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1. Introduction

The study of long time existence of classical smooth solutions for second order
quasilinear wave equations has received much attention (see e.g. [1] and the refer-
ences given there). Results were also obtained for continuous semilinear waves with
gradient jumps on a characteristic hypersurface in [2] and for C1 quasilinear waves
with second order derivatives jumps on a characteristic hypersurface in [3], [4]. In
this paper we show how the methods and results of [2] can be extended to a class
of continuous weak solutions, with gradient jumps on a characteristic hypersurface,
for some second order quasilinear balance laws.

2. Statement of the results

Let Ω ⊂ RN be a bounded open set lying locally on one side of its boundary ∂Ω,
where ∂Ω is a C∞ manifold of dimension (N − 1). We shall consider the balance
law

�z =
∑

0≤i≤N

∂i(F i(z′)) + f(z′) (2.1)

if t > 0, x ∈ RN , where x = (x1, . . . , xN ) is the space variable, t (sometimes called

x0) is the time variable, ∂i =
∂

∂xi
if 0 ≤ i ≤ N , z′ = tr(∂tz, ∂1z, . . . , ∂Nz), where

tr means transpose, � = ∂2
t −

∑
1≤j≤N

∂2
j . F

i, f are C∞ in an open neighborhood

in RN+1 of the closed ball {p ∈ RN+1, |p| ≤ R} where R > 0. Put f ij(p) =
1
2
(∂iF j + ∂jF

i)(p). We shall assume that

f ij(0) = 0 if 0 ≤ i, j ≤ N, (∂αf)(0) = 0 if |α| ≤ 1, (2.2)

51
Typeset by BSPMstyle.
c© Soc. Paran. Mat.



52 Paul Godin

and also that the following “null condition” holds :

if p = tr(p0, . . . , pN ) satisfies |p| ≤ R and
p2
0 −

∑
1≤j≤N p

2
j = 0, then

∑
0≤i,j≤N f

ij(p)pipj = 0. (2.3)

For example, (2.3) is satisfied if
∑

0≤i≤N

∂i(F i(z′)) is ∂l(∂kz∂jz)− ∂j(∂lz∂kz).

We shall consider weak solutions to (2.1) which satisfy the initial condition

∂jt z = zj (2.4)

if t = 0, j = 0, 1, where z0 ∈ C(RN ), z0 = z1 = 0 outside Ω, zj ∈ C∞(Ω̄) if j = 0, 1,∑
1≤j≤N

|∂jz0|+ |z1| < R1, where R1 < R is small enough.

The initial data will have to satisfy appropriate compatibility conditions. To
describe those conditions, let ψ ∈ C∞(RN ,R) be such that ψ < 0 in Ω, ψ > 0
in RN \ Ω̄, dψ 6= 0 at each point of ∂Ω, and let ϕ be the (at least local near
{0} × ∂Ω) solution to ϕt + |ϕx| = 0, ϕ|t=0 = ψ. Then Σ = ϕ−1(0) is the outgoing

characteristic hypersurface of � through {0}×∂Ω. Put X = ∂t−
∑

1≤j≤N

∂jϕ

∂tϕ
∂j . X

is tangent to Σ. We shall restrict ourselves to solutions to (2.1), (2.4) which satisfy
the conditions

lim
Ω3x→a

Xmz(0, x) = 0 (2.5)

for allm ∈ N and all a ∈ ∂Ω. Of course (2.5) can be expressed in terms of z0, z1 only.
Put Σ(t) = {(s, x) ∈ Σ, s = t}, D(t) =

⋃
0<s<t

({s} × Ω(s)), where {s} × Ω(s) is the

bounded connected component of ({s}×RNx ) \Σ(s), E(t) = {(s, x) ∈ R×RN , 0 <
s < t}, S(t) =

⋃
0<s<t

Σ(s). We have the following local existence result.

Theorem 2.1 Assume that (2.3), (2.5) hold. If T > 0 is small, (2.1), (2.4) has
a unique weak solution z ∈ C∞(D(T )) ∩ C(E(T )) which vanishes outside D(T ).
Moreover S(T ) is characteristic for z|D(T ) (and for z|

E(T )\D(T )
which is 0).

The solution z described in Thm 2.1 is a contact discontinuity. To obtain long
time existence results, we assume that

Ω is convex and the total curvature of
∂Ω in the normal direction is nonvanishing(so N ≥ 2) (2.6)

Then Σ is global in t > 0 (cf. [2]). We also introduce the following smallness
assumptions. We assume that z0, z1 depend on a small parameter ε > 0, and that

for some ε0 > 0 and all α ∈ NN , one can find Cα > 0 such that
|∂αzj | ≤ Cαε in Ω if j = 0, 1 and 0 < ε ≤ ε0.

(2.7)

Denote by Tε the supremum of all T > 0 such that Thm 2.1 holds. Then we have
the following long time existence result.
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Theorem 2.2 Assume that (2.3), (2.5), (2.6), (2.7) hold. One can find ε0, C > 0
such that the following holds : if ε ≤ ε0, then Tε ≥ C/ε2 if N = 2, Tε ≥ eC/ε if
N = 3, Tε = +∞ if N ≥ 4.

Rem. If all F i are identically constant, Thm 2.2 is contained in [2]. In [3], [4], long
time existence results were proved for C1 piecewise C2 waves.

