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Global Solutions for a System of
Klein-Gordon Equations with Memory
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abstract: In this paper we study the existence and uniqueness of
solutions of a system of Klein-Gordon equations with memory.
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1. Introduction

In this paper we study the global existence and uniqueness of solu-
tions (u, v) = (u(t, x), v(t, x)) of the following nonlinear system

utt −∆u + f(u, v) + k ∗∆u = 0 in [0, T ]× Ω, (1.1)

vtt −∆v + g(u, v) + l ∗∆v = 0 in [0, T ]× Ω, (1.2)

with boundary conditions u = v = 0 in [0, T ]×∂Ω and initial conditions
u(0) = u0, v(0) = v0, ut(0) = u1 and vt(0) = v1 in Ω. Here Ω is a
bounded domain in Rn, with smooth boundary, T > 0, and

(η ∗ w)(t) =

∫ t

0

η(t− s)w(s)ds.

This system is a generalization of the following coupled system of Klein-
Gordon equations

utt −∆u + m1u + k1uv2 = 0,

vtt −∆v + m2u + k2u
2v = 0,
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where m1, m2, k1, k2 are nonnegative constants, which is considered
in the study of the quantum field theory. We refer the reader to Schiff
[8], Segal [7] and Struwe [9] for some classical results in Klein-Gordon
equations.

The generalized system (1.1)-(1.2), without memory terms, were
early considered by several authors. For instance, Medeiros & Milla
Miranda [2], proved the existence and uniqueness of global weak so-
lutions. Later, da Silva Ferreira [1] proved that the first order energy
decays exponentially in the presence of frictional local damping. Quite
recently, Cavalcanti et al in [3] considered the asymptotic behaviour
for an analogous hyperbolic-parabolic system, with boundary damping,
using arguments from Komornik and Zuazua [4].

Our objective is to study the system (1.1)-(1.2) when the memory
terms k ∗∆u and l ∗∆v have dissipative properties. More precisely, if
the kernels k and l are nonnegative C2 functions satisfying

1−
∫ ∞

0

k(s)ds > 0 and 1−
∫ ∞

0

l(s)ds > 0, (1.3)

k′′, l′′ ∈ L1(0,∞), (1.4)

then the system has a unique strong global solution. We also use these
conditions, there exist α, β > 0 such that

−αk(t) ≤ k′(t) ≤ −βk(t) and − α l(t) ≤ l′(t) ≤ −β l(t). (1.5)

We think that the strong solution decays uniformly as time goes to in-
finity. This is done by using multipliers techniques as in Muñoz Rivera
[5]. But because of the coupled nonlinearities f(u, v) and g(u, v), the
analysis of the dissipative effect of the memory terms requires new
arguments.

To simplify our analysis, we assume that

f(u, v) = |u|ρ−2u|v|ρ g(u, v) = |v|ρ−2v|u|ρ,

with

ρ > 1 if n = 1, 2 and 1 < ρ ≤ n− 1

n− 2
if n ≥ 3. (1.6)

Note that (1.6) holds for the classical power ρ = 2 provided that n ≤ 3.
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2. Existence of Global Solutions

We begin with some notations that will be used throughout the
paper. For the Sobolev space H1

0 (Ω) we consider the norm ‖u‖H1
0 (Ω) =

‖∇u‖2, where ‖ · ‖p denotes the standard norm in Lp(Ω). The inner
product in L2 is denoted by 〈·, ·〉. Now, if w = w(t, x) is a function in
L2(0, T ; H1

0 (Ω)) and k is continuous, we put

(k2w)(t) =

∫ t

0

k(t− s)‖∇w(t)−∇w(s)‖2
2 ds.

Then, by differentiation, the following Lemma holds for w ∈ C1([0, T ); H1
0 (Ω))

and k ∈ C1(0,∞):

Lemma 2.1∫ t

0

k(t− s)〈∇w(s),∇w′(t)〉 ds = −1

2

d

dt
(k2w)(t)

+
1

2

d

dt

(∫ t

0

g(s) ds

)
‖∇w(t)‖2

2 + (g′2w)(t)− g(t)‖∇w(t)‖2
2.(2.1)

Theorem 2.1 Assume that f and g satisfy condition (1.6) and k, l
satisfy (1.3). Then if u0, v0 ∈ H1

0 (Ω) and u1, v1 ∈ L2(Ω), problem
(1.1)-(1.2) has weak solution (u, v) such that

u, v ∈ L∞(0, T ; H1
0 (Ω)) ∩ C1([0, T ]; L2(Ω)), (2.2)

u′′, v′′ ∈ L2(0, T ; H−1(Ω)).

