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Multiple Positive Solutions for a Fourth-order Boundary Value
Problem

Yaoliang Zhu and Peixuan Weng

abstract: In this paper, we discuss the existence of multiple positive solutions
for the fourth-order boundary value problem

u(4)(t) = f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where f : [0, 1]× [0,∞)→ [0,∞) is continuous. Existence theorems are established
via the theory of fixed point index in cones.

1. Introduction

The deformations of an elastic beam in equilibrium state, whose two ends are
simply supported, can be described by the fourth-order boundary value problem

u(4)(t) = g(t, u(t), u′′(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

where g : [0, 1]×R×R → R is continuous[3,4]. Owing to its importance in physics,
the existence of solutions to this problem has been studied under various kinds
of restrictions or conditions by many authors, see for example [1-15]. However in
pratice only its solutions are significant. In this paper, we discuss the existence of
multiple positive solutions for the fourth-order boundary value problem (abbrev.
as BVP)

u(4)(t) = f(t, u(t)), 0 < t < 1, (1)

u(0) = u(1) = u′′(0) = u′′(1) = 0. (2)

We assume the following conditions throughout this paper:
(P1) f : [0, 1]× [0,∞) → [0,∞) is continuous.
The existence of positive solutions of the BVP(1)-(2) has been studied by Ma

and Wang [14]. They show the existence of one positive solution when f(t, u) is
either superlinear or sublinear in u by employing a cone extension or compression
theorem. The purpose of this paper is to extend this result. Our argument is based
on fixed point index theory in cones [16].

For convenience, we introduce the following notations

f0 = lim inf
v→0+

min
x∈[0,1]

f(x, v)
v

, f0 = lim sup
v→0+

max
x∈[0,1]

f(x, v)
v

,
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f∞ = lim inf
v→+∞

min
x∈[0,1]

f(x, v)
v

, f∞ = lim sup
v→+∞

max
x∈[0,1]

f(x, v)
v

.

Let λ1 be the first eigenvalue of the problem

u(4) = λu, u(0) = u(1) = u′′(0) = u′′(1) = 0.

We know from [6,7] that λ1 = π4, and φ1(t) = sin πt is the first eigenfunction.
In this paper, some of the following hypotheses are satisfied:
(H1) f0 > λ1, f∞ > λ1;
(H2) f0 < λ1, f∞ < λ1;
(H3) There is a p > 0 such that 0 ≤ v ≤ p and 0 ≤ t ≤ 1 implies

f(t, v) < ηp,

where η = [
∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)dsdτ ]−1, and G(t, s) is the Green’s function (see

Section 2) of
−u′′ = 0, u(0) = u(1) = 0;

(H4) There is a p > 0 such that p
4 ≤ v ≤ p implies

f(t, v) > λp,

where λ = [
∫ 1

0

∫ 3
4
1
4

G(σ, τ)G(τ, s)dsdτ ]−1, and σ ∈ [0, 1] is such that

∫ 1

0

∫ 3
4

1
4

G(σ, τ)G(τ, s)dsdτ = max
t∈[0,1]

∫ 1

0

∫ 3
4

1
4

G(t, τ)G(τ, s)dsdτ.

Remark 1. In fact η = 60, σ = 1
2 , λ = 6144

57 , see the appendix in section 4.
The following theorems are our main results.

Theorem 1. Assume that (P1), (H1) and (H3) are satisfied. Then the BVP(1)-
(2) has at least two positive solutions u1 and u2 with

0 < ||u1|| < p < ||u2||,

here ||u|| = supt∈[0,1] |u(t)|.

Corollary 1. The conclusion of Theorem 1 is valid if (H1) is replaced by:
(H∗

1 ) f0 = ∞, f∞ = ∞.

Theorem 2. Assume that (P1), (H2) and (H4) are satisfied. Then the BVP
(1)-(2) has at least two positive solutions u1 and u2 with

0 < ||u1|| < p < ||u2||.

Corollary 2. The conclusion of Theorem 2 is valid if (H2) is replaced by:
(H∗

2 ) f0 = 0, f∞ = 0.
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Theorem 3. Assume that (P1) is satisfied. Also suppose the following condition
is satisfied:

f0 > λ1, f∞ < λ1.

Then the BVP (1)-(2) has at least one positive solution.

Corollary 3. Assume that (P1) is satisfied. Also suppose the following condition
is satisfied:

f0 = ∞, f∞ = 0 (sublinear).

Then the BVP (1)-(2) has at least one positive solution.

