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On Nonlinear Coupled System with Nonlocal Boundary Conditions

M. L. Santos , C. A. Raposo and U. R. Soares

ABSTRACT: We discuss the existence, uniqueness and stability exponential and
polynomial of global solutions for a nonlinear coupled system with nonlocal bound-
ary conditions given by

gt + A2u+ flu—v) = 0 in Qx(0,00),
vig —Av — flu—v) = 0 in Qx(0,00),
t
u=0 on TIgx(0,00), fqu/ g1(t —s)Bau(s)ds = 0 on Iy x(0,00),
Jo
t
@:O, on Ty x (0,00), a—u—l—/ g2(t —s)Biu(s)ds = 0 on T'1 x (0,00),
ov ov 0
¢ ov
v=0 on Iy x (0,00), v+/ gg(tfs)a—(s)ds = 0 on Iy x(0,00),
Jo v
(w(0,2),v(0,2) = (uo(z),v0(x)), (we(0,2),v¢(0,2)) = (ui(z),vi(x)) in Q

where € is a bounded region in #2 whose boundary is partitioned into disjoint sets
To, I'1. We show that such dissipation is strong enough to produce uniform rate of
decay. Besides, the coupled is nonlinear which brings up some additional difficulties,
which makes the problem interesting.
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1. Introduction

The main purpose of this work is study the asymptotic behavior of the solutions
to a nonlinear coupled system with a boundary conditions of memory type. For
this, let  be a open bounded set of %2 with regular boundary I'. We divide the

boundary into two parts:

I'=Tyul'y with foﬁf1 :@; and Iy 75@ (11)
1991 Mathematics Subject Classification: 35L55, 35L15.
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Let us denote by v = (11, 12) the external unit normal to I', and let us denotes by

1 = (—va, 1) the unit tangent positively oriented on I'. We consider the following

initial boundary value problem:

ug + APu+ fu—v)
vy — Av — f(u—v)

T

v=v= ov
¢

—u+ / g1(t — s)Bau(s)ds
0

Ou ¢
s + /0 g2(t — s)Byu(s)ds

v —|—/ g3(t — 5)%(5)6[5

(u(07 x), 1}(0, 'r) = (’U'O(x)v ’UO(‘r))7 (ut(07 x)v ’Ut(O’ :L‘))

0 in
0 in
0 on
0 on
0 on
0 on

Q x (0, 00)(1.2)
Q x (0, 00)(1.3)

Ty x (0, o¢),.4)
'y x (0, 4),.5)
Iy x (0, ¢),6)
'y x (0,04),.7)

(ur(z), v1(2)) in(19)

where
Blu = Au + (]. - ,u)Blu,
O0Au 0Bsu
B = — -
2u ov ( ) on
and
0?u 2 0%u 0%
Blu = 21/11/2%_1/167?!2_1/2@7
0*u Pu  0*u
(22
BQU = (1/1 71/2)W8y+y11/2(87y27@).
Considering the history condition, we must add to conditions (1.4)-(1.7) the one
given by
0
u:a—Z:v:O on Iyx]—00,0].

Here, v and v are the transverse displacements. The relaxation functions g; are

positive and non decreasing, p is the Poisson coeficient, with p €]0, %[, and the

function f € C1(R) satisfy
fls)s>0 VseR.

Additionally, we suppose that f is superlinear, that is

f(8)s> (24 06)F(s), F(z):= Zf(s)ds,

0

Vs € R,
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for some & > 0 with the following growth condition
[f@) = f@)l < CA+ |/t + [yl e —yl, Vr,yeR,

for some C > 0 and p > 1 such that (n — 2)p < n. We assume that there exists
xo € N2 such that

To={zxeTv(x)- (z—1x0) <0}, (1.9)
Iy ={zel;v(z) (x —xz) > 0} (1.10)

Denoting by m(z) = x — xg, since I'; is a compact set, there exists g € RT such
that

0<dp <m(x) v(z), Vaelj. (1.11)

Dissipative linear coupled systems of the wave equations with boundary feedback
was investigated by several authors, see for example [1:2:3:6:16] among others. There
is not much in literature regarding the existence and asymptotic behavior of solu-
tions of systems with memory acting on the domain or on the boundary. It is worth
mentioning some papers in connection with viscoelastic effects on the domain or on
the boundary. In this direction we can cite the work by Santos % who consider
the linear coupled system with memory and proved uniform (exponential and poly-
nomial) decay rates. Also, we can cite the article of Cavalcanti et al. BBl where it
was considered a linear coupled degenerate system with boundary memory effect.
In this work the authors showed that the dissipation occasioned by the memory
terms was strong enough to guarantee global estimates and, consequently, to prove
existence of global smooth solution and obtain exponential (or polynomial) decay
provided the kernels decays exponentially (or polynomially). Concerning with sub-
ject this paper we can mention the work of Bae (4] that studied the existence of

global solutions and uniform exponential decay of the following system:

utt+A2u+av+gl(ut) = 0 on Qx(0,00),
v — Av+au+go(vy) = 0 on Qx(0,00),
u = % = 0 on I x(0,00),
v = 0 on Ty x(0,00),
0
Sovtutg®llfu = grlol’v on Tix (0,00),