Assume in addition that ρ ≥ 2 and (1.4) holds. Then if

u0, v0 ∈ H1
0 (Ω) ∩H2(Ω) and u1, v1 ∈ H1

0 (Ω), (2.3)

problem (1.1)-(1.2) has a unique solution such that

u, v ∈ C0([0, T ]; H1
0 (Ω) ∩H2(Ω)) ∩ C1([0, T ]; H1

0 (Ω)), (2.4)

u′′, v′′ ∈ L∞(0, T ; L2(Ω)).
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The proof of Theorem 2.1 is based on a standard Galerkin approxi-
mation. Let {wj} be a basis for both H1

0 (Ω) and L2(Ω), given by the
eigenfunctions of −∆ in Ω, with Dirichlet condition. For each positive
integer m we put

Vm = Span{w1, w2, · · · , wm}.

We search for functions

um(t) =
m∑

i=1

αim(t)wi and vm(t) =
m∑

i=1

βim(t)wi

satisfying the approximate problem∫
Ω

{um
tt −∆um + f(um, vm)}wj dx−

∫ t

0

k(t− s)〈∇um(s),∇wj〉 ds = 0,(2.5)∫
Ω

{vm
tt −∆vm + g (um, vm)}wj dx−

∫ t

0

l(t− s)〈∇vm(s),∇wj〉 ds = 0,(2.6)

with initial conditions

um(0) = um
0 , vm(0) = vm

0 , um
t (0) = um

1 , vm
t (0) = vm

1 ,

satisfying

um
0 → u0 and vm

0 → v0 strongly in H1
0 (Ω),

um
1 → u1 and vm

1 → v1 strongly in L2(Ω).

The above system of o.d.e. has a local solution (um(t), vm(t)) defined
in some interval [0, Tm).

Existence of Weak Solutions: Let us put

2Em
1 (t) = ‖um

t (t)‖2
2 + ‖vm

t (t)‖2
2

+

(
1−

∫ t

0

k(s)ds

)
‖∇um(t)‖2

2 +

(
1−

∫ t

0

l(s)ds

)
‖∇vm(t)‖2

2

+ (k2um)(t) + (l2vm)(t) +
2

ρ
‖um(t)vm(t)‖ρ

ρ. (2.7)



System of Klein-Gordon Equations with Memory 131

Then, multiplying (2.5) by um
t (t), (2.6) by vm

t (t) and using identity
(2.1) we get

d

dt
Em

1 (t) =
1

2
{(k′2um)(t)+(l′2vm)(t)−k(t)‖∇um(t)‖2

2−l(t)‖∇vm(t)‖2
2} ≤ 0.

It follows that Em
1 (t) is a decreasing function and hence there exists a

positive constant M1, independent of m and t such that

‖um
t (t)‖2

2 + ‖vm
t (t)‖2

2 + ‖∇um(t)‖2
2 + ‖∇vm(t)‖2

2 + ‖umvm(t)‖ρ
ρ ≤ M1.

(2.8)
From this estimate we can extend the approximate solutions (um(t), vm(t))
to the whole interval [0, T ]. In addition, we get

um, vm is bounded in L∞(0, T ; H1
0 (Ω)), (2.9)

um
t , vm

t is bounded in L∞(0, T ; L2(Ω)). (2.10)

Therefore, going to a subsequence if necessary, there exists u, v such
that

um → u, vm → v weakly star in L∞(0, T ; H1
0 (Ω)), (2.11)

um
t → ut, vm

t → vt weakly star in L∞(0, T ; L2(Ω)). (2.12)

Besides, from Lions-Aubin Lemma we also have

um → u, vm → v strongly in L∞(0, T ; L2(Ω)). (2.13)

These convergence allow us easily to pass to the limit the linear terms.
For the nonlinear terms, we get for any θ ∈ (0, ρ/(ρ− 1)),

f(um, vm) → f(u, v) and g(um, vm) → g(u, v)

weakly in L∞(0, T ; Lθ(Ω)). Therefore the existence of weak solutions
is proved. 2

