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Splitting 3-plane sub-bundles over the product of two real projective

spaces

Maria Herminia de Paula Leite Mello and Mario Olivero Marques da Silva

ABSTRACT: Let a be a real vector bundle of fiber dimension three over the product
IRP(m) x IRP(n) which splits as a Whitney sum of line bundles. We show that the
necessary and sufficient conditions for a to embed as a sub-bundle of a certain
family of vector bundles 3 of fiber dimension m + n is the vanishing of the last three
Stiefel-Whitney classes of the virtual bundle0 3 — «. Among the target bundles 3

we consider the tangent bundle.!

Contents

The problem of deciding if a vector bundle a can be realized as a sub-bundle of
another vector bundle 3 over a manifold M has been considered by several authors.
Immersion problems and also the existence of a k-field frame on a manifold M are
among the applications of this question. The most used techniques to approach
such problems are Postnikov decomposition ([5], [6]) and the singularity method

developed by Ulrich Koschorke [2].

This question can also be formulated as the existence of a monomorphism of

vector bundles from « into 8. In this

paper the manifold is the product of two real

projective spaces IRP(m) x IRP(n), « is a vector bundle of fiber dimension 3 and
[ has the same fiber dimension m + n as the dimension of the manifold and they

are listed below.
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Here €™ always represents the trivial vector bundle of dimension n, v and £ are
the canonical line bundles over the projective spaces IRP(m) and IRP(n), respec-
tively. The bundles TP(m) and T P(n) are their tangent bundles. We denote by
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vt and &+ the orthogonal complement of v and &, respectively. We recall that
v @yt =2 emt and v ® vt = TP(m) over IRP(m) while £ @ ¢+ = ¢"*! and
£®&H =2 TP(n) over IRP(n). Let p be the projection of IRP(m) x IRP(n) over
any of the factors. We denote the pullback of any vector bundle under p and the
vector bundle itself by the same notation. We assume m and n to be greater or
equal than 3.

A motivation for considering this list of vector bundles o comes from the fol-
lowing facts:

1. Any vector bundle of fiber dimension two over IRP(m) is isomorphic to either
2 eldyory@ny.

2. Any vector bundle of fiber dimension three over IJRP(m) that is a restriction
of a vector bundle over IRP(00) is decomposable as a Whitney sum of line
bundles.

Fact 1 can be verified by noticing that oriented vector bundles of fiber dimension
2 over IRP(m) are classified by H2(IRP(m),Z) which is isomorphic to Zs. On the
other hand, nonorientable vector bundles of fiber dimension 2 are classified by
H?(IRP(m),Z,), the cohomology group with coefficients twisted by w = wy(7)
and for m > 3 this group is trivial [4].

Fact 2 follows from the fact that there is a bijection between [IRP(o0), BO(3)],
the set of homotopy classes of maps from IRP(c0) to BO(3) and Rep(Z2,0(3)),
the set of equivalence classes of representation Zs in O(3). This follows from
a result of Dwyer and Zabrodsky ([1] or [3]). Since Rep(Zs,O(3)) is equal to
Hom(Z3,0(3)) / Inn(O(3)) there are four classes, corresponding to the following
four non isomorphic vector bundles: €3, 2@y, ! @y Dy and Yy By D 7.

Since H'(IRP(m) x IRP(n),Zs) = Zz & Zs, the line bundles over IRP(m) x
IRP(n) are isomorphic to one of the following line bundles: €', 7, £ and 7 ® £.

In this work we did not consider the line bundle v ® £ as a splitting component
of a because the very first obstructions to the problem will already break into many
cases.

The first evidence one can get for the existence of a monomorphism from « to 3
comes from the Stiefel-Whitney classes. That is, if there is a monomorphism from
« into 3, then there is a vector bundle, say (, such that § = o @ ¢ and then

wy—i(¢) = wr—i(8 — @) =0,

for i = 0,1,...,dim(a) — 1, where r = dim(3). Then we are facing the task
of computing the three last Stiefel-Whitney classes w;(aw — 3), i = m + n,m +
n —1,m + n — 2, for the ninety possibilities of our original setting. This can be
done rather smoothly because of the algebraic simplicity of the cohomology of the
product IRP(m) x IRP(n).