Theorem 4. Assume that (P1) is satisfied. Also suppose the following condition
is satisfied:

f0 < λ1, f∞ > λ1.

Then the BVP (1)-(2) has at least one positive solution.

Corollary 4. Assume that (P1) is satisfied. Also suppose the following condition
is satisfied:

f0 = 0, f∞ = ∞ (superlinear).

Then the BVP(1)-(2) has at least one positive solution.

Obviously, Theorems 3 and 4 extend the results in [14].

Remark 2. Since λ1 is an eigenvalue of the linear boundary value problem corre-
sponding to the BVP(1)-(2), the conditions in Theorems 3 and 4 are optimal.

2. Preliminaries

Suppose that u is a solution of the BVP(1)-(2). Then

u(t) =
∫ 1

0

∫ 1

0

G(t, τ)G(τ, s)f(s, u(s))dsdτ, 0 ≤ t ≤ 1, (3)

where G(t, s) is the Green’s function to −u′′ = 0, u(0) = u(1) = 0. In particular

G(t, s) =
{

t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1,

and one can show that

min{t, 1− t}G(s, s) ≤ G(t, s) ≤ G(s, s) = s(1− s), (t, s) ∈ [0, 1]× [0, 1]. (4)

By using (3) and (4), we see that for every solution u of the BVP (1)-(2), one
has

||u|| ≤
∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)f(s, u(s))dsdτ,

u(t) ≥ min{t, 1− t}
∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)f(s, u(s))dsdτ

≥ min{t, 1− t}||u||,
(5)

where ||u|| = sup{|u(t)|; 0 ≤ t ≤ 1}.
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Let E be a Banach space and K ⊂ E be a closed convex cone in E. Assume
Ω is a bounded open subset of E with boundary ∂Ω, and let A : K ∩ Ω̄ → K be a
continuous and completely continuous mapping. If Au 6= u for every u ∈ K ∩ ∂Ω,
then the fixed point index i(A,K ∩Ω,K) is defined. If i(A,K ∩Ω,K) 6= 0, then A
has a fixed point in K ∩ Ω.

For r > 0, let Kr = {u ∈ K : ||u|| < r} and ∂Kr = {u ∈ K : ||u|| = r}, which is
the relative boundary of Kr in K. The following three Lemmas are needed in our
argument.

Lemma 1.[16] Let A : K → K be a continuous and completely continuous mapping
and Au 6= u for u ∈ ∂Kr. Thus one has the following conclusions:

(i) If ||u|| ≤ ‖Au‖ for u ∈ ∂Kr, then i(A,Kr,K) = 0;
(ii) If ‖u‖ ≥ ‖Au‖ for u ∈ ∂Kr, then i(A,Kr,K) = 1.

Lemma 2.[16] Let A : K → K be a continuous and completely continuous mapping
with µAu 6= u for every u ∈ ∂Kr and 0 < µ ≤ 1. Then i(A,Kr,K) = 1.

Lemma 3.[16] Let A : K → K be a continuous and completely continuous mapping.
Suppose that the following two conditions are satisfied:

(i) infu∈∂Kr ||Au|| > 0;
(ii) µAu 6= u for every u ∈ ∂Kr and µ ≥ 1.

Then, i(A,Kr,K) = 0.

3. Proof of Main Results

Let K be a cone in E = C[0, 1] defined by

K = {u ∈ E; u(t) ≥ min{t, 1− t}‖u‖, t ∈ [0, 1]}.

Define an operator A : K → K as follows

(Au)(t) =
∫ 1

0

∫ 1

0

G(t, τ)G(τ, s)f(s, u(s))dsdτ. (6)

It is clear that A : K → K is continuous and completely continuous.
Then we have the following lemmas.

Lemma 4.Assume that (P1) holds. Then A(K) ⊂ K.
Proof. We have from (4) and (6) that

(Au)(t) ≥ min{t, 1− t}
∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)f(s, u(s))dsdτ

≥ min{t, 1− t}||Au||, t ∈ [0, 1].

Thus we have A(K) ⊂ K.

Lemma 5. If (P1) and (H3) are satisfied, then i(A,Kp,K) = 1.
Proof. For any u ∈ ∂Kp, we have

f(t, u(t)) < ηp, ∀t ∈ [0, 1],



Multiple Positive Solutions for a Fourth-order 5

so we have
||Au|| ≤

∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)f(s, u(s))dsdτ

< ηp
∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)dsdτ

= p = ||u||.

Therefore, from the second part of Lemma 1, we conclude that i(A,Kp,K) = 1.

