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Mittag-Leffler stability for a one-dimensional fractional elastic-porous system:
nonstandard frictional damping and nonstandard Kelvin-Voigt damping

Mohammed D. Kassim

abstract: In this paper, we investigate the asymptotic behavior of solutions for a one-dimensional fractional
elastic-porous system. We dissipate the system by two damping devices. The elastic equation is dissipated
by a nonstandard frictional damping (frictional damping of fractional order) and the porous equation by a
nonstandard Kelvin-Voigt damping (Kelvin-Voigt damping of fractional order). We prove that the system is
Mittag-Leffler stable under certain conditions on the coefficients of the system and without imposing the equal
wave speeds condition µ

ρ
= δ

J
. The result is new and opens the door for more research areas on porous-elastic

systems and other problems.
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1. Introduction

An elastic-porous system typically refers to a material or structure that combines elasticity and poros-
ity. Elasticity refers to the property of a material to deform when subjected to stress and return to its
original shape when the stress is removed. Materials like rubber bands and springs exhibit elasticity.
Porosity refers to the presence of void spaces or pores within a material. These voids can be intercon-
nected or isolated. Porous materials often have applications in filtration, insulation, and absorption due
to their ability to hold fluids or gases within their structure.

Understanding the stability of elastic porous systems is crucial for ensuring their structural integrity.
This knowledge helps in designing materials and structures that can withstand various loads and envi-
ronmental conditions without failure. For examples, in many engineering applications, such as in civil
engineering when building foundations or in biomedical engineering while dealing with implants, safety
is paramount importance. Analyzing the stability of elastic porous systems helps in predicting potential
failure modes and designing systems that meet safety standards. Moreover, elastic porous systems are
often used in environmental applications, such as soil stabilization and groundwater remediation. Hence,
understanding their stability helps in assessing their long-term effectiveness and potential environmental
impact.

Motivated by the aforementioned issues, many researchers have studied the well-posedness, stability
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and instability of elastic-porous systems. We start with the work of Quintanilla [1], where he showed
that the following elastic-porous system:{

ρ0utt = µuxx + βϕx, x ∈ (0, π), t > 0,

ρ0κϕtt = αϕxx − βux − τϕt − ξϕ, x ∈ (0, π), t > 0,
(1.1)

has a slow decay only and one damping in the porous equation (−τϕt) is not strong enough to ensure an
exponential decay. Apalara [2] proved that replacing the porous dissipation (−τϕt) by a memory damp-
ing leads to general decay rate under the assumption of equal-speed wave propagations. Feng and Yin
[3] extended the result in [2] to the case of non-equal wave speeds. Some other researchers such as Casas
and Quintanilla [4], Magana and Quintanilla [5], Pamplona et al. [6], Messaoudi and Fareh [7], Han and
Xu [8], Djellali et al. [9] proved the stability of such systems by employing other different damping terms.

Recently, numerous papers focusing on replacing the standard derivatives by fractional derivatives due to
the wide use of their applications in various scientific and engineering fields, including viscoelasticity [10]
and image processing [11,12]. In the context of elasticity, fractional derivatives can be employed to model
materials with non-local or memory-dependent behaviors. For example: Fractional derivatives can be
incorporated to model damping and energy dissipation in elastic structures. The inclusion of fractional
derivatives allows for a more accurate representation of the dissipation process, especially in situations
where traditional models may not capture the observed behavior [13].

The standard diffusion models in continuous media arise from fundamental concepts: momentum and
energy conservation. The classical swelling equations are used to describe how materials’ volumes change
as liquids or solvents are absorbed. However, some of the standard diffusion models can not describe
adequately the behavior of many phenomena such as ballistic motions across membranes, and material
dynamics between a pure viscous fluid state and a pure elastic solid state. Using fractional models is a
practical technique to get around these problems and constraints and capture the complicated diffusion
that takes place in random, fractal, and heterogeneous media, such as porous media [14]. Equations
for fractional diffusion or fractional wave propagation that describe anomalous diffusion processes and
phenomena are becoming more and more popular these days. For examples, Othmani and Tatar [15]
studied the well-posedness and stability of the fractional telegraph problem. Al-Homidan and Tatar [16]
and [17] investigated the stability of two fractional problems; the first one represents an interpolation
between the heat and the wave equations and the second is for a fractional Timoshenko system. For
more results on fractional diffusion models, we refer to [18,19,20,21,22,23,24,25,26,27] and the references
therein.