We prove then, in a constructive way in most of the cases, the following theorem:
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Theorem 1 If & = ry @ sé ® b, with r,s,t > 0 andr +s+t = 3 and 3 =
B1 @ Ba, with By = €™, TP(m) or v+, B = ", TP(n) or &+ over the product
RP(m) x RP(n), where m,n > 3, then there is a monomorphism from « into [3 if,
and only if, w;(B—a) =0 fori=m+n—-2m+n—1 and m+n.

The cases when 3 = e ®TP(n), e™ @& and TP(m) @ &L are, in a sense, dual
to the cases 3 = TP(m) @ e", v+ @ ™ and v+ ® TP(n), and so we only consider
the first six bundles in the list on the right side.

First we compute the Stiefel-Whitney classes in order to prove the theorem.

Let u and v represent the generators of H'(IRP(m);Zs) and H*(IRP(n);Zs),
respectively. Then, H*(IRP(m) x IRP(n); Zs) is generated by all possible products
u'v? such that ¢+ j = k. In particular, for k =m+n—2,m+n—1and m+n we
can choose the following ordered basis:

{umon=2 ym=lyn=l ym=2yn} for H™T"=2(IRP(m) x IRP(n); Zs),

{umvn =t ™y} for H™T =Y (IRP(m) x IRP(n); Zs),

{u™v"™} for H™"(IRP(m) x RP(n);Zz).

To avoid similar calculations that occurs in more dual cases (as when 8 =
empttanda=707DE or YO EDE) we consider the total Stiefel-Whitney
classes given below. When o = €% and 3 = ™" TP(m) @ " and v ® ", the
solution is clear.
w(E™ =y @) = (1+u)"!

mtn _ v @y del) = (1 +u)2
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)
YEOTP(n) —y®e?) = (1+u) (1 +uv)"H!
YEOTP(n) —y@y®e') = (1+u) (1 +v)"*!
TEeTPM) —y@v&y) = (1+u) (1 +0)"H
)—e2@ &) = (1+u) Y1 +v)"
n)—el @@ =1+u) (1+v)" !
)—E0E@E) =(1+u) (1+o)"?
YEOTP(n) -y ®E@e') = (1 +u) (1+0v)"
n)—y®&y®E) = (1+u) 31 +v)"

yroet—)=0+u)'Q+0v)"
Yrott—yoe?) = 1+u) 2 (1+0)!
Vrett—yoyoe)=1+u) 31 +v)?
Yrett—yey@y)=1+u)*Q+0v)!
Yreet —yotoel)=(1+u)%(140v)72
wt et —voya ) =(1+u) 3 (1+0v)7?

Since we want to compute the last three Stiefel-Whitney classes, we only have
to know the three last terms of each factor of (1+u)! wherei = —1, -2, —3, —4, m+
1,m,m — 1 and m — 2, where m,n > 3. These are given by the following table:

A4uw) ' =14u+u’>+ - +u™ 2 +u™ +u™, Ym,

(1+u)~2 {1+u2+u4+-~-+um‘2+0+um,
u =

L+u®+ut 4+ +0+u™ " 40,

T+utu +u® 4+ +0+0+u™, m = 0(4)

(14+u)3= T+u+ut +u® 4+ +04+u™ 1+ 0™, m=1(4)
Ttut+u* +u®+ - +u™ 2+ u™ 40, m=2(4)
Ltutu +u®+- - +u™ 2 +0+0, m=3(4),

L+u+u®+ - 4+0+0+u™, m=0(
(14w L+ut +u®+ - +0+u™ 1 +0, m=1(4)
u =
T+ut +ud 4+ u™ 24040, m=2(

m

T+u'+u® 4+ +0+40+0,
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1+---+0+0+u™, m=0(4)
(14 )t = 1+ 4+04+u™""+0, m=1(4)
L+ Fu™ 2 +u™ ! +u™, m=2(4)
1+---+0+40+0, m=3(4),
I14+---4+04+0+u™, m=0(4)
(1 4wy = I+ 4 0+u™ 4 u™, m=1(4)
I+ 4u™ 2 4+04+u™, m=2(4)

m

1+_.._|_um—2_~_um—1+um

T+ 4+u™ 2+ u™ 40, m=0(2)

L+u)™ ! =
( ) { L+ +0+u™ 1 +0, m=1(2),

A+uw)™ 2 =1+ +u"™24+0+0, Vm.