Lemma 6. If (P1) and (H4) are satisfied, then i(A,Kp,K) = 0.
Proof. Let u ∈ ∂Kp. Then we have from (5) that

u(t) ≥ min{t, 1− t}||u|| ≥ 1
4
p,

1
4
≤ t ≤ 3

4
,

and it follows from (H4) that

(Au)(σ) =
∫ 1

0

∫ 1

0
G(σ, τ)G(τ, s)f(s, u(s))dsdτ

≥
∫ 1

0

∫ 3
4
1
4

G(σ, τ)G(τ, s)f(s, u(s))dsdτ

> λp
∫ 1

0

∫ 3
4
1
4

G(σ, τ)G(τ, s)dsdτ

= p = ||u||.

This shows that
||Au|| > ||u||, ∀u ∈ ∂Kp.

Therefore, from the first part of Lemma 1, we conclude that i(A,Kp,K) = 0.

Proof of Theorem 1. According to Lemma 5, we have that

i(A,Kp,K) = 1. (7)

Suppose that (H1) holds. Since f0 > λ1, one can find ε > 0 and 0 < r0 < p so that

f(t, u) ≥ (λ1 + ε)u, ∀t ∈ [0, 1], 0 ≤ u ≤ r0. (8)

Let r ∈ (0, r0). Then for u ∈ ∂Kr we have u(t) ≥ 1
4r for t ∈ [ 14 , 3

4 ], and so

(Au)(σ) =
∫ 1

0

∫ 1

0
G(σ, τ)G(τ, s)f(s, u(s))dsdτ

≥
∫ 1

0

∫ 3
4
1
4

G(σ, τ)G(τ, s)f(s, u(s))dsdτ

≥ (λ1 + ε)
∫ 1

0

∫ 3
4
1
4

G(σ, τ)G(τ, s)u(s)dsdτ

≥ (λ1+ε)r
4

∫ 1

0

∫ 3
4
1
4

G(σ, τ)G(τ, s)dsdτ,

from which we see that inf
u∈∂Kr

||Au|| > 0, and therefore, hypothesis (i) of Lemma

3 holds. Next we show that µAu 6= u for any u ∈ ∂Kr and µ ≥ 1. If this is not
true, then there exist u0 ∈ ∂Kr and µ0 ≥ 1 such that µ0Au0 = u0. Note that u0(t)
satisfies

u
(4)
0 (t) = µ0f(t, u0(t)), 0 ≤ t ≤ 1, (9)
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and the boundary condition (2). Multiply equation (9) by φ1(t) and integrate from
0 to 1, using integration by parts in the left side, to obtain

λ1

∫ 1

0
u0(t)φ1(t)dt = µ0

∫ 1

0
φ1(t)f(t, u0(t))dt

≥
∫ 1

0
φ1(t)f(t, u0(t))dt

≥ (λ1 + ε)
∫ 1

0
φ1(t)u0(t)dt.

Since u0(t) ≥ min{t, 1−t}||u0||, we have
∫ 1

0
φ1(t)u0(t)dt > 0, and so from the above

inequality we see that λ1 ≥ λ1 + ε, which is a contradiction. Hence A satisfies the
hypotheses of Lemma 3 in Kr. By Lemma 3, we have

i(A,Kr,K) = 0. (10)

On the other hand, since f∞ > λ1, there exist ε > 0 and H > 0 such that

f(t, u) ≥ (λ1 + ε)u, ∀t ∈ [0, 1], u ≥ H. (11)

Let C = max
0≤u≤H

max
0≤t≤1

|f(t, u)− (λ1 + ε)u|+ 1, and it is clear that

f(t, u) ≥ (λ1 + ε)u− C, ∀t ∈ [0, 1], u ≥ 0. (12)

Choose R > R0 := max{4H, p}. Let u ∈ ∂KR. Since u(t) ≥ 1
4 ||u|| > H for

t ∈ [ 14 , 3
4 ], from (11) we see that

f(t, u(t)) ≥ (λ1 + ε)u(t) ≥ 1
4
(λ1 + ε)||u||, ∀t ∈ [

1
4
,
3
4
].

Essentially the same reasoning as above yields infu∈∂KR
||Au|| > 0. Next we show

that if R is large enough, then µAu 6= u for any u ∈ ∂KR and µ ≥ 1. In fact, if there
exist u0 ∈ ∂KR and µ0 ≥ 1 such that µ0Au0 = u0, then u0(t) satisfies equation
(9) and boundary condition (2). Multiply equation (9) by φ1(t) and integrate (use
(12)) to obtain

λ1

∫ 1

0
u0(t)φ1(t)dt = µ0

∫ 1

0
f(t, u0(t))φ1(t)dt

≥ (λ1 + ε)
∫ 1

0
u0(t)φ1(t)dt− C

∫ 1

0
φ1(t)dt.

