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Existence and Stability Analysis of Fractional-Order SVEIR Epidemic Models with
Generalized Incidence
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ABSTRACT: This paper develops a fractional-order epidemic model (SV EIR) incorporating a generalized in-
cidence rate, analyzed within the framework of the Caputo fractional derivative. The foundational properties
of the model, including existence, uniqueness, non-negativity, and boundedness of solutions, are rigorously
established to ensure its well-posedness. The basic reproduction number Rp is computed using the next-
generation matrix method, providing threshold criteria for disease elimination and persistence. The model
exhibits two equilibria: the disease-free equilibrium and the endemic equilibrium. Through stability analysis,
we prove the global stability of these equilibria by constructing suitable Lyapunov functions and applying
LaSalle’s invariance principle. To validate the theoretical results and examine the effects of various epidemi-
ological parameters, numerical simulations are performed using MATLAB. These simulations provide deeper
insights into the dynamic behavior of the proposed fractional model, highlighting its potential applicability in
understanding and controlling disease spread.
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Introduction

Infectious diseases have long been a significant threat to public health, often leading to widespread
morbidity, mortality, and profound socio-economic consequences. Their global impact, in terms of both
human life and economic burden, underscores the critical need to understand and control their spread.
Epidemic modeling has emerged as an essential tool for predicting transmission patterns and guiding
effective public health interventions [1,2]. Classical models such as the Susceptible-Infected-Recovered
(SIR) model [4] and its extensions—including the Susceptible-Exposed-Infected-Recovered (SEIR) [20],
Susceptible-Vaccinated-Infected-Recovered (SVIR) [21], and Susceptible-Infected-Quarantined-Recovered
(SIQR) [22] models—have played a pivotal role in understanding disease dynamics. These compartmen-
tal models categorize individuals into distinct health states and describe transitions between these states
based on predefined assumptions about disease transmission. Despite their success, classical epidemic
models often rely on simplifying assumptions such as constant transmission rates, homogeneous popula-
tions, and straightforward dynamics. These assumptions may limit their predictive accuracy, especially in
real-world scenarios influenced by time-dependent factors such as prior outbreaks, vaccination campaigns,
and behavioral changes. In reality, disease dynamics frequently involve complex, non-local interactions,
where past states and historical events exert significant influence on current and future trends. To address
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these limitations, there has been increasing interest in leveraging fractional calculus to enhance epidemio-
logical modeling. Fractional calculus extends the concept of differentiation and integration to non-integer
orders, offering a natural framework for incorporating memory-dependent behaviors and long-range in-
teractions in complex systems. Originating from the works of mathematicians like Leibniz and Riemann,
fractional calculus gained prominence in the 20th century as a powerful tool for modeling processes with
memory effects. It has since found applications across various disciplines, including physics, engineering,
finance, and biology [23,24,25,26]. Fractional derivatives are particularly well-suited for systems where
the future behavior depends not only on the current state but also on the system’s history. This char-
acteristic is especially relevant for modeling infectious diseases, where factors such as past exposures,
immunity, and delayed public health responses play critical roles in disease transmission. In the context
of epidemic modeling, fractional-order differential equations provide a robust framework for capturing
memory effects and non-local interactions in disease dynamics. These equations allow for a nuanced rep-
resentation of how historical states—such as previous infections or vaccination campaigns—affect current
transmission patterns. Fractional-order models have proven particularly valuable in studying complex
scenarios like waning immunity, delayed interventions, and the long-term impacts of vaccination, as evi-
denced during the COVID-19 pandemic [6]. By incorporating fractional derivatives, these models deliver
a more realistic portrayal of disease spread compared to traditional integer-order approaches. An integral
aspect of epidemic modeling is the incidence rate, which reflects the mechanism by which susceptible
individuals become infected. Classical models often use simplified functions for the incidence rate, but
more complex, nonlinear formulations better capture real-world phenomena such as saturation effects,
behavioral adaptations, and environmental influences [27,28]. When combined with fractional calculus,
these nonlinear dynamics create a comprehensive framework for modeling epidemic outbreaks.