To prove the existence of strong solutions we need the following
two Lemmas.
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Lemma 2.2 Suppose that ρ ≥ 2. Then there exists a constant C > 0
independent of m and t such that∫

Ω

|(f(um, vm))tu
m
tt + (g(um, vm))tv

m
tt | dx

≤ C
{
‖um

tt ‖2
2 + ‖vm

tt ‖2
2 + ‖∇um

t ‖2
2 + ‖∇vm

t ‖2
2

}
.(2.14)

Proof. To simplify drop the upper index m and the time-variable t.
First we note that∫

Ω

(f(u, v))tutt dx =

∫
Ω

fu(u, v)ututt dx +

∫
Ω

fv(u, v)vtutt dx.

Now since∫
Ω

|fu(u, v)| |ut| |utt| dx ≤ ρ− 1

2

{∫
Ω

|u|2(ρ−2)|v|2ρ|ut|2 dx + ‖utt‖2
2

}
(2.15)

we must assume ρ ≥ 2. But then from (1.6), we have that ρ = 2 and
n ≤ 3 or ρ > 2 and n = 1, 2. Suppose ρ = 2. Then∫

Ω

|u|2(ρ−2)|v|2ρ|ut|2 dx =

∫
Ω

|v|4|ut|2 dx ≤ 1

2
‖v‖4

6 ‖ut‖2
6.

From the Sobolev imbedding H1
0 (Ω) ↪→ L6(Ω) and (2.8), there exists

C > 0 such that∫
Ω

|fu(u, v)| |ut| |utt| dx ≤ C
{
‖∇ut‖2

2 + ‖utt‖2
2

}
, (2.16)

If ρ > 2 and n = 1, 2, we take

α =
ρ− 1

ρ− 2
, β = γ = 2(ρ− 1)

so that α−1 + β−1 + γ−1 = 1. Then we have∫
Ω

|u|2(ρ−2)|v|2ρ|ut|2 dx ≤
(∫

Ω

|u|2(ρ−2)αdx

) 1
α

(∫
Ω

|v|2ρβdx

) 1
β

(∫
Ω

|ut|2γdx

) 1
γ

= ‖u‖2(ρ−2)
2(ρ−1)‖v‖

2ρ
4ρ(ρ−1)‖ut‖2

4(ρ−1)

≤ C‖∇ut‖2
2,
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since in this case H1
0 (Ω) ↪→ Lp(Ω) for all p > 1. Therefore in any case

we have that (2.16) holds. Working similarly with
∫

Ω
fv(u, v)vtuttdx

we conclude that∫
Ω

|(f(u, v))t| |utt| dx ≤ C
{
‖∇ut‖2

2 + ‖∇vt‖2
2 + ‖utt‖2

2

}
.

The same argument shows that∫
Ω

|(g(u, v))t| |vtt| dx ≤ C{ ‖∇ut‖2
2 + ‖∇vt‖2

2 + ‖vtt‖2
2 },

and the Lemma follows. 2.

Lemma 2.3 There exists C > 0, depending only on the data, such
that

−
∫ t

0

∫
Ω

{(k ∗∆um)tu
m
tt + (l ∗∆vm)tv

m
tt } dxds

≤ CE2(0) + C
{
‖∇um

t ‖2
2 + ‖∇vm

t ‖2
2

}
+

1

2

∫ t

0

{‖∇um
t ‖2

2 + ‖∇vm
t ‖2

2}ds.(2.17)

Proof. Here we also drop the upper index m. We note that

−
∫

Ω

(k ∗∆u)tutt dx = k(0)

∫
Ω

∇u(t)∇utt(t) dx

+

∫ t

0

k′(t− s)〈∇u(s),∇utt(t)〉 ds

=
d

dt
{k(0)〈∇u(s),∇ut(t)〉} − k(0)‖∇ut‖2

2

+
d

dt

{∫ t

0

k′(t− s)〈∇u(s),∇ut(t)〉 ds− k′(0)

2
‖∇ut(t)‖2

2

}
−

∫ t

0

k′′(t− s)〈∇u(s),∇ut(t)〉 ds. (2.18)

From assumption (1.4) and estimate (2.8), applying (2.1)∫ t

0

−k′′(t− s)〈∇u(s),∇ut(t)〉 ds ≤ C{‖∇ut‖2
2 + ‖∇u‖2

2‖+ k′2∇u}.