Motivated by the importance and efficiency of fractional derivatives, we consider the following frac-
tional elastic-porous system:{

ρ CDα
(
CDαu

)
− µuxx − bzx + γ1

CDαu(t) = 0, in (0, 1)× (0,∞),

J CDα
(
CDαz

)
− δzxx + bux + ξz + γ2

CDαzxx(t) = 0, in (0, 1)× (0,∞),
(1.2)

where z is the volume fraction, and u is the displacement of a solid elastic material. The strictly positive
constants J and ρ represent the product of the mass density by the equilibrated inertia and the mass
density, respectively. The parameters µ, δ, ξ > 0, b is a real number, and the damping coefficients param-
eters γ1, γ2 > 0. In addition, we assume that µξ − b2 > 0.

The term CDαu(t) is the nonstandard frictional damping (standard when α = 1) and the term CDαzxx
is the nonstandard Kelvin-Voigt damping (standard when α = 1). The Kelvin-Voigt damping model is
effectively applied in elastic porous systems to account for the complex interactions between the solid
matrix and the fluid within the pores. These systems are often encountered in various engineering and
scientific fields.
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We consider the system (1.2) subject to the following boundary and initial conditions:{
z(x, 0) = z0(x), zt(x, 0) = z1(x), u(x, 0) = u0(x),

ut(x, 0) = u1(x), z(0, t) = z(1, t) = u(0, t) = u(1, t) = 0,
(1.3)

where the initial conditions z0, z1, u0, u1, are fixed data.

Our aim in this work is to study the asymptotic behavior of the solutions of this fractional system.
In our result, we established a Mittag-Leffler stability in which the exponential stability is special case.
Unlike the previous studies, we obtain this exponential stability without the equal wave speeds.

Our result will significantly extend many earlier results in the literature, in particular, the ones in
[1], [2] and [3].

2. Existence and Uniqueness Result

In this section, we sketch briefly how to prove the existence and uniqueness for our problem (1.2). To

this end, we let U =
(
u,

∼
u, z,

∼
z
)T

, where
∼
z = CDαz,

∼
u = CDαu and U0 =

(
u0,

∼
u0, z0,

∼
z0

)T
. Therefore,

the system (1.2) can be written in the abstract form as follows:{
CDαU = AU, 0 < α < 1,
U(0) = U0,

(2.1)

where

A =



0 1 0 0

µ
ρ∂xx −γ1

ρ
b
ρ∂x 0

0 0 0 1

− b
J ∂x 0 δ

J ∂xx − ξ
J −γ2

J ∂xx


.

We define
H := H1

0 (0, 1)× L2 (0, 1)×H1
0 (0, 1)× L2 (0, 1) ,

and the domain

D(A) :=

{
U =

(
u,

∼
u, z,

∼
z
)T

∈ H : u, z ∈ H2(0, 1) ∩H1
0 (0, 1),

∼
u,

∼
z ∈ H1

0 (0, 1)

}
.

Assuming that U0 ∈ D(A), the solution is classical

U ∈ C ((0,∞), D(A)) ∩ C1 ((0,∞),H)) , (2.2)

and fulfils t−α ∗ zt ∈ C1
(
(0,∞) , L2 (0, 1)

)
and t−α ∗ ut ∈ C1

(
(0,∞) , L2 (0, 1)

)
.

This can be shown by utilizing the results in [28] where the author proved the existence of mild and
classical solutions for the following abstract non homogeneous fractional integro-differential problem:{

CDγU(t, x) = PU(t, x) + f (t, U(t))−
∫ t

0
B(t− s)U(s, x)ds, 0 < γ < 1,

U(0, x) = U0(x) ∈ X,
(2.3)

where X is a Banach space, P and B are defined on a common domain D(P). He showed that the above
system possesses a unique solution

U (t) := Rγ (t)U0 ∈ C ([0,∞);D(P)) ∩ Cγ ((0,∞) ;X) ,

where Rγ is the γ−resolvent of the system, provided that U0 ∈ D(P). His proof relies on the notion of
γ−resolvent and some spectral theory arguments.