(u(0),v(0)) = (up,v0), (ue(0),v:(0)) = (ug,vy) on €.
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The main goal of the present paper is to complement the above mentioned works.
The results are obtained for linear coupled while our paper deals with nonlinear
coupled which brings up some additional difficulties. Notice that the coupled used
in our work is more general than used by Bae 4. Besides we despised the frictional
damping and we just used memory effect.

As we have said before we study the asymptotic of the solutions of system
(1.2)-(1.8). We show that the energy decays to zero with the same rate of decay
as g;. That is, when the relaxation functions g; decays exponentially then the
energy decays exponentially. But if g; decays polynomially then the energy decay
polynomially with the same rate. This means that the memory effect produces
strong dissipation capable of making a uniform rate of decay for the energy. To
see the dissipative properties of the system we have to construct a suitable func-
tional whose derivative is negative and is equivalent to the first order energy. This
functional is obtained using the multiplicative technique following Komornik 7 or
Rivera 121,

Because of condition (1.4) the solution of the system (1.2)-(1.8) must belong to

the following spaces:

W::{wEH2(Q):w=?)—Z):0 on Ty}, Vi={veH Q) :v=0 on To}.

The notations we use in this paper are standard and can be found in Lion’s book
(1], In the sequel by C (sometime C4,Cs,...) we denote various positive con-
stants independent of ¢ and on the initial data. The organization of this paper is
as follows. In section 2 we establish the existence and regularity result. In section
3 prove the uniform rate of exponential decay. Finally in section 4 we prove the

uniform rate of polynomial decay.

2. Notations and Main Results

In this section we present some notation and shall study the existence of regular
solutions for the system (1.2)-(1.8). For this, let us define the bilinear form a(.,.)
as follows:

o = [[TaTr, Paly Futs Fut
q 022 022 Oy? 0y? 0x? 0y?> = Oy? 0x?

?u 0%
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The following Lemma will be useful in that follows.

Lemma 2.1 Let u and v be functions in H*(Q) N W. Then we have

ov

/Q(Azu)vdx = a(u,v) + /1“1 {(Bzu)v - (Blu)ay} dry. (2.1)

Proof. ;From Green’s formula we get

/(AQU)vdx = / (aAu)vdI‘lf/ Au@dflJr/AuAvdxdy
Q ov Ty ov Q

= / (iiu)vaTl - Au%dfl + a(u,v)
Fl 1—‘1

uot i,
q 022 022 Oy? Oy? Y
%u 0%
o 0zdy 0xdy dudy.

—2(1—p)
By recalling the definition of By and Bs and using
0?ud?v  0%ud*v &?u 0%
——t+ ——dzdy — 2 | ———dxd
/Q 0x2 0z2 + Oy? Oy? vy /Q Oz0y Oxdy ey
8Bgu
= [ 5
I, n

B
Yo — (Blu)a—:j}dl“l,

our result follows. H
We will assume that the relaxation functions g; are positive and we shall use equa-

tions (1.5)-(1.7) to estimate the values of By, Bo, % on T';. Denoting by

(g)(t) = Ag@—ﬁﬂ®%7

the convolution product operator and differentiating the equations (1.5)-(1.7) we

arrive at the following Volterra equations

1 1
Bou+ ——g) * Bou = ———uy,
a0 T am
1 1 8ut
Biu+ ——ghxBiu = — -—,
1 92(0)92 1 92(0) 31/
@_f_ L ! % @ — _LU
v g3(0) 9% 5 g3(0) ©
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Applying the Volterra’s inverse operator, we get

1
BQU = m{ﬂt +I€1 *’U,t}7
- 1 3ut 8’U¢
B = =50 { ov T au}’
ov 1
— = ———{ve+ksg*xuv},
ov 93(0){ ¢ 3 vk

where the resolvent kernels satisfies

1 1
ki + ——gixki=——gi, Vi=1,23.
(0)

i(0) 9i
Denoting by 7; = ﬁ, i =1,2,3, the last iqualities can be written as
BQU = Tl{ut + kl (O)U — kl (t)uo -+ kll * U}, (22)
8Ut ou 5‘u0 ou
— — = — kp(0) = + ko (t) =— — kb x — 2.