(2.19)
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Then combining (2.18) and (2.19) and since −k(0)‖∇ut(t)‖2
2 ≤ 0, we

have

−
∫ t

0

∫
Ω

(k ∗∆u)tutt dxds ≤
∫ t

0

k′(t− s)〈∇u(s),∇ut(t)〉 ds− k(0)

2
‖∇ut(t)‖2

2

+
1

2

∫ t

0

‖∇ut(s)‖2
2 ds +

T

2
M1‖k′′‖2

L1(0,∞)

As in (2.19) we infer that∫ t

0

k′(t− s)〈∇u(s),∇ut(t)〉 ds ≤ C‖∇ut(t)‖2
2 + CM1‖k′‖2

L1(0,∞).

Then there exists a constant Ĉ = C(k, T ) > 0 such that

−
∫ t

0

∫
Ω

(k ∗∆u)tutt dxds ≤ 2‖∇ut(t)‖2
2 +

1

2

∫ t

0

‖∇ut(s)‖2
2 ds.

A similar argument proves that

−
∫ t

0

∫
Ω

(l ∗∆v)tvtt dxds ≤ 2‖∇vt(t)‖2
2 +

1

2

∫ t

0

‖∇vt(s)‖2
2 ds.

This ends the proof. 2.

Existence of Strong Solutions: Our starting is to get second order
estimates of the solutions of (1.1)-(1.2). Let us put

Em
2 (t) =

1

2

{
‖um

tt (t)‖2
2 + ‖vm

tt (t)‖2
2 + ‖∇um

t (t)‖2
2 + ‖∇vm

t (t)‖2
2

}
.

(2.20)
Then we differentiate equation (2.5) and multiply by um

tt (t) and differ-
entiate equation (2.6) and multiply by vm

tt (t). Summing up the result,
we have

d

dt
Em

2 (t) = −
∫

Ω

{(f(um, vm))tu
m
tt + (g(um, vm))tv

m
tt } dx

−
∫

Ω

{(k ∗∆um)tu
m
tt + (l ∗∆vm)tv

m
tt } dx. (2.21)

From (2.21) and Lemma 2.2, there exists a constant C1 > 0 such that

d

dt
Em

2 (t) ≤ C1E
m
2 (t)−

∫
Ω

{(k ∗∆um)tu
m
tt + (l ∗∆vm)tv

m
tt } dx.
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Now we integrate the above relation from 0 to t and taking into account
Lemma 2.3 and since um

tt (0) and vm
tt (0) are bounded, there exists a

positive constant C2, not depending on m, such that

Em
2 (t) ≤ E2(0) + C2

∫ t

0

Em
2 (s) ds

+ C2

∫ t

0

{‖∇ut(s)‖2
2 + ‖∇vt(s)‖2

2}ds.

Then there exists a constant C3 > 0, independently of m, such that

Em
2 (t) ≤ E2(0) + C3

∫ t

0

Em
2 (s) ds.

Then from the Gronwall’s Lemma we finally get a positive constant
M2, depending on T but not on m, such that

‖um
tt (t)‖2

2 + ‖vm
tt (t)‖2

2 + ‖∇um
t (t)‖2

2 + ‖∇vm
t (t)‖2

2 ≤ M2 (2.22)

From this estimate we have

um
t , vm

t is bounded in L∞(0, T ; H1
0 (Ω)) (2.23)

um
tt , vm

tt is bounded in L∞(0, T ; L2(Ω)), (2.24)

and therefore

um
t → ut, vm

t → vt wealky star in L∞(0, T ; H1
0 (Ω)), (2.25)

um
tt → utt, vm

tt → vtt weakly star in L∞(0, T ; L2(Ω)). (2.26)

Besides, from Lions-Aubin Lemma we also have

um
t → ut, vm

t → vt strongly in L∞(0, T ; L2(Ω)). (2.27)

Now it is a matter of routine to verify that (u, v) satisfies (2.4) and the
initial conditions of the problem (1.1)-(1.2). This conclude the proof
of the existence part of Theorem 2.1.