4 Mohammed D. Kassim

Remark 2.1 Notice that replacing CDα
(
CDαu

)
and CDα

(
CDαz

)
in our system (1.2) by CD2αu and

CD2αz, respectively leads to the following abstract problem:{
CD2αU(x, t) = AU(x, t) 0 < 2α < 2,
U(0, x) = 0, U(1, x) = 0,

(2.4)

where the operator A is positive definite and given by

A =

 µ
ρ∂xx − γ1

ρ
CDα b

ρ∂x

− b
J ∂x

δ
J ∂xx − ξ

J − γ2

J
CDα∂xx

 . (2.5)

The proof of the well-posedness of the abstract system (2.4) can be found in [29] under the condition
w′(0, x) = w1(x) = 0 for w = u and w = z. As a matter of fact, this condition annihilates the term
which is equal to the difference between CD2αw and CDα

(
CDαw

)
.

3. Preliminaries

In this section, we present the necessary background for our results.

Definition 3.1 [30] : The Riemann-Liouville fractional integral of order α > 0 of a function χ is defined
by

Iαχ(t) =
1

Γ(α)

t∫
0

(t− s)α−1χ(s)ds, α > 0,

where Γ(α) is the gamma function. This definition holds for any measurable function χ provided that the
right-hand side exists.

Definition 3.2 [30] : The Caputo fractional derivative of order α, n− 1 < α < n, n ∈ Z+, is defined by

CDαχ(t) =
1

Γ(n− α)

t∫
0

(t− s)n−α−1χ(n)(s)ds.

In particular, for 0 < α < 1,

CDαχ(t) =
1

Γ(1− α)

t∫
0

(t− s)−αχ′(s)ds, 0 < α < 1.

The Riemann-Liouville fractional derivative of order α is defined by

RLDαχ(t) =
1

Γ(1− α)

d

dt

t∫
0

(t− s)−αχ(s)ds, 0 < α < 1,

provided that the integral exists. The relationship between the two derivatives is given by

RLDαχ(t) =
χ(0)t−α

Γ(1− α)
+ CDαχ(t), 0 < α < 1, t > 0.

This relationship will be crucial in applying the following lemma on differentiation under the integral sign.

We recall the two-parametric and one-parametric Mittag-Leffler functions

Eα,β(z) :=
∑∞

n=0

zn

Γ(αn+ β)
, Re(α) > 0, Re(β) > 0,
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and

Eα(z) :=
∑∞

n=0

zn

Γ(αn+ 1)
, Re(α) > 0,

resp. It is useful to notice that Eα,1(z) ≡ Eα(z).

Proposition 3.1 [31]: Let χ(t) be a differentiable function on [0,∞). If there exists a positive constant
γ and a real number α in the interval (0, 1) such that

CDαχ(t) ≤ −γχ(t),

for all t ≥ 0, where CDαχ(t) denotes the Caputo fractional derivative of order α of χ(t), then

χ(t) ≤ χ(0)Eα(−γtα),

for all t ≥ 0. Here, Eα(z) is the one-parameter Mittag-Leffler function. Moreover, if the fractional
derivative is of Riemann-Liouville type, denoted by RLDαχ(t), and the inequality holds, then the decay
rate is given by

χ(t) ≤ χ(0)tα−1Eα,α(−γtα),

for all t ≥ 0, where Eα,α(z) is the two-parameter Mittag-Leffler function.

Proposition 3.2 [32]: For α, β > 0, we have

λzαEα,α+β(λz
α) = Eα,β(λz

α)− 1

Γ(β)
.

Proposition 3.3 [32]: For µ, α, β > 0, we have

1

Γ(µ)

z∫
0

(z − t)µ−1Eα,β(λt
α)tβ−1dt = zµ+β−1Eα,µ+β(λz

α), z > 0.

The following result concerns the Riemann-Liouville fractional derivative and the integral sign.