Biu 7-2{ v 2(0)8V+ 2(t) v 2*3u} (2:3)

0

a% = —r3{vp + k3(0)v — ks (t)vo + kb * v} (2.4)

ou

Reciprocally, taking initial data such that ug = vo = %> = 0 on I'y, the identities

(2.2)-(2.4) imply (1.5)-(1.7). Since we are interested in relaxation functions of
exponential or polynomial type and the identities (2.2)-(2.4) involve the resolvent
kernels k;, we want to know whether k; has the same properties. The following

Lemma answers this question.

Lemma 2.2 If h is a positive continuous function, then k also is a positive con-

tinuous function. Moreover,
1. If there exist positive constants co and v with ¢y < v such that
h(t) < coe™ ",

then, the function k satisfies

forall0 < e <y —cg.

2. Givenp > 1, let us denote by ¢, := SUP,cp+ fg(1+t)p(1+t75)*p(1+s)*p ds.

If there exists a positive constant co with coc, < 1 such that

h(t) < co(1+1)7",
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then, the function k satisfies

Co _
< —q P,
k(t) < 1—c0cp( +1)

Proof. Sece. g. [15 Lemma2.1]

Remark: The finiteness of the constant ¢, can be found in (13, Lemma 7.4]

Due to this Lemma, in the remainder of this paper, we shall use (2.2)-(2.4) instead
of (1.5)- (1.7). Let us denote by

t
GO0 = [ alt = olett) - ols)ds.
0
The next Lemma gives a identity for the convolution.

Lemma 2.3 For g, € C'([0,00[: R) we have
! 1 2 1 ’
9t —s)e(s)dspr = —og@le( + 590

L8 Tome ([ otopasyiol
2 di g-e o gis)as)iel | -
The proof of this lemma follows by differentiating the term gOp.

To show the regularity result we will use the following Lemma,

Lemma 2.4 Suppose that f € L*(Q), g € H%(Fl) and h € H%(Fl) then, any

solution of

0
a(u,w) = / fwdz —|—/ gwdl'; + h—wdl"l7 Yw e W
Q Ty ry ov
satisfies
u € H*(Q)
and also:
A%y = f,
Ju
U= Y =0 on Ty

Biu=h, Byu=g on Ii.

Proof. Sce, e.g., [10

Since 'y # @, Korn’s Lemma implies that y/a(.,.) is a norm equivalent to the usual
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Sobolev norm || - || g2 on W. Let us introduce the energy function

E() := E(t,u,v) = %{/ﬂ(|ut|2 + ve? + | Vo2 )dx + a(u,u) + 2/QF(u —v)dz

+’7’1/ (kl(t)|u\2 — k/ID’u,)dFl
ry

ou

ou
“+To /Fl (k‘g(t)|%|2 _ k;lj%)drl

+73/ (ks (8)[0]2 — K4Ov)dTy )}
I

and let us denote by {w; € W : i € N} an orthonormal basis of W. In these

conditions we are able to prove the existence of strong solutions.

Theorem 2.1 Let k; € C?(RT) be such that

ki, =k k! >0, Vi=1,2,3.

27"

If (ug,vo) € (HH(Q)NW) x (H2(Q)NV) and (uy,v1) € W x V satisfy the compat-

ibility conditions

BQ’LLO —Tiuy = 0, on Fl (25)
Biug + Gu 0, on T (2.6)
1Uo T T2 o s 1 .

ov
a—yo +mvy = 0, on I4 (2.7)

then there exists only one strong solution (u,v) for equations (1.2)-(1.8) satisfying:
u € L0, T; HY(Q) N W) nWhe(0, T; W) N W20, T; L*())
ve L0, T; H*(Q)NV) N W0, T; V) N W2>(0,T; L*(Q)).
In addition, considering the assumption (1.11) and assuming that there exist
positive constants by, by such that

ki (0) >0, K(t) < —biki(t), K/ (t) > —boki(t), or(2.8)

ki(0) >0, EN(t) < —bik, P, K/(t) > bo[—ki(O)]TFT, Vi=1,2,3, p>1,(2.9)

then, the energy E(t) associated to problem (1.2)-(1.8) decays, respectively, with
the following rates of decay

E(t) < aje”*'E(0), (2.10)
B(t) < MC;)I)HE(O), (2.11)

where a1, as and C are positive constants.
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Proof. Our starting point is to construct the Galerkin aproximation (u",v™) of

the solution

(um(_’ t)7 ,Um(_’ t)) = Z(hj,m(t)7 w],m(t))wj()a

Jj=1

which is given by the solution of the aproximated equations

/ ugw;dr + a(u™, w;) —|—/ flu—v)wjde
o Q

= —T1 / {’Uén + kl (O)Um — kl (t)UOJn + kll * um}wde‘l
I'y

ouy® ou™ Oug m ow;
+7 {— = ka(0) 5+ ha(t) =5 — K+ } —dl (212)
/ Vg wjde +/ Vo™ - Vw;dz — / fl™ —v™w;de
Q Q Q
= —T3 {’U;n + ]{33(0)Um — kg(t)’l}m(()) + ké * vm}wjdl"l (213)
I

(um(_’o),vm(.70)) = (UO,m;UO,m)§ (u;n(’o),vtm(70)) = (ul,mavl7m02'14)

where

(UO,m; UO,m) = (an UO)a (Ul,m, Vim = (u17 Ul)-

Note that we can be solve the system (2.12)-(2.14) by Picard’s method. In fact, the
system (2.12)-(2.14) have unique solution on some interval [0,T,,). The extension
of the solution to the whole interval [0, 00) is a consequence of the first estimate

which we are going to prove below.