In this paper, we propose a fractional-order SVEIR (Susceptible-Vaccinated-Exposed-Infectious-Recovered)
model, incorporating a general incidence function g(.9, I') and fractional derivatives using the Caputo for-
mulation [7]. This approach allows us to account for memory effects while preserving mathematical
tractability. Our model aims to provide a deeper understanding of the influence of historical dynam-
ics—such as prior infections or vaccination efforts—on disease transmission.

We focus on analyzing the stability of disease equilibria, including the disease-free equilibrium (DFE)
and endemic equilibrium. By calculating the basic reproduction number Ry, we establish thresholds for
disease persistence or eradication. Furthermore, we employ Lyapunov functions and LaSalle’s invari-
ance principle to study the long-term behavior of the system [8]. Through these analyses, we aim to
demonstrate how fractional-order dynamics can enhance the predictive power of epidemic models and
offer insights into effective disease control strategies.

This paper is organized as follows:

e Section 2 introduces the fractional-order SVEIR model and the mathematical formulation of the
general incidence function ¢(S, I).

e Section 3 examines the well-posedness of the model, ensuring the existence and uniqueness of
solutions.

e Section 4 calculates the basic reproduction number R and investigates the conditions for disease
spread or eradication.

e Section 5 establishes the stability of the disease-free and endemic equilibria.

e Section 6 presents numerical simulations to illustrate the impact of the fractional-order parameter
and other model parameters on disease dynamics.

e Section 7 concludes the paper and discusses potential future research directions.

By incorporating fractional derivatives and nonlinear incidence functions, this study extends the
classical approaches to epidemic modeling and offers a more comprehensive framework for understanding
disease dynamics. The results have important implications for designing more effective public health
strategies, particularly in cases where past disease dynamics and interventions play a significant role in
shaping future outbreaks. This approach provides a more accurate and robust tool for predicting and
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controlling the spread of infectious diseases, helping to inform better policy decisions in the fight against
pandemics.

1. Preliminaries

This section introduces the fundamental concepts of fractional differential calculus, focusing on the
Caputo fractional derivative, and presents essential lemmas for subsequent analysis.

Definition 1.1 [23] Let ©(t) be an integrable function. The fractional integral of order k > 0 is defined

IO(t) — r(ln)/o (t—r)lO() dr, >0,

where T'(+) denotes the gamma function:

F(n)z/ 5" le™ ds.
0

Definition 1.2 [23] The Caputo fractional derivative of order k for a function ©(t) € C"([0,00),R) is
defined as:

Lt e
‘DyO(t) = d
90 = g, o

where t > 0, n is a positive integer such thatn —1 < k < n. For 0 < k < 1, it reduces to:
: 1 Lo
‘DyO(t) = dr.
00 =1, o
Definition 1.3 [23] The Mittag-Leffler function with two parameters is defined as:

o0 Zn
Eﬂ76(z)77§)m7 K/,,8>07Z€(C.

Notably, the Mittag-Leffler function reduces to the exponential function exp(z) when k = 8 = 1.

Lemma 1.1 /23] For r > 0 and k, 3 > 0, the Laplace transform of the Mittag-Leffler function is given
by:

Lt By p(rt)) = >

s —r
Additionally, the Laplace transform of the Caputo fractional derivative satisfies:
n—1
L(“DEh(t)) = s*h(s) = Y hD(0)s" 7,
i=0
where h(s) = L(h(t)).
Lemma 1.2 [23] For 0 < k < 1, let £(t) be a positive function defined on [0,T). Then, for allt € [0,T):

Dy (é(t) —&§ =& i(?) < (1 B gii))chf(t)’

for any € € R,.
Lemma 1.3 [25] Consider the fractional-order system defined in the Caputo sense:
‘Diw(t) = ¥(t,w(t)), ¢t>0, w(0)=wyeR", (1.1)
where U : Ry x R™ — R"™ is a continuous function. Assume the following conditions are satisfied:
1. U(t,w) is continuous with respect to t for all w € R™.
2. U(t,w) and g% are continuous with respect to w € R™.