Finally to prove that u ∈ L2(0, T ; H2(Ω)) for n = 3, (for n = 1 and
n = 2 follows immediately from the equation). In this case ρ ≤ 2,∫

Ω

|f(u, v)|2dx ≤
∫

Ω

|u|4|v|4dx ≤ ‖u‖2
L2

∫
Ω

|u|2|v|4dx.
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Using Gagliardo-Nirenberg inequalities,

‖u‖L∞ ≤ C‖u‖
1
2 |u‖

1
2

H2 ,

we get ∫
Ω

|f(u, v)|2dx ≤ ‖u‖2
L∞‖u‖2

L6‖v‖4
L6 .

So we have∫
Ω

|f(u, v)|2dx ≤ C‖u‖H2‖u‖2
H1‖v‖4

H1 ≤ CE(0)
7
2‖∆u‖L2 .

Using the equation

−∆u +

∫ t

0

g(t− τ)∆u(t)dτ == utt − f(u, v)

and the resolvent operator we conclude that

‖∆u(·)‖L2(0,T ;L2) ≤ ‖utt‖L2 + ‖f(u, v)‖L2(0,T ;L2)

≤ CE2(0) + CE(0)
7
2‖∆u‖L2(0,T ;L2).

Then, ‖∆u‖L2(0,T ;L2) ≤ CE2(0) + E1(0)
7
2 . Similar results holds to

g(u, v). From where we conclusion follows. 2

Uniqueness: Let us suppose that (u, v) and (û, v̂) are two solutions
of (1.1)-(1.2). Then U = u− û and V = v − v̂ satisfy

Utt −∆U + k ∗∆U + f(u, v)− f(û, v̂) = 0 in [0, T ]× Ω,(2.28)

Vtt −∆V + l ∗∆V + g(u, v)− g(û, v̂) = 0 in [0, T ]× Ω,(2.29)

with U(0) = V (0) = 0 and Ut(0) = Vt(0) = 0. Let us put

2E3(t) = ‖Ut(t)‖2
2 + ‖Vt(t)‖2

2 + (k2U)(t) + (l2V )(t)

+

(
1−

∫ t

0

k(s)ds

)
‖∇Ut(t)‖2

2 +

(
1−

∫ t

0

l(s)ds

)
‖∇Vt(t)‖2

2.

Multiplying (2.28) by Ut(t), (2.29) by Vt(t) and summing up the prod-
uct result we have

d

dt
E3(t) ≤

∫
Ω

|f(u, v)−f(û, v̂)| ‖Ut‖2dx+

∫
Ω

|g(u, v)−g(û, v̂)| ‖Vt‖2 dx.

(2.30)
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After some rearrangement∫
Ω

(f(u, v)− f(û, v̂)) ‖Ut‖2 dx =

∫
Ω

(|v|ρ − |v̂|ρ)|u|ρ−1 ‖Ut‖2 dx

+

∫
Ω

(|u|ρ−2u− |û|ρ−2û) |v̂|2 ‖Ut‖2 dx.

Then by the Mean Value Theorem we have∫
Ω

|f(u, v)−f(û, v̂)| ‖Ut‖2 dx ≤ ρ

∫
Ω

(|v|ρ−1+|v̂|ρ−1)|u|ρ−1 ‖V ‖2 ‖Ut‖2 dx

+ (ρ−1)

∫
Ω

(|u|ρ−2+|û|ρ−2) |v̂|2 ‖U‖2 ‖Ut‖2 dx.

Working as in the proof of Lemma 2.2, there exists C > 0 such that∫
Ω

|f(u, v)− f(û, v̂)| ‖Ut‖2 dx ≤ C
{
‖∇U‖2

2 + ‖∇V ‖2
2 + ‖Ut‖2

2

}
.

Similarly we see that∫
Ω

|g(u, v)− g(û, v̂)| ‖Vt‖2 dx ≤ C
{
‖∇V ‖2

2 + ‖∇U‖2
2 + ‖Vt‖2

2

}
,

and hence from (2.30)

d

dt
E3(t) ≤ C

{
‖∇U‖2

2 + ‖∇V ‖2
2 + ‖Ut‖2

2 + ‖Vt‖2
2

}
≤ CE3(t).

Then from the Gronwall’s Lemma we get

‖∇U‖2 = ‖∇V ‖2 = ‖Ut‖2 = ‖Vt‖2 = 0.

This proves the uniqueness statement. 2
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