A priori estimate I

To this end, let us multiply equation (2.12) by A’ ,, and equation (2.13) by ¢;
summing up the product results in j and using Lemma 2.3 we conclude that

d
dt

Integrating the last inequality we obtain

;M 7,mo

LBt u™,v™) < CE(0,u™, v™).

E(t,u™,v™) < CE(0,u™,v™).

(From our choice of (1o m,vo,m) and (u1,m, vim) it follows that

E(t,u™v™) <C, Vtel0,T], VmeN. (2.15)
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A priori estimate II

Next, we shall find a estimate for the second order energy. First, let us estimate
the initial data u}(0) and v{7(0) in the L?-norm. Letting ¢ — 0" in the equations
(2.12)-(2.13), multiplying the result by h7 ,(0) and 97, (0), respectively, and using
the compatibility conditions (2.5)-(2.7) we get

/ um (0)2 da = — / A2ugul(0)dz — / Fluo — vo)ul(0)da,
Q Q Q
/ o (0)[2 da = / Avoul? (0)dz + / Fluo — vo)o™(0)da
Q Q Q

Since (ug,vo) € [H?(2)]?, the growth hypothesis for the function f together with
the Sobolev’s imbedding imply that f(ug —vg) € L*(£2). Hence

/Q (luf (0)] + [vff (0)]) do < My, Vm e N. (2.16)
Differentiating the equations (2.12)-(2.13) with respect to the time, we get
[ atwsda + atur o) + [ £ -0 - o)da
=-7 /F {ugy + k1 (0)uy™ + ki = uf fw;dly
1

ouy” ,  oul . Ow;
— —=dI’ 2.1
v o * v } v ars, (2.17)

m
ouyy

ov

+Ta {— — kQ(O)
I
[ iy + VoV, = = o) = o)

=—73 [ {v} + ks(0)vy" + k% * v]" }w;dly. (2.18)
I
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Multiplying (2.17) by A7, and (2.18) by 7, , summing up the product result in

j we obtain

1d
337 [l + ol + Ve + 5 Gt )

_ / £ — o) — o yulda
Q
4 /Q £ — o) — o yoppda

-7 {Jum? + kp (0)uul? 4 ) * uuf? }dTy
Iy

3utt 9 oui® dup} , oupr oujy
— T
T { ‘ "= k2(0) dv  Ov o » ov Ov by
—ry [ IR+ ks 00" + K = oo T, (219)
Ty
Using the Lemma 2.3 and denoting by
1 1
Bo(touo) = 5 [ (ual + ool + VP o + 5 afusu)
Q
71 2 /
+5 (k1(t)|u]” — k10u)dly
I
Ty ou |, , _Ou
—= ko(t)|=—|° — ksO——)dl’
+y | a0l 5~ Kogar,
73 2 /
+5 (kg,(t)h}‘ —k‘SD’U)drl
Ty
we find that
iE m o ,m _ m|2 E / m|2 /" m
olt,wy",v") = —m lugt|“dly + (k1 () ug"|” — Ky Duy")dly
dt T 2 T,
au?tl 2 7_2/ / 8“? 2 "0 aut
— dl'y + = ky(t)|—=—| — k5O dr’
n [ G 5[ 1%~ T

[ |vtt\dr1+2 (R (0" ? — Ko ydry
Iy

/ f(u v uyydx

+ /Qf%um — ™) (uf" — o] Yoy da. (2.20)
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Let us take p,, = % From the growth condition of the function f and the Sobolev

imbedding we have

/f Yy d < c/(1—|—2|u \P*l)|ut I |da

SCUQ(Hmum p™ (P ”dx]i [/ um|p"d;1:] " UQ |u:;|2d41
SCUQ(HM — Vo } [/ V| dx} U|u |d4

Taking into account the first estimate (2.15) we conclude that

/f1 Yurulde < U V| dx} [/ um |da:}

< c{/Q |Vu;§”|2dx+/ [ugr] dx}. (2.21)
Similarly we get
/ f(u ™MoStuprde < c{ | Vo 2dz + /Q u$|2dx}, (2.22)
/ f W™ —o™u v de < c{ |Vul|?dx —|—/ |vgg|2da:} , (2.23)
/f ™y vttd:r<c{/ Vo dm—i—/ vy |2dx} (2.24)
Substitution of the inequalities (2.21)-(2.24) into (2.20) we get
%Eo(t,uln,vt < o {/ lufy |2 + [Vl dac—i—/ loft|? + |V | dx}

Integrating with respect to the time and applying Gronwall’s inequality we conclude

that

Eo(t,ui*,v") <e, Vte[0,T], VmeN.