3. There exist constants c1,ca > 0 such that ||¥ (¢, w)|| < ¢1 + cof||w]| for all w € R™.

Then, the system (1.1) has a unique solution on [0, c0).
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2. Model Formulation
The Classical SVEIR Model

This section introduces the classical SVEIR model, which divides the total population N(¢) at time
t > 0 into five compartments: susceptible S(t), vaccinated V (¢), exposed E(t), infected I(¢), and recovered
R(t), such that N(t) = S(t)+V(t)+ E(t)+I(t)+ R(t). The exposed compartment represents individuals
who have been exposed to the infection but are not yet infectious.

Each compartment is subject to natural mortality at the rate p, while the population increases
at a constant rate Ay, with new members entering the susceptible class. A fraction of the susceptible
population receives vaccination at the rate -y, moving to the vaccinated class. Over time, some vaccinated
individuals lose immunity and return to the susceptible class at the rate §. The general incidence function
g(S, I) models the infection transmission. Infectious individuals recover at a rate €, entering the recovered
class, where they are assumed to be immune to reinfection.

The SVEIR epidemic model can be described by the following system of equations:

ds
E:AN_Q(S7I)_<M+7)S+5V’
dv
E—VS—(M‘HS)V’
dE

dl

— =0oF — I
dt g (l’[’+€) 9
dR

— =cl — .
P

The parameters of system (2.1) are positive constants, defined as follows:

Table 1: Description of model parameters.
Parameter | Description
An Recruitment rate of new susceptible individuals
Natural death rate
Rate of immunity loss among vaccinated individuals
Vaccination rate
Rate of transition from exposed to infected class
Recovery rate from infected class

L

The function g(S, I) represents the general incidence rate, which models the rate at which susceptible
individuals become infected upon contact with infectious individuals. This general form allows for more
flexibility compared to the bilinear incidence SST [9]. Commonly used forms include:

e Saturated incidence g(S,I) = %, [10,11,12,13];

e Beddington-DeAngelis incidence g(5, 1) = %, [14];

e Crowley-Martin incidence g(S,I) = %7 [15].

To ensure biological relevance, the incidence function g(S, I) satisfies the following assumptions:

(H1) 9(5,0)=g(0,1)=0, VS,I1=>0; (2.2)
9g9(5,1) 9g(5,1)
s S > > 0; .
(Hy) g5 >0, = =20, ¥S.1>0; (2.3)

g(S, 1)
T

is bounded and monotonically decreasing, V.S, I > 0. (2.4)
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The Fractional SVEIR Model

Motivated by system (2.1), we propose a fractional-order extension to account for memory effects in
the dynamics:
‘DS = An —g(5,1) = (1 +7)S + 6V,
‘DFV =~ — (p+9)V,
‘DFE =g(S,I)— (u+0)E, (2.5)
‘DY =0cF — (n+¢€)l,
‘DfR = el — pR.
Here, ‘DY denotes the Caputo fractional derivative of order 0 < o < 1, capturing the memory effects
in the system [18]. The initial conditions are:

S(0)=8,>0, V(0)=Vy>0, E0)=E >0, I(0)=1I>0, RO)=R,>0. (2.6)

3. Existence and Uniqueness of Positive Solutions

Proposition 3.1 For any non-negative initial values (So, Vo, Eo, I, Ro), the system (2.5) has a unique
non-negative solution on [0, +00).

Proof: We rewrite system (2.5) as a Caputo fractional derivative system of order 0 < o < 1, as follows:

‘Dew(t) = ¥(t,w(t)), t>0, w(0)=mwyeR],

where
S(t) So
V(1) Vo
w(t) = | E(t) and wo = | Ep
I(t) I
R(t) Ry
We define
AR = g(S, 1) = (p™ +9*)S(t) + 67V (¢)
YES(t) — (u* +6%)V (1)
W(t,w(t) = 9(8,1) = (u* + o) E(1)
oB(t) — (u* + ) I(t)
eI(t) — p*R(t)
Let
A% — (™ +~%) 5 0 0 0
0 o — (™ +6%) 0 0 0
L= 0 |, A = 0 0 —(pu* +0%) 0 0 ,
0 0 0 o® —(u* + €%) 0
0 0 0 0 € —u®
and
0 00 -1 0
00 0 0 O
A,=10 0 0 1 O
000 0 O
000 0 O

Additionally, w(t) satisfies the first and second conditions of Lemma 1.3. Therefore, we have

U(t,w(t)) = L+ Ayw(t) — @Aﬂu(t).
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Now, taking the norm of W(¢, w(t)),
g(S, I
e wo) < 120+ (1 + | 252 el ) poton.

