"(0)] +C/ Iy [2dz. (3.25)
Ly

From (3.25) and observing that |H,(0)| is bounded, we have
Lo
H"(t)<C+C |y |2da. (3.26)
Ly

From (3.19), (3.26) and using Gronwall inequality we obtain

[ (O + " @1 + 1”11 + oz (011
be v|2 be v|2 b v|2 (327)
+ v |“dz + |6”|*dx + 0% ]?de < C(T).
Ly L Ly

From (3.27) it follows that:

¥” is bounded in L*°(0,T; H; (2)) (3.28)
(¢”,0") is bounded in L*(0,T;V) (3.29)
(¢7,07) is bounded in L>(0,T; L*(Q) x L*(]Ly, Lo])) (3.30)

Step 4 (Estimate III) First, we are going to estimate |[1)f (0)], ||¢%(0)| and
105, (0)||. Indeed, from (16)-(17) and observing that

Yoz (Li) =0 ; (1=1,2)
G0z (Li) = 0oz (L;) 5 (i=1,2)

we have
197 ()% + 195, (0)1* + 107, (017 = i(f,a 1 (0) — a0, 97 (0))
+Z(¢0¢07 11;(0)) (¢0xm;¢tt(0)) (3 31)
— (%0, 94,(0)) — B(¢1, 9£,(0)) '
+(|%ol*, 6£,(0)) + (Bozz, 07:(0))
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If follows that

17 O + o5 O) + 165 0) < €5 VveN (3.32)

Now, taking the derivate of (3.1) and (3.2)) with respect to ¢ and, using argu-
ments of step 3, we get that

1 d v v v 14
5o (IO + 1651 + %01 + 16 O]

ld be 2 ke 2 2 2

- o¥.1“d 0v.1°d v v
A A B e EA .

— ~1m [ (01" +2 /Q VTS du
< OUEMIP + 16512 £ 62 @)1

Integration (3.33) from zero to t, for 0 < ¢ < T, T > 0 any real number and
observing the estimate (3.32), we have

[y I + ot (112 + loh (DI + 1o} (1)1
ke v |2 be v |2
+/L1 |ot;| dz+/Ll 0%, [2dx (330
< C+C/O [l ()11 + e ()11 + [t (s) 1 *)ds

Applying Gronwall inequality to (3.34), we obtain:
17 @I + ok (11 + oz ()]

L2 L2
3.35
ot + [ ogpas [Cope < o (3:39)
L1 Ll
independent of v, for all ¢ in [0, T].
From (3.35) it follows that:
YY is bounded in L*(0,T; L*(Q)) (3.36)
(¢7,07) is bounded in L*(0,T;V) (3.37)
(#%,,0%,) is bounded in L>(0,T; L*(Q) x L*( L1, La])) (3.38)

The rest of the proof of the existence of strong solution is a matter routine.
The existence of weak solution to system [(I.1) — (1.9)] is given in the following
theorem:

Theorem 2 Given
’(ﬂ() (S H}J(Q) s {gb(),eo} eV and {q§1,01} S LQ(Q) X LQ(]LthD

there exists only a weak solution of [(1.1) — (1.9)].
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Proof. Given ¢y € H (Q), {¢0,00} € V and {1,601} € L*(Q) x L*(]L1, La),
there exists 1§ € H2(2) N HL(Q), {#4,05} € [H*(Q) x H*(|L1,Ly[)] NV and
{¢1,01} € V such that

vy — Yo strongly in H}(Q)
{4,05y — {0,600} strongly in V (3.39)
(4.0 — {616} stongly in I2() x I2(Ly, L)

and

You(Li) =0 ; ( 1,2)

With of, {¢f, 08} and {8}, 67}, above defined, we determine an unique strong
solution {v, ¢¥, 0"} satisfying all conditions of Theorem (I)).
Using similar arguments of step 3 of Theorem (I)). we have

~. =,
Il

b

VY is  bounded in  L>=(0,T, H. ()
{¢",0"} is bounded in L>(0,T,V)
{¢¥,07} is bounded in  L°°(0,T, L*(Q) x L*(JL1, Lo))

If follows that

P (U in  L>(0,T,H;(2))
{¢V, 0"} = {¢,0} in L®(0,T,V)
{ov, 00y = {0, in  L>(0,T,L*(Q) x L*(]Ly, L))

We suppose that {¢”,¢”,0"} and {¢7,¢7,09} are two strong solutions of
[(LT) — (1.9)] with initial data

{vg, 86,00 and {¢7,¢7,07}
After direct calculations, we have

1d
< g ()+a||¢” 7|1+ Blloy — o7 I (3.40)

CC{II?/J YOI + llor (1) — of (D17 + 16" (1) — 7 (1)]7]

IN

where
() = () = v O + 161(0) - 67 P +162(0) - 20
o 0@+ [ oy —orPas [ 1oz —ozar 4
Ly Ly

By Gronwall inequality, we have

Ev(t) < C(I)E" (1) (3.42)
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From (3.39) and (3.42), we obtain

vwo— ¥ i C([0,T] L*(Q)
{¢v,0"y — {¢,0} in C([0,T];V) (3.43)
{o0,07y — {0} in C([0,T]; L*(Q) x L*(|Ly, La]))

The rest of the proof of the existence of weak solution is a matter routine.
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