(From (2.15) and (2.25) we obtain
u™ is bounded in  L>(0,T; H*(%)),
ul™ is bounded in L>(0,T; H*()),
u is bounded in  L*(0,T; L*(%)),
v™ is bounded in L*°(0,T;V),
vy*  is bounded in  L°°(0,T;V),
v is bounded in  L*°(0,T; L*(Q)).

(2.25)
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Letting m — oo in the eq. (2.12) we get

a(u,w) = — /Q(utt + flu—v))wdx — 1y g {ut + k1(0)u — k1 (t)up + ki * uwdly
Ouy ou Oug , Ou) Jw
+7‘2/Fl {&/k2(0)8y+k2(t)8yk2*8y aydrl,

for any w € W. From Lemma 2.4 we get that
u € L>=(0,T; H*()).

Moreover we have that u, v verify the system (1.2)-(1.8) in the strong sense. The
uniqueness follows by standard method for hyperbolic equations. The present proof

is now complete. |

3. Uniform Exponential Decay

In this section we shall study the asymptotic behavior of the solutions of system

(1.2)-(1.8). For this, we will use the following Lemmas.

Lemma 3.1 For every o € H*(Q) and for every u € R, we have

1 92\’ 2p\°
W’@”z/ﬁ'”[(aﬁ) + (%)

%0 0% 20 \?
i il - dr
2 0x? Oy? 21— p) <8m8y>

/ (m - V) A?pdx
Q

+ [ [Bapym- Vo - (Bio) (m- V).

Proof. See, e.g., 8.
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Lemma 3.2 For any strong solution (u,v) of system (1.2)-(1.8) we have

d
—EBE@lt) < ——= [ |uldly +—k2 / |uo|? dFl—i——k / |u?dT"y
dt 2 r,
1 k” T2 Ouy 2 2 GUQ 9
- (t)0udl'y — = ——|%dl’'y + —kg(t) | dl’y
2 2 Jr, Ov
T2 ou
+ k:2 \—| ary — = k; Da—dl“l
73 73,2 2 T3, 2
5 |vg|2dTy + k3(t) lvo|“dT'y + 5 k5(t) |v|?dly

Iy IS I

—7/ k! (+)DvdT;.
2 T,

Proof. Multiplying the equations (1.2) by u; and (1.3) by v, integrating over €2,

summing up the product result and using Lemma 2.1 we get

3 dt{/ |Ut|2 + |v,5|2 + |Vv|2 + 2F (u —v))dz + a(u,u)}

Ouy 0
= —/Fl (Bgu)utdfl +/F1 (Blu)EdFl +/Fl Utaderl.

Substituting the boundary conditions (2.2)-(2.4) and using Lemma 2.3 our conclu-
sion follows. W

Let us consider the following binary operator
(kop)(t / E(t—s)( — (s))ds.
Then applying the Schwarz inequality for 0 < p < 1 we have
oo < | [ P as] (o, (3.)
Let us introduce the following functionals

N(t) = / (el + [0ef? + [Vol? + F(u - 0))dz + a(u,u),

= /{(m -Vu) + (1 — Q)uugdz + / {(m-Vv) + (1 - 0)v}vdz
Q Q

where 6 is a small positive constant. The following Lemma plays an important role

for the construction of the Lyapunov functional.
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Lemma 3.3 For any strong solution (u,v) of system (1.2)-(1.8) we get
d 0 1 5 5
- < 2 i .
GO0 < g [l ¢
1 2u\’ 2u\’ 0?u 0%u 2u \>
-2 fm Ka) () gy 200 () |

—/ (Bau)m - Vudl'y + / (Blu)%(m - Vu)dly
I

Iy

+C/ (lue® + [kx (8)ul? + K] o ul® + [k (t)uo|*)dI'y
Iy

vty 912 g6 Ve 9,
O | (15 P+ Ik, P+ ko 5 1 +1kat) 5 )T

+C [ (Jvel? + k3 (t)v]? + |k o v|* + |k3(t)vo|*)dTy
I'y

for some positive constant C.