Proposition 3.4 [30]: The following holds provided that ψ(t) is a continuous function and I1−αχ(t) ∈
C1([0,∞)), 0 < α < 1 :

RLDα

t∫
0

χ(t− s)ψ(s)ds =

t∫
0

ψ(s)RLDαχ(t− s)ds+ ψ(t) lim
t→0+

I1−αχ(t), t > 0.

We conclude this section with the following proposition regarding the Caputo fractional derivative of the
product of two functions.

Proposition 3.5 [33]: Let f(t) and h(t) be absolutely continuous functions on [0, T ]. Then, for 0 <
α < 1, we have

f(t)CDαh(t) + h(t)CDαf(t)

= CDα(fh)(t) +
α

Γ(1− α)

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

f ′(η)dη

(t− η)α

∫ ξ

0

h′(s)ds

(t− s)α
, t ∈ [0, T ]. (3.1)

In particular

CDα(f2(t)) = 2f(t)CDαf(t)− α

Γ(1− α)

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

f ′(η)dη

(t− η)α

)2

≤ 2f(t)CDαf(t). (3.2)
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4. The energy

By multiplying the first and the second equations in (1.2) by Dαu and Dαz respectively, and inte-
grating over (0, 1), we obtain

ρ

∫ 1

0

DαuDα (Dαu) dx+ J

∫ 1

0

DαzDα (Dαz) dx

= µ

∫ 1

0

Dαuuxxdx+ b

∫ 1

0

Dαuzxdx+ δ

∫ 1

0

Dαzzxxdx

−b
∫ 1

0

Dαzuxdx− ξ

∫ 1

0

zDαzdx− γ1

∫ 1

0

(Dαu)
2
dx− γ2

∫ 1

0

(Dαzx)
2
dx. (4.1)

Using integration by parts, and the product rule, we find that

ρ

∫ 1

0

DαuDα (Dαu) dx+ J

∫ 1

0

DαzDα (Dαz) dx

= −µ
2
Dα||ux||2 −

µα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx

−δ
2
Dα||zx||2 −

δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx

−bDα (zux)−
bα

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

z′(η)dη

(t− η)α

∫ ξ

0

u′x(s)ds

(t− s)α
dx

−ξ
2
Dα||z||2 − ξα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′(η)dη

(t− η)α

)2

dx

−γ1
∫ 1

0

(Dαu)
2
dx− γ2

∫ 1

0

(Dαzx)
2
dx. (4.2)

The above equation motivates introducing the functional

E(t) =
1

2

∫ 1

0

{
ρ||Dαu||2 + J ||Dαz||2 + µu2x + δz2x + ξz2 + 2bzux

}
dx. (4.3)

Consequently, The above considerations lead to the following lemma.
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Lemma 4.1 The functional E(t) satisfies along solutions of (1.2)

DαE(t) = − αρ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαu(η))′dη

(t− η)α

)2

dx

− αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαz(η))′dη

(t− η)α

)2

dx

− µα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx

− δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx

− bα

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

z′(η)dη

(t− η)α

∫ ξ

0

u′x(s)ds

(t− s)α
dx

− ξα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′(η)dη

(t− η)α

)2

dx

−γ1
∫ 1

0

(Dαu)
2
dx− γ2

∫ 1

0

(Dαzx)
2
dx. (4.4)

Proof : Clearly, a direct fractional differentiation of E(t), using the product rules, yields

DαE(t) = J

∫ 1

0

DαzDα (Dαz) dx+ ρ

∫ 1

0

DαuDα (Dαu) dx

− αρ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαu(η))′dη

(t− η)α

)2

dx

− αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαz(η))′dη

(t− η)α

)2

dx

+bDα(zux) +
µ

2
Dα||ux||2 +

δ

2
Dα||zx||2 +

ξ

2
Dα||z||2. (4.5)

Using (4.2), equation (4.5) becomes
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DαE(t) = − αρ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαu(η))′dη

(t− η)α

)2

dx

− αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαz(η))′dη

(t− η)α

)2

dx

− µα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx

− δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx

− bα

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

z′(η)dη

(t− η)α

∫ ξ

0

u′x(s)ds

(t− s)α
dx

− ξα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′(η)dη

(t− η)α

)2

dx

−γ1
∫ 1

0

(Dαu)
2
dx− γ2

∫ 1

0

(Dαzx)
2
dx. (4.6)

Hence, the proof of (4.4) is finished.