Consequently, we obtain that∫ 1

0

u0(t)φ1(t)dt ≤ C

ε

∫ 1

0

φ1(t)dt. (13)

We also have ∫ 1

0
u0(t)φ1(t)dt ≥ ||u0||

∫ 1

0
min{t, 1− t}φ1(t)dt

≥ ||u0||
∫ 1

0
t(1− t)φ1(t)dt,

and this together with (13) yields

||u0|| ≤
C

∫ 1

0
φ1(t)dt

ε
∫ 1

0
t(1− t)φ1(t)dt

=: R̄. (14)
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Let R > max{R̄, R0}. Then for any u ∈ ∂KR and µ ≥ 1 we have µAu 6= u. Hence
hypothesis (ii) of Lemma 3 also holds. By Lemma 3,

i(A,KR,K) = 0. (15)

In view of (7),(10) and (15), we obtain from the additivity property of the fixed-
point index that

i(A,KR \ K̄p,K) = −1,

i(A,Kp \ K̄r,K) = 1.

Thus, A has fixed points u1 and u2 in Kp \ K̄r and KR \ K̄p, respectively, which
means u1(t) and u2(t) are positive solution of BVP (1)-(2) and 0 < ||u1|| < p <
||u2||.

Remark 3. Note to deduce the existence of u1 in Theorem 1 we need only assume
(P1), (H3) and f0 > λ1. A similar remark applies to u2.

Proof of Theorem 2. According to Lemma 3, we have that

i(A,Kp,K) = 0. (16)

Suppose that (H2) holds. Since f0 < λ1, one can find ε > 0 and 0 < r0 < p so that

f(t, u) ≤ (λ1 − ε)u, ∀t ∈ [0, 1], 0 ≤ u ≤ r0. (17)

Let r ∈ (0, r0). We now prove that µAu 6= u for any u ∈ ∂Kr and 0 < µ ≤ 1. If
this is not true, then there exist u0 ∈ ∂Kr and 0 < µ0 ≤ 1 such that µ0Au0 = u0.
Then u0(t) satisfies equation (9) and boundary condition (2). Multiply equation
(9) by φ1(t) and integrate (use (17)) to obtain

λ1

∫ 1

0
u0(t)φ1(t)dt = µ0

∫ 1

0
φ1(t)f(t, u0(t))dt

≤ (λ1 − ε)
∫ 1

0
φ1(t)u0(t)dt.

Since u0(t) ≥ min{t, 1 − t}||u0||, we have
∫ 1

0
φ1(t)u0(t)dt > 0, and so from the

above inequality we see that λ1 ≤ λ1 − ε, which is a contradiction. By Lemma 2,
we have

i(A,Kr,K) = 1. (18)

On the other hand, since f∞ < λ1, there exist ε > 0 and H > p such that

f(t, u) ≤ (λ1 − ε)u, ∀t ∈ [0, 1], u ≥ H.

Let C = max
0≤u≤H

max
0≤t≤1

|f(t, u)− (λ1 − ε)u|+ 1, and it is clear that

f(t, u) ≤ (λ1 − ε)u + C, ∀t ∈ [0, 1], u ≥ 0. (19)

We can show that there exists R > H > p such that µAu 6= u for any u ∈ ∂KR

and 0 < µ ≤ 1; we omit the details, since they are similar to those in the proof of
Theorem 1. Thus, we obtain

i(A,KR,K) = 1. (20)
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In view of (16),(18) and (20), we obtain

i(A,KR \ K̄p,K) = 1,

i(A,Kp \ K̄r,K) = −1.

Thus, A has fixed points u1 and u2 in Kp \ K̄r and KR \ K̄p, respectively, which
means u1(t) and u2(t) are positive solution of BVP (1)-(2) and 0 < ||u1|| < p <
||u2||.

The proofs of Theorem 3 and 4 follow the ideas in the proofs of Theorems 1
and 2.

4. Appendix and Example

In this section, we shall give the computations for η, σ and λ. Note that

G(t, s) =
{

t(1− s), 0 ≤ t ≤ s ≤ 1,
s(1− t), 0 ≤ s ≤ t ≤ 1.