Proof. Using the equation (1.2) and Lemma 3.1 we have

1
i/{(m-vu)+(1—9)u}utdx= f/ m - vl 2dT —9/ luel2dz — (2 — 0)a(u, u)
dt Jo 2 Jr, Q

(52 52 ez (2]
- /F[(Bgu)m -Vu — (Blu)o%(m -Vu)]dl' — (1 — 9)/ [(Bou)u — (Blu)%]dl“l

Iy

- / (m-Vu)f(u—v)de — (1 — 9)/ f(u —v)ude. (3.2)
Q Q

Let us next examine the integrals over I'g in (3.2). Since u = % =0 on I'y we

have Byu = Bou = 0 there and

0 0%u

5(771 -Vu) = (m - y)w = (m-v)Au, (3.3)
P2u\’  [9%u\® 0?u 0%u 2u \>

(ax) + (ay) g g Y20 (axay) = (&w)? (34)

on FO
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2
since 27327“ (;fgy) = 0 on I'g. Observing (3.3)-(3.4) and noting that m - v <

0 on Iy we obtain

1
4 / (m-Vu) + (1 — Ouyudr < = [ m-vju 20y — e/ luel2dz — (2 — 0)a(u, )
dt Q 2 ry Q

1 Pu\>  [9%u\’ 9%u 0% u \’
‘z/m’”‘”[(azz) () aags 200 (5, ) | a0

/1“1 [(Bau)m - Vu — (Byu) aay (m - Vu)ldl'y — (1 —6) /Fl [(Bau)u — (Blu)%]dFl
- / (m-Vu)f(u—v)dz — (1 — 9)/ fu —v)ude. (3.5)
Q Q

Using the equation (1.3) and performing a integration by parts we get

1
%/{m Vo + (1 = 0)vtvde < 5[ m vlv[2dly — 9/ lvg |2da
) Q

Iy

1
—|—/ @{m Vo+ (1 —0)whdly — = [ m-v|Vo|]?dl'; — (1 - 0)/ |Vo|?da
Ty (9V 2 r Q

+ /Q flu—v)m-Vodz + (1—0) /Q f(u —v)vdz. (3.6)

Summing the inequalities (3.5), (3.6) and taking into account that f is superlinear

we arrive at

—w( ) < 5 m- l/\ut\2dI‘1 — H/Q |ut|2dw —(2—=0)a(u,u)

1 0%u 2 0%u 2 0%u 92u 0%u 2
2/5""’[(%2) +(52) 2 g+ 200 (g ) |0
_ / (Byw)m - Vu — (Byw) 2 (m - V)]l — (1 — ) / (Bow)u — (Byu) 24jar,
ry aV ry 3

Jr1 m - v|vg|?dly 79/ |vt|2da:+/ @{m~Vv+(170)v}dF1
2 Iy 0 I 8V

1 m - v|Vo|2dly — (1 — 9)/ |Vol2de — (6 — (2 + 5)9)/ F(u —v)dz.
2Jr, Q Q
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Taking # small enough we obtain

d 1 1
Cpt) < —ON )+ [ mvlufdr + §/ m - vlvy |2dTy
Iy

2 Jr,
1 9%u\ > 92u\ > 0%u 9%u 2%u \°

-z, Ka) () g 200 (g, ) | o
7/ [(Bou)m - Vu — (Blu)g(m - Vu)]dl'y — (1 — 9)/ [(Bou)u — (Blu)@]dfl

I 14 I aV

ov 1 2

[ 2 Yo+ (1 - 0)o}dry — f/ m - v|Vo[2dT. (3.7)

ry 81/ 2 Ty

Now, we analyze some boundary term of the above inequality. Applying Young
and Poincaré’s inequalities we have, for € > 0
0
—U{m -Vo+ (1—-0)v}dly
I 81/
2

ov T

<e [ {Im- Vo> +(1-0)*v*}dl; + 06/
I (91/

Iy

2

o ar..

<eC{[| m-v|Vv|?dTy +N(t) + C.
Fl 1_‘1

Similarly, we obtain
o
~(1-0) [ [(Bawyu ~ (Br)Zo1ars £ N(e) + C. [ (|Bouf? + [Bruflar,
T I

By substitution of these last inequalities into (3.7) with € small and taking into

account that the boundary conditions (2.2)-(2.4) can be written as

Bou = Ti{us +ki(t)u — Kk ou—ki(t)uo},
B = 0 () g0 k(1) 00 — k() 20},
% = —r3{vy + ks(t)v — kb ov — ks(t)vo}
our conclusion follows. W
Let us introduce the functional
L(t) = NE(t) + (), (3.8)

with V > 0. Using Young’s inequality and taking IV large enough we find that
wE(t) < L(t) < qE(), (3.9)

for some positive constants ¢ and ¢;. We will show later that the functional £

satisfies the inequality of the following Lemma



On Nonlinear Coupled System with Nonlocal Boundary Conditions 18

Lemma 3.4 Let f be a real positive function of class C1. If there exists positive

constants vo,v1 and co such that
F(t) < =0 f(t) + coe™ ™,
then there exist positive constants v and ¢ such that

F(#) < (f(0) +c)e™™".