We denote: wy(¢;) = wi(6—«) where i = 1,2,...,45, and we use the ordered basis
choosen before. The cases where the last three Stiefel-Whitney classes vanish are:

Cases 1,2,3,6,7,8,15,16, 17, for any n, m.

If 1 = 9,10, 43, for m = 3(4) and any n.

If ¢ = 11, for m = 1(4) and n = 3(4) or m = 3(4) and any n.

If ¢ = 24, for m = 3(4) or n = 3(4).

If + = 25, 26, 30, 31, for any m and n = 3(4).

If ¢ = 27, for any m and n = 1(2).

If i = 32, for any m and n = 3(4) or m = 3(4) and n = 1(4).

If i = 33, for m =2(4) and n = 1(4) or m = 3(4) or n = 3(4).

If ¢ = 45, for m = 3(4) and n = 1(2). Otherwise at least one of the three last
Stiefel-Whitney classes is not zero. Therefore there is no monomorphism. We use
some basic results:

Lemma 1 If m = 1(2) then TP(m) 2! @ om L,

Proof This follows from the Poincaré-Hopf Theorem.
Lemma 2 If m = 3(4) then TP(m) = &3 & (™ 3.

Proof If m = 3(4) then (™;") = 0(2) and so IRP(m) is a spin manifold. Then
we can use the following fact due to Emery Thomas: If M is a spin manifold with
dim M = 3(4), then span(M) > 3. See [5], corollary 1.2.

Lemma 3 If o and § are smooth vector bundle of dimensions a and b, respectively,
over a closed connected n-dimensional manifold M. If n + a < b, then there exists
a monomorphism « — (.

Proof This can be obtained by singularity approach due to Ulrich Koschorke.
See [2], exercise 1.13.

Recall that TP(m) ®el! 2 y@~v®---®~v ((m+ 1) — times).
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Cases 1-3 (a = y®e?, y@y®et and y@yDy, B = e™T™) For any 3-plane bundle
« there is a monomorphism a — £™%3 over IRP(m) (Lemma 3). In particular for
a=73e2,y®y®e! and a =@y P y. We can pull these monomorphisms back
over the product IRP(m) x IRP(n) in order to get Yy & &2,y &y Del, vy Dy —
6m+3 @ 5"73 o~ (_:ern.

Cases 6-8 (a = 7@ e, Y@ y@el andy @y Dy, B = TP™ @) Since
TP(m)@e' 2y@---®v ((m+1)-times), then y P2, vy @ e, yOy Dy —
TP(m)®e" = (y®---®ry) de™ L.

Cases 9-11 (a = 2 @&, @D and EREDE B=TP" @e) If m =
3(4), then TP(m) = &3 @ (™3 (Lemma 2). Then, TP(m) @ " = (™3 @ 3.
Over the factor IRP(n), a — &"*3, for any 3-plane . In particular, €2 @ &,
eloé@and EDEDE — "3, We can pull these monomorphisms back over
the product IRP(m) x IRP(n) to get the desired monomorphisms e? @ ¢, et @@ ¢
and £ B EDE — TP(m) @ e". For case 9 alone we can use: Over the factor
IRP(n), e"t! = ¢ @ ¢L. Taking the pullback of this decomposition we can write
2@l > TPm)@e" 2 ((M3@ed)pen 2 (M 3al?petl (M 3glataplt.

We still have to consider, in case 11 (a =D EDE and = TP(m) ® &™), the
situation m = 1(4) and n = 3(4). Since m = 1(4), TP(m) @ " = g~ gent! =
01 @ & @ &L, Tensorizing with & we get £ @ (TP(m) @) 2 (@™ H el @
TP(n) = (0™ 1) oel @ ("3 @ e because n = 3(4) (Lemma 2). Tensorizing
once more with & we get TP(m) @e" 2 0m 1ot afaéd (E® (" 3). This
shows we can get the desired monomorphism.