Remark 4.1 • The assumption µξ − b2 ≥ 0 together with the fact that

µu2x + ξz2 + 2bzux =

(
µ− b2

ξ

)
u2x +

(√
ξz +

b√
ξ
ux

)2

prove the non-negativity of the proposed energy functional (4.3).

• The above identity allows us to write

DαE(t) ≤ − µα

2Γ(1− α)

(
µ− b2

ξ

)∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

− δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

−γ1
∫ 1

0

(Dαu)
2
dx− γ2

∫ 1

0

(Dαzx)
2
dx ≤ 0. (4.7)

• Noticing that (4.4), after canceling the negative terms, also can be written in the form
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DαE(t) ≤ − αρ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαu(η))′dη

(t− η)α

)2

dx

− αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαz(η))′dη

(t− η)α

)2

dx

− bα

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

z′(η)dη

(t− η)α

∫ ξ

0

u′x(s)ds

(t− s)α
dx

− µα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx

− δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx

− ξα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′(η)dη

(t− η)α

)2

dx. (4.8)

The use of Young’s inequality, the above relation becomes

DαE(t) ≤ − αρ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαu(η))′dη

(t− η)α

)2

dx

− αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαz(η))′dη

(t− η)α

)2

dx

+
( b

2

4ε − ξ
2 )α

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′(η)dη

(t− η)α

)2

dx

+
(ε− µ

2 )α

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx

− δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx. (4.9)

Choosing ε = b2

2ξ gives b2

4ε − ξ
2 = 0 and ε − µ

2 ≤ 0 (thanks to the assumption µξ − b2 ≥ 0). Using
these, we get

DαE(t) ≤ − αρ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαu(η))′dη

(t− η)α

)2

dx

− αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

(Dαz(η))′dη

(t− η)α

)2

dx

+
(ε− µ

2 )α

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx

− δα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx. (4.10)

We will omit the superscript ”C” from CDα for convenience. Also, we shall use the notation C to
denote a generic positive constant.
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5. Technical lemmas

Lemma 5.1 The functional

χ1(t) = ρ

∫ 1

0

uDαudx+
γ1
2

∫ 1

0

u2dx, (5.1)

satisfies, for any t > 0,

Dαχ1(t) ≤ ρ∥Dαu∥2 − µ

∫ 1

0

u2xdx+ b

∫ 1

0

uzxdx

+
ρα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

[Dαu(η)]′dη

(t− η)α

)2

dx

+
ρα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

dx. (5.2)

Proof: Taking the Caputo derivative of order α of the functional χ1 along solutions of (1.2) shows that

Dαχ1(t) = ρ∥Dαu∥2 − µ

∫ 1

0

u2x dx+ b

∫ 1

0

uzxdx

− ρα

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

u′(η)dη

(t− η)α

∫ ξ

0

[Dαu(s)]′ds

(t− s)α

− γ1α

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′(η)dη

(t− η)α

)2

dx.

Integration by parts and the application of Young’s and Poincare’s inequalities lead to (5.2). 2

Lemma 5.2 The functional

χ2(t) = J

∫ 1

0

zDαz(t)dx− γ2
2

∫ 1

0

z2xdx, (5.3)

satisfies, for any t > 0,

Dαχ2(t) ≤ J ||Dαz||2 − δ||zx||2 + b

∫ 1

0

uzxdx− ξ||z||2

+
αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

[Dαz(η)]′dη

(t− η)α

)2

dx

+
(J + γ2)α

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx. (5.4)

Proof: Taking the Caputo derivative of order α of the functional χ2 along solutions of (1.2), integrating
by parts, and using the fractional product rule yields

Dαχ2(t) = J ||Dαz||2 − δ||zx||2 + b

∫ 1

0

uzxdx− ξ||z||2

− Jα

Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

∫ ξ

0

z′(η)dη

(t− η)α

∫ ξ

0

[Dαz(s)]′ds

(t− s)α

+
γ2α

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

dx. (5.5)

Hence, application of the Young’s and Poincare’s inequalities, leads to (5.4). 2
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6. Stability result

In this section, we state and prove our main result.