Proof. Seee. g. [14 Lemma3.4]

Finally, we shall show the inequality (2.10). Using the Lemma 3.2 and Lemma 3.3

we get
d N N N
o) < =20 [ juPdry + S22 [ uol?dDy + ik (8) [ Juldly
dt 2 Ty 2 Iy 2 Ty
N N N
_Nn / k() 0udry — 2 [ pzgp o NT2pa / 120 2,
2 r, 2 r; ay 2 Ty (91/
Nty , ou NTQ/ e Ou N3 9
NT2 ou _ VT2 0%, - 278
+ kz(t)/rl|ay ar, = 552 [ wgogiar, - 83 [ jupar,
N N N
+£k§(t)/ |UO\2dr1+£kg(t)/ lodr, —i/ k(1) Dvdly
2 I 2 Iy 2 Iy
4 1 2 2 €1 2 9 2
—=N({)+ = m-v(|jugl® + |v)?)dly + = [ (|m - Vu|* + | = (m - Vu)|?)dly
2 2 r, 2 r, aV
1 9?u\ > 9?u\ > 0%u 9%u 9% \ 2
- | (ZY S BT i YE dr
2/F1m v (8x2) + (8y2> + Koz Oy? +2(1 = p) <8x8y> !
+0/ (g2 + [er (£l + K] o uf? + [ (£)uo|2)dTy
I
8vt 2 ov 2 ’ ov 2 81}0 2
—_— ko (t)— ko © — ko (t)——|*)dT
+0 [ (G0 + (O G2 + s o G + o) G2
+C/ (|’u,5|2 + |k3(t)v\2+ |k§<>fu|2 + |k3(t)v0|2)dfl, (3.10)
I

where €, is a positive number to be fixed later. Next, let us calculate the expression
Jp, Im - Vul?dly + [ |2 (m - Vu)|?dl'; that appears in (3.10). Since a(u,v) is

strictly coercive on W, we have using the trace theory

)
|m-Vu|2dF1+/ | == (m - Vu)|2dly
Ty T,y (91/

0

Ao 9?u\’ 9?u\ > 0*u 6%u 0*u
< - . _— —_— a9 A 9 - Y-
< doalu,u) + 3 /nm V[(&;?) +<8y2) PG gy P (%ay

e
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where )\ is a constant depending on ) and u. Substituting the above inequality

into (3.10), choosing N large enough and €; < min(%, f\—‘é) we obtain

%g(t) < —E(t) + CR2(t)E(0),

where g2 > 0 is a small constant and R(t) = ki (t) + kao(t) + k3(¢). Here we have

used the assumptions (2.8) in order to conclude the following estimates

—% k’l’DudI‘l < Cl/ kiDuth
T Iy
Ty e Ou ,_ou
——= keO—dl'y < C koO—dTl
2 r1 2 aV 1= ! r, 2 81/ b
D[ kjuf?dr, < —01/ oy |u|2dTy,
Fl 1_‘1
T2 ’ ou 2 / ou 2
B 2L 24T, <~y [ kol 22 2T,
2 Iy 2|6l/| ! ! T 2‘8V| !
—B k’g’DvdI‘l < Cg/ k:’lljvdfl,
2 Fl l—‘1
ik ké|v|2dF1 S 701/ k3|v|2dfl
Fl l—‘1

for the corresponding six terms appearing in the Lemma 3.2. Thus we obtain
d
ety < —Bre) + CRX(4)E(0).
dt Q1

Using the exponential decay of ki, ko, ks and Lemma 3.4 we conclude that
L(t) <{L(0)+ Cle !
for all ¢ > 0. From the inequality (3.9) our conclusion follows. W
4. Uniform Polynomial decay

Here our attention will be focused on the uniform rate of decay when the resol-
vents k; decays polynomially as (1 + )P for some p > 1. For this, we will use the

following lemmas.

Lemma 4.1 Let us denote by (¢1, 2, ¢3) = (u, %,v). Letp>1,0<r <1 and
t > 0. Then we have

(| |k)|Dgidry) TG
I8

t
1 1
< 2(/0 ki ()17 ds |4l F oo (0,7, 12 (1)) DT ( g |k |' T 74T O¢;dly)
1
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while for r =0 we get
( / | Dosdly) 35
I'1l
t
_1
<9 / 16405, N[220y ds + 16405, ] 2007 / (K[ 7 Oy,

foralli=1,2,3.

Proof. Seee. g. [15 Lemma41]

Lemma 4.2 Let f > 0 be a differentiable function satisfying

’ —C1 1+1 C2 o7
£l < e f O + el O, for 120

for some positive constants ¢1,¢2, a and 3 such that
8>a+1.

Then there exists a constant ¢z > 0 such that
C3
(1+1¢)

f(t) < f@0), for t>0.

Proof. Seee. g. [15 Lemma4.2]

Finally, we shall show the inequality (2.11). We define the functional £ as in
(3.8) and we have the equivalence to the energy term E as given in (3.9) again.