Thus we have ∫ 1

0

∫ 1

0
G(τ, τ)G(τ, s)dsdτ

=
∫ 1

0
G(τ, τ)[

∫ τ

0
G(τ, s)ds +

∫ 1

τ
G(τ, s)ds]dτ

=
∫ 1

0
G(τ, τ)[

∫ τ

0
s(1− τ)ds +

∫ 1

τ
τ(1− s)ds]dτ

=
∫ 1

0
τ(1− τ)× τ(1−τ)

2 dτ = 1
60 ,

and so

η = [
∫ 1

0

∫ 1

0

G(τ, τ)G(τ, s)dsdτ ]−1 = 60.

On the other hand, we have

g(τ) :=
∫ 3

4

1
4

G(τ, s)ds =



∫ 3
4
1
4

τ(1− s)ds = τ
4 , τ ∈ [0, 1

4 ],∫ τ
1
4

s(1− τ)ds +
∫ 3

4
τ

τ(1− s)ds

= − τ2

2 + τ
2 −

1
32 , τ ∈ [ 14 , 3

4 ],∫ 3
4
1
4

s(1− τ)ds = 1−τ
4 , τ ∈ [ 34 , 1].

Then it is easy to verify that g(τ) = g(1− τ) for τ ∈ [0, 1]. Thus one derives that

F (t) : =
∫ 1

0

∫ 3
4
1
4

G(t, τ)G(τ, s)dsdτ

=
∫ 1

0
G(t, τ)g(τ)dτ

=
∫ t

0
τ(1− t)g(τ)dτ +

∫ 1

t
t(1− τ)g(τ)dτ,

and F (t) = F (1− t) for t ∈ [0, 1]. Furthermore, we obtain

dF (t)
dt = −

∫ t

0
τg(τ)dτ + (1− t)tg(t) +

∫ 1

t
(1− τ)g(τ)dτ − (1− t)tg(t)

= −
∫ t

0
τg(τ)dτ +

∫ 1

t
(1− τ)g(τ)dτ

= −
∫ t

0
τg(τ)dτ +

∫ 1−t

0
τg(τ)dτ,
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and thus
dF (t)

dt

∣∣∣∣
t=0

> 0,
dF (t)

dt

∣∣∣∣
t= 1

2

= 0,
dF (t)

dt

∣∣∣∣
t=1

< 0.

Noting that dF (t)
dt = 0 has only one zero point t = 1

2 , F (t) arrives it maximum at
t = 1

2 . That is∫ 1

0

∫ 3
4

1
4

G(
1
2
, τ)G(τ, s)dsdτ = max

t∈[0,1]

∫ 1

0

∫ 3
4

1
4

G(t, τ)G(τ, s)dsdτ,

and σ = 1
2 . Therefore, we have

λ = [
∫ 1

0

∫ 3
4
1
4

G( 1
2 , τ)G(τ, s)dsdτ ]−1

= [
∫ 1

2
0

τ(1− 1
2 )g(τ)dτ +

∫ 1
1
2

1
2 (1− τ)g(τ)dτ ]−1

= [
∫ 1

2
0

τg(τ)dτ ]−1

= [
∫ 1

4
0

τ2

4 dτ +
∫ 1

2
1
4

τ(− τ2

2 + τ
2 −

1
32 )dτ ]−1

=
{

τ3

12

∣∣∣ 1
4

0
+ [− τ4

8 + τ3

6 − τ2

64 ]
∣∣∣ 1
2

1
4

}−1

=
{

1
64×12 + (− 1

8×16 + 1
6×8 −

1
64×4 )− (− 1

8×256 + 1
6×64 −

1
64×16 )

}−1

= [ 15
64×4×3 −

21
64×4×8 ]−1

= [ 57
64×8×4×3 ]−1 = 6144

57 ' 108.

Example. Consider the boundary value problem

u(4)(t) = ua(t) + ub(t), 0 < a < 1 < b,
u(0) = u(1) = u′′(0) = u′′(1) = 0.

(21)

Then the BVP (21) has at least two positive solutions u1 and u2 with

0 < ||u1|| < 1 < ||u2||.

To see this we will apply Theorem 1 (or Corollary 1). Set

f(t, u) = ua + ub.

Note

lim
u↓0

f(t, u)
u

= ∞ and lim
u↑∞

f(t, u)
u

= ∞,

so (H1) (or (H∗
1 )) holds. Clearly, (P1) holds. Note η = 60. Since there exists p = 1

such that 0 ≤ u ≤ p implies

f(t, u) ≤ pa + pb = 2 < η = ηp,

we have that (H3) holds. The result is now from Theorem 1 (or Corollary 1).
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