Lemma 6.1 The functional L defined by

L(t) = NE(t) + χ1(t) + χ2(t), (6.1)

satisfies, for a positive constant N (large enough) and for all t ≥ t0,

DαL(t) ≤ −mE(t), (6.2)

for some m > 0, and satisfies, for some constants a, b > 0, the equivalence

aE(t) ≤ L(t) ≤ bE(t), t ≥ 0. (6.3)

Proof: Differentiating the functional L and utilizing all the above estimates in (5.2) and (5.4), recalling
(4.4), and applying Poincare’s inequality, it follows that

DαL(t) ≤ − (γ1N − ρ) ||Dαu||2 − (γ2N − J) ||Dαz||2

−
∫ 1

0

(
µu2x + ξz + 2buzx

)
dx− δ

∫ 1

0

z2xdx

− (δN − (J + γ2))
α

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

− (µN − ρ)
α

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

− (N − 1)
ρα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

[Dαu(η)]′dη

(t− η)α

)2

dx

− (N − 1)
αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

[Dαz(η)]′dη

(t− η)α

)2

dx.

Using Remark 4.1, the above relation becomes:

DαL(t) ≤ − (γ1N − ρ) ||Dαu||2 − (γ2N − J) ||Dαz||2

−
(
µ− b2

ξ

)∫ 1

0

u2xdx− δ

∫ 1

0

z2xdx

− (µN − (J + γ2))
α

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

z′x(η)dη

(t− η)α

)2

− (µN − ρ)
α

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

u′x(η)dη

(t− η)α

)2

− (N − 1)
ρα

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

[Dαu(η)]′dη

(t− η)α

)2

dx

− (N − 1)
αJ

2Γ(1− α)

∫ 1

0

∫ t

0

dξ

(t− ξ)1−α

(∫ ξ

0

[Dαz(η)]′dη

(t− η)α

)2

dx.

Recalling the condition
(
µ− b2

ξ

)
> 0 and selecting N > 1 large enough so that the relation (6.3) remains

valid and
γ1N − ρ > 1, γ2N − J > 1, δN − (J + γ2) > 1, µN − ρ > 1.
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Therefore, we have for some positive constant c1

DαL(t) ≤ −c1
[
ρ||Dαu||2 + J ||Dαz||2 + ||ux||2 + ||zx||2

]
.

Applying Young’s inequality on the terms in the energy functional (4.3), we have for some positive
constant c2

E(t) ≤ c2
[
ρ||Dαu||2 + J ||Dαz||2 + ||ux||2 + ||zx||2

]
.

These two relations imply

DαL(t) ≤ −cE(t).

This ends the proof of (6.2). For the proof of (6.3), it is easy to prove that

|χi(t)| ≤ miE(t) i = 1, 2,

for some positive constants mi. Then, we obtain

|L −NE| ≤ mE,

where m = max{mi}, i = 1, 2. Now, the above relation gives

(N −m)E(t) ≤ L(t) ≤ (m+N)E(t).

Select N > m ends the proof of (6.3). 2

6.1. The main result

In this section, we state our main result.

Theorem 6.1 If µξ− b2 > 0, then, there exist positive constants β1 and β2 such that the energy of (1.2)
is Mittag-Leffler stable, that is; for all t > 0,

E(t) ≤ β1Eα (−β2tα) . (6.4)

Proof: The proof of this theorem follows directly by combing (6.2), (6.3), and Proposition 3.1. 2

7. Conclusion and remarks

In this work, we studied the stability of a one-dimensional elastic-porous system with fractional
derivatives and Dirichlet boundary conditions. We dissipated the elastic equation by a nonstandard
frictional damping (frictional damping with fractional derivative) and the porous equation by nonstandard
Kelvin-Voigt damping (Kelvin-Voigt damping with fractional damping). We proved that the system is
Mittag-Leffler stable under certain conditions on the coefficients of the system imposed by the physics of
the system even in the integer order case and without imposing the wave speeds condition µ

ρ = δ
J . The

result is new and opens a research area for porous-elastic system.
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