By applying Lemma 1.3, we conclude that system (2.5) has a unique solution.
Next, we demonstrate the positivity of the solution:

CD?S(t)|s:0 =AY + 6V >0,
DLV, =S = 0,
CD?E(t)’E=O =

‘DEI(t)|,_, =0"E >0,

DER(L)|,_, = €1 > 0.

Proposition 3.2 The set
5 A
©={(S,V,E,I,R) e R} : 0< S(t)+V(t) + E(t) + I(t) + R(t) < /7"}
is a positively invariant and attracting region for system (2.5).

Proof: We have
N(t) = S(t) + V(t) + E(t) + I(t) + R(t).

Thus, by adding the equations of system (2.5), we obtain
DEN(t) = AS — N (t).

Applying the Laplace transform to this equation yields

R B A
PN (p) = p*IN(0) = = — u*N(p).
Therefore,
N A pa—(l—i-a) N0 pa—l
fr— @ —_— + .
) = A8 e N

Hence, we have
N(t) = ARt Eaapr (~1n1%) + N(0) Ear (—u%1%),

= =~ o Baa (=pt) + N(0) B a (—pt%).
pe

Since 0 < Ey 1(—p*t®*) <1 and N(0) < i—zv, we conclude that N(t) < i—zv.
Thus, O is a positively invariant set, and all initial solutions that belong to ©® remain in © for all

t > 0. This completes the proof. O

N(t)

4. Equilibrium Points and Basic Reproduction Number

In this section, we first establish that the system (2.5) has a unique disease-free equilibrium. Next,
we calculate the basic reproduction number Ry using the next-generation matrix method.
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Disease-Free Equilibrium (DFE)

E,I,R) € R%

To find the disease-free equilibrium, we solve for the values of the variables Py = (S,
= O) The system of

that satisfy the system of equations when no individuals are infected (I = 0 and E
equations becomes:

A% —g(S,I) = (u™ +~v*)8 +6°V =0,
NS — (u + 8V =0,
9(S,1) — (u* + 0*)E = 0, (4.1)
0" E — (u* 4 €*)I =0,

el —pu*R=0

Since the disease-free equilibrium corresponds to the absence of infected individuals (/ = 0) and
exposed individuals (E = 0), we solve the reduced system:

— (u®* + ™S + 0V =
v 5 (u +ONV =
Solving these two equations for S and V', we find:

A (e + 5%)

S
()2 + (v + 6%)u>

AR®
(1)? + (7 + 6%)ue

V =
Thus, the disease-free equilibrium is given by:
— (5,7,0,0,0).
The Basic Reproduction Number R

The basic reproduction number Ry is a threshold parameter that determines whether an epidemic
will occur. For a general compartmental disease transmission model, Ry is defined as the spectral radius
of the next-generation matrix.

In this case, we calculate Ry using the next-generation matrix method as described in [4]. The basic
reproduction number is given by:

Ry=p(FV7Y),

where F' and V are the matrices representing the new infections and the transitions between com-
partments, respectively. Specifically:

F=<8 Z?(g,m)’ V:<—<w0_a+aa> _(Maow)),

The basic reproduction number Ry is then:

o 0y
0= CoCs 8I(Svo)a

where Cy = (u® + 0®) and C5 = (u® + €%).
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Endemic Equilibrium (EE)

To find the endemic equilibrium point P* = (S*,V* E* I* R*), we solve the system of equations
corresponding to the steady-state of the system with infected individuals present. The system of equations
for the endemic equilibrium is:

A —g(S8*,I") — C18* + 6°V* =0,
g(5%,I") = CE" =0,

oc“E* — C3I* =0,

eI* — u*R* =0,

N*S* — CyV* =0,

where C = (u® + %), Cy = (u* + 0%), C5 = (u* + €*), and Cy = (u™ + §%).
From these equations, we find the following relationships:

I*
A?\/‘ _Cls* +6av* — OQE* — CQOSQ ,
o
and
st
V= .
Cy

By solving these equations, we obtain the following expressions for the endemic equilibrium:

o C%I*
AR - =2

St = —
Cy — 2
Aa O.Ot
S*>0 if I*< A
=00 260G
To determine the value of I*, we define the function F'(I) on the interval [0, ‘givg:]
g(S, I) CQCg
F(I) = — .
(1) 7 g

Since F'(I) is a monotonically decreasing function of I, we have:

- 8g(§,0) _ 0203

lim F(I) =
Ii%gr (7) oI oo
and
. CC5
lim F(I) = Ry—1).
i (1) = =22 (Ro =)

Thus, if Ry > 1, we have lim;_,o+ F(I) > 0, and F (’é?:g:) < 0. Therefore, there exists a unique

endemic equilibrium P* when Ry > 1, given by:

Ag — Cy et

S = ——=
01*601
C-I* o g+ o
B — 3 ’ V*:’y R*:€

O—O(

Cy’ pe
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5. Global Stability of Steady States
Global Stability of Disease-Free Equilibrium F,

This section examines the global stability of the endemic equilibrium P* and the disease-free equilib-
rium Py for system (2.5) by creating suitable Lyapunov functions.
We describe a function ¢: Ry — Ry given by

t
o60) =60 - ¢ wE oratizo
Note that ¢(£) is a non-negative function for any £ > 0 that attains a global minimum at £ = 1.

Additionally, we define
E={(S,V,E,])eR*:S>0, V>0, E>0, I>0}.

Theorem 5.1 The disease-free equilibrium Py of system (2.5) is globally asymptotically stable on Z, if
Ry < 1, and unstable when Ry > 1.

Proof: We create a Lyapunov function as follows: V; : £ — R:
Vi(t) = o E(t) + (0% + u*)I(t).

In relation to the disease-free steady state Py, the function V; is non-negative and attains a global
minimum. By using the Caputo fractional derivative on equations of system (2.5), we obtain

“DVi(t) = 0® DY E(t) + (0° + p®) ‘DY)

= 0% (g(S. 1) — (0" + pVE(D) + (0 + 1) (0" B(t) — (e + p*)) 1(1)
= (g® ) (e « o g(Svl)_
=" 0 (G e g )

= (c@ ) (@ [ o g(S’I)_g(S’O)_

= (@) +")””(<oa+w><ea+w> 0 1)

= (0" +p*) (e + p*) () (Ro — 1).
Consequently, Ry < 1 ensures that for all (S(t),V(¢), E(t),I(t)),
‘DgVA(t) <0 forall ¢ > 0.

Furthermore, it is easy to verify that “D¢Vi(¢t) = 0 at the disease-free equilibrium point. By using
LaSalle’s invariance principle [19], we have {Fy} as the largest invariant subset of the set

{(87 VaEal) €= | cngl(t) = O}’
which implies that Py is globally asymptotically stable. O

Global Stability of Endemic Equilibrium P*
Theorem 5.2 For all t > 0, assume that V* > V(t). If Ry > 1, the endemic equilibrium P* of system

(2.5) is globally asymptotically stable on Z.
Proof: We define a Lyapunov function given by V5 : = — R:

o ne 4o
g (V@) + o(E0) + =

Va(t) = o(S(t)) + P(I(t)).

O—Oé
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The function V5 is non-negative and continuous for all ¢ > 0. Applying the Caputo fractional deriva-
tive, we obtain

C « C « (Sa C (e} C (e} a + aC (e}
DEVa(0) = DY O(S(0)) + o5 DEO(V (1) + DFS(E) + == DRo(I(1))
S* 504 V* E* ’ua +O.a I*
< o C (e} - o C (o7 _ C o - = _ C (o7
< (1 S) DtS(t)+Ma+5a <1 V) DtV(t)+<1 E) DY E(t) + o (1 I) DI(t),
S* [0} (e} (e} (e
= (15 ) a5 - otsi0 = 49800 + 5V (0)
60‘ V* (e} « (e}
+ua+6a <1v> (’Y S(t)i(ﬂ +4 )V(t))
E* (03 «
#(1-2) 0651 - (0" + ) 500)
(0% (e} I*
i (1 - ) (0*E(t) — (u® + €*)I(t)) .
oo 1
Using the endemic conditions
we get
S — §*)? S*,I*)S* 5oV S