The negative terms

—Ck‘l(t) |u|2dF1, —Ckg(t) \?Fdl“l, —Ck'g,(t) \v|2dF1
Ty r, ov I

can be obtained from Lemma 3.3 and estimates

C’/ |Vul|?d,
Q

Cllul ‘%12(9)’

IN

kl(t)/ |u|2dF1
I
ou
24T
katt) [ 15 P
ks(t) [ |v]*dly

< C/ |Vo|2dz.
r Q

IN

A
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;From the Lemmas 3.2 and 3.3 we obtain
d

—L(t) < fCl(/ |ug|?dx +/ lvg|2dx + a(u,u) +/ |Vo|2dx

dt Q Q Q

i (8) / 2Dy + ko (1) / 2240, £ N [ krOudr,
I, Iy v r,

N [ w2 + ks(t)/ lv[2dTy + N [ k{Ovdly
r ov r r
+/ F(u —v)dz) + CoR*(t)E(0). (4.1)
Q

(From hypothesis (2.9) we obtain
d
—L(t) < —Cl(/ |ut|2dm—|—/ |vt|2dx—|—a(u,u)+/ \Vo|2dx
dt Q Q Q
0
+k1(t)/ |u|2dF1+k2(t)/ \—u|2dl“1+k:3(t)/ (o|2dT
Iy r, ov Iy

N [ (k)T oudr, + N [ (—ky) a2,
T, I 81/

+N [ (=K} EE Ovdl +/ F(u—wv)dr) + C3R*(t)E(0).(4.2)
Q

ry

Let us fix 0 < r < 1 such that

<r< .
p+1 p+1

In this condition

00 0o 1
l\r —

(From Lemma 4.1 we get

/ (k)" 7 Oyl
r,

__ ¢
~ B(0)T e

ou
A = ey
/1“1( g) | PHT oyt

([ (i) oudry) e, (43)

> L(/ (*ké)D@dfl)H‘l”’l@+” (4.4)
E(0)mT=nem Jr, ov
(= k)" 51 Oodly

r

> #(/ (-ké)DvdFﬂlJ"(1—'r~)1(p+1), (4,5)
E()Tem Jr,
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On the other hand since the energy is bounded we have

(k1<>t/’uﬁdr1+k2<>j£l|Fdr14k3<> jof?dT,

I'y
eI
/ | dx—|—/ lvg |2 dx 4 a(u,u) /|Vv| da:—|—/ (u—v)dx)
< CE(0)0= DIy (k:l() |u|?dTl'y + ko(2) |—| dry
+ks(t / v dFl—i—/ || dx—i—/ lv¢|2da + a(u,u)
—|—/ |V112da:+/F(u—v)dx>. (4.6)
Q Q
Substituting (4.3)-(4.6) into (4.2) we arrive at
d C ou
L) < ——————[(ka(t) [ |ufdly+ka(t) [ |-[7dDy
dt E(0)T=nG+D r, r, ov

+ks(t) |v|2dF1+/ |ut|2d:c+/ lvg|2dx 4 a(u,u)
Ty Q Q
Jr/ ‘V’U|2dx)1+7(1_”‘)1(9+1) +(/ |k’1\DudF1)”4<l-r)l<p+”
Q '

([ wagrar) ot ([ lmedr + [ B oot
Iy Iy Q
+CR*(t)E(0).

Taking into account (3.9) we conclude that

ey <——C @y reee 4 CR2(1)E(0). (4.7)
dt L£(0)T=GFD

Applying the Lemma 4.2 with f = £ and § = 2p we have:

L(t) < WCT)(ME(O). (4.8)

Since (1 —r)(p+1)>1

/OO E(s)ds < C/Oo L(s)ds < c¢L(0) < oo, (4.9)
0

( )2

tllult, [Zaqr,) + =7 2 ey + vt )Lz, < CHL(E) < 00(4.10)

t ou(s, .
2 ’ 2
Anwwmmm+AH—$—mmﬂ

t o]
—|—/ [lv(s, ')||2L2(F1) < C’/ L(t)dt < 00, Vt > 0. (4.11)
0 0
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In this conditions applying Lemma 4.1 for r = 0 we get
N1+ C / 1+
(=k1) "7 Budly 2 ————( [ (—ky)Budly) 7751,
I la(O)Pi1
1 Ou C 1
/Fl(—ké)u”“ Dadrl > I(Al(_k;)maz/drl)lﬂ“’
[ eryrrtar = ([ (crg)audn .
Iy E

Using these inequalities intead of (4.3)-(4.5) and reasoning in the same way we
conclude that
d i) < C

LM < fmﬁ(t)prm + CR?*(t)E(0).

Applying the Lemma 4.2, we obtain

C

£O) < g

£(0).

Finally, from (3.9) we obtain

C

= g

E(0),
which completes the present proof. B
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