Cases 15-17 (a = Y@ 2, Yoy @ el and Y@y D7, B = v+ © ") Same
argument as in cases 1-3 proves that v @ e, YDy D el YOYDy — ’yl ®em.

Case 24 (a = &3, B =TP™ @ TP") If m = 3(4) or n = 3(4), then &3 —
TP(m) @ TP(n).

Cases 25, 26 (a =y e and Yoy Del, B = TP ®TP") If n = 3(4),
TP(m)®TP(n) =2TP(m)®(2an"3) =2 (TP(m)oe) @ (2o 3) =2 (vo---@
v)@e2dn™ 3, ((m+1)-copies). So y@e?, ydyDel — (Y@ D) ey 3
TP(m)® TP(n).

Case 27 (a =v®y Dy, 8=TP" @ TP") If n =1(2), TP(m) ®TP(n) =
TPm)oetot2ya---@y®0" L ((m+ 1)-copies). Then v@® v dy —
TP(m) @ TP(n).

Case 30 (a = &%, B =+t @ TP(n)) If n = 3(4) then TP(n) = 3@ n" 3 and
then €2 — v+ @ TP(n) (Lemma 2).

Case 31 (a = y®¢e?, 3 =~ @ TP(n)) For any 3-plane bundle «, there is a
monomorphism a < v+ @ e* over IRP(m). If n = 3(4), then we can pullback over
the product IRP(m) x IRP(n) the existent monomorphism v @ €2 — 7+ @ €3 to
get y@e? myt o o324yt e TP(n).

Case 32 (a = y©y®el, B =yt @TP(n)) If n = 3(4), the same argument as in
case 31 gives a monomorphism y®y®el — v @TP(n). If n = 1(4) and m = 3(4)
we can do the following: v* @ TP(n) = v+ @e! @671, Tensorizing with v we get
(v@yH )@y (yee"T) = TP(m)eye (Yo" ) = (o™ oye(yoom ).
Tensorizing with  once more we get y=-®TP(n) = y@yOy® (yR¢" )@t oot
and then there is a monomorphism v @ v @ ! — v+ @ TP(n).
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Case 33 (o = Y&y®y, B3 =y @TP(n)) If n = 3(4), then the argument used in
case 31 shows that there is a monomorphism Y@y @y — v+ TP (n). If m = 3(4),
the double tensorization argument given in case 32 shows that y* @ TP(n) =
TEYEYD (yR(" )@ TP(n). Then y &y @y — v+ & TP(n).

Suppose m = 2(4) and n = 1(4). Then TP(n) = ¢! @ 6"~ !. It suffices to
prove that v @ v @ v — v+ @ &' over the factor IRP(m). There exists a bundle
monomorphism €2 < TP(m + 1) 2 v ® v+ over IRP(m + 1) by Lemma 2. Tensor
product with 7 yields vy &~ @~ < v+ over IRP(m + 1). Restriction of this bundle
monomorphism under the inclusion i : IRP(m) — IRP(m + 1) gives y &y D vy —
i*yt 2yt @ el on RP(m).

Case 43 (a =Y ® YDy, B =+ @ &) If m = 3(4) the double tensorizing
argument shows that there is a monomorphism from v @ v @ v into v~ @ &+,

Case 45 (a = Y@ Y@ E B =0 &h) If m = 3(4) and n = 1(2) then
TR (@) = (Y@ B (YeEh) =XTP(m) & (yoeh) 2l a (™ P (Yo ).
Tensorizing with v once more gives 7= @ ¢ 2y vy D (Y@M 2) @ &+, Now,
tensorizing twice with ¢ gives Y- @ ¢ Xy @y @y (7@ (M 3) @@ (@Y.
Then there is a monomorphism from v @ v @ £ into v+ @ &+,

Remark 1 In same cases, the geometric arguments show that we can embed
more copies of v (or £) than the ones we claimed. Also, some proofs work for
smaller m or n, as long as m +n > 3.
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