After some arrangement and simplifications, we reach

(5 —5%)?
S

[3ia Xe @ e S* O-Oé E* ,ua_'_ea I
DEVA(E) < —(u® +4%) _ )

*I* o
9057, )(3 S pe4er I A

Since the arithmetic mean is greater than or equal to the geometric mean, we have

Consequently, ‘D&V5(t) < 0. Meanwhile, °D¢V5(t) = 0 if and only if S = S*, I = I*, V = V*, and
FE = E*. Thus, the largest compact invariant set in

{(S,V,E,I) € E| ‘D V5(t) = 0}

is the singleton set {P*}. By LaSalle’s invariance principle, P* is globally asymptotically stable for
Ry > 1. O

6. Numerical Simulations

The objective of this section is to validate the theoretical results presented in previous sections by
performing numerical simulations of the model, incorporating fractional derivatives of various orders.
This allows us to examine the impact of different memory effects on the disease transmission dynamics.
Additionally, we model the general incidence function as a saturated incidence rate, represented as %,
which highlights the dynamics of disease spread with two key factors: [, the transmission rate, and k,

the saturation parameter.
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——a=06
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Figure 1: The dynamic behavior of compartments S, V, E, I, and R for « = 0.6, « = 0.7, a = 0.8,
a=0.9,and o = 1.

Case of Disease-Free Equilibrium

We first investigate the case of the disease-free equilibrium, where Ry = 0.184 < 1. The following
parameter values are used:

B=0005 ~=012, §=0.02, p=02 A=10, e=005 o=008 k=0.0095.

The initial conditions are given by (S(0),V(0), E(0),1(0), R(0)) = (100, 50, 20,0, 0).

Figure 1 confirms the theoretical results regarding the stability of the disease-free equilibrium as
mentioned in Theorem 5.1. It shows that the disease eventually disappears as expected. Additionally, it
is observed that increasing the fractional-order parameter « significantly reduces the spread of infections
within the population.

Case of Endemic Equilibrium

Next, we consider the situation of the endemic equilibrium with Ry = 2.5 > 1. The following
parameter values are used:

B=0.0434, ~v=0.1152, §=00594, p=0.1906, A=10.0034, ¢=0.0474, o=0.1176, k= 0.075.

The initial conditions are (S(0), V(0), E(0), I(0), R(0)) = (100, 50, 20, 0, 0).

Figure 2 validates the theoretical findings regarding the stability of the endemic equilibrium as es-
tablished in Theorem 5.2. It shows that the disease persists within the population and reaches a stable
endemic state. Furthermore, it is observed that the value of « influences the convergence rate of the
infection spread. Specifically, a decrease in « results in a slower convergence, meaning that the infection
spreads more slowly as the memory effect (represented by «) decreases.
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Figure 2: The dynamic behavior of compartments S, V, E, I, and R for « = 0.6, « = 0.7, a = 0.8,
a=0.9,and o = 1.

7. Conclusion

In this study, we proposed a fractional-order epidemic model (SV EIR) with a generalized incidence
rate, analyzed using the Caputo fractional derivative framework. The model’s well-posedness was rig-
orously established by proving the existence, uniqueness, non-negativity, and boundedness of its solu-
tions. Through the computation of the basic reproduction number Ry using the next-generation matrix
method, we derived critical threshold conditions for disease control. The stability analysis of the disease-
free and endemic equilibria confirmed their global stability under specific conditions, utilizing Lyapunov
functions and LaSalle’s invariance principle. Numerical simulations conducted with MATLAB not only
validated the theoretical results but also highlighted the influence of key parameters on the dynamics
of the epidemic. These findings emphasize the utility of fractional-order models in capturing complex
epidemiological behaviors and provide a robust framework for understanding disease transmission and
control strategies.
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