3. Proof of Theorem 2.1

It is enough to find a C∞(D(T )) solution z to (2.1) in D(T ), with |z′| ≤ R,
such that

z = 0 on S(T ). (3.1)

Indeed if we put z̃ = z in D(T ), z̃ = 0 in E(T ) \D(T ), and if z satisfies (2.1) in
D(T ) and (3.1) holds, let us check that z̃ is a weak solution to (2.1), that is, that
the Rankine-Hugoniot condition∑

0≤i≤N

[
ηii∂iz̃ − F i(z̃′)

]
∂iϕ = 0 (3.2)

holds on S(T ), where [g](t, x) = lim
Ω(t) 63y→x

g(t, y)− lim
Ω(t)3y→x

g(t, y) if (t, x) ∈ S(T )

and η00 = 1, ηii = −1 if i > 0. Since Σ is a characteristic hypersurface for �, (3.2)
follows easily from (2.3). To solve (2.1) in D(T ) with (2.4) in {0} × Ω and (3.1),
we are going to rewrite (2.1) as a first order system. We assume that |z′| ≤ R1

where R1 is so small that 1 − f00(z′) > 0. Put gi,j = f ij if i and j 6= 0 or if
(i, j) = (0, 0), g0,j = 0 if j > 0, gj,0 = 2f0j if j > 0. Write uj = ∂jz if 0 ≤ j ≤ N ,
u = tr(u0, u1, . . . , uN ). Define (N + 1)× (N + 1) matrices E(u), Ai(u), 1 ≤ i ≤ N ,
and a (N + 1) × 1 matrix G(u) in the following way : Ei,j = δij if (i, j) 6= (0, 0),
E0,0 = (1− g0,0)−1; Ai = Bi+ B̃i, where Bj,ki = −1 if (j, k) = (i+1, 1) or (1, i+1)
and Bj,ki = 0 otherwise, B̃j,ki = 0 if j 6= 1 and B̃1,k

i = −gi,k−1; G1 = (1− g0,0)−1f ,
Gi = 0 if i ≥ 2. From (2.1) it follows that

∂tu+
∑

1≤j≤N

(EAj)(u)∂ju = G(u) if (t, x) ∈ D(T ). (3.3)

Define ū0 = z1, ūj = ∂jz0 if 1 ≤ j ≤ N , ū = tr(ū0, . . . , ūN ). Then

u = ū if t = 0, x ∈ Ω. (3.4)

Henceforth we shall put Λij =
∂iϕ

∂tϕ
∂j −

∂jϕ

∂tϕ
∂i if 0 ≤ i, j ≤ N . (3.1) implies that

uj =
∂jϕ

∂tϕ
u0, 1 ≤ j ≤ N, if (t, x) ∈ S(T ). (3.5)

Moreover, if z satisfies (2.5), u = z′ should satisfy

lim
Ω3x→a

Xk(uj −
∂jϕ

∂tϕ
u0)(0, x) = 0, 1 ≤ j ≤ N, (3.6)
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for all m ∈ N. Indeed, since Λ0k = −∂kϕ
∂tϕ

X −
∑

1≤j≤N

∂jϕ

∂tϕ
Λkj , (3.6) follows from

the commutation properties of Xm with Λij (1 ≤ i, j ≤ N) (cf. Prop A.4 of [2]).
To prove Thm 2.1, it is enough to show that (3.3)-(3.5) has a unique C∞(D(T ))
solution if T > 0 is small enough (if (3.6) holds). Let us show why. If u is a smooth
solution to (3.3)-(3.5), it follows from (3.3) that ∂tuj = ∂ju0 if 1 ≤ j ≤ N . Hence
∂k∂tuj = ∂k∂ju0 if 1 ≤ k ≤ N , so using (3.3) again, we find that ∂t(∂kuj−∂juk) = 0
in D(T ). Now ∂kuj = ∂juk if t = 0, x ∈ Ω. Let us show that

∂kuj = ∂juk if (t, x) ∈ S(T ). (3.7)

(3.7) is equivalent to Λ0juk +
∂jϕ

∂tϕ
∂ku0 = Λ0kuj +

∂kϕ

∂tϕ
∂ju0. But this last relation

is easily seen to hold if we make use of the relations ∂tul = ∂lu0, 1 ≤ l ≤ N , which
follow from (3.3), and of (3.5). Taking (3.7) into account, we finally conclude that
∂kuj = ∂juk in D(T ), 0 ≤ j ≤ k ≤ N . Let z ∈ C∞(D(T )) be such that z′ = u and
such that z vanishes at some point of ∂Ω. It is easily seen that z satisfies (2.1) in
D(T ), (2.4) on {0} × Ω and (3.1).

To solve (3.3)-(3.5), we are going to make use of the results of [5]. To do this
we shall check that the system in (3.3) is symmetrizable hyperbolic, that S(T )
is characteristic of constant multiplicity 1 and that the boundary conditions in
(3.5) are maximal dissipative. Take a ∈ ∂Ω. Then ∂jϕ(0, a) 6= 0 for some j
and it is no restriction to assume that j = N . Define the change of variables
yj = xj , 0 ≤ j < N , yN = −ϕ(t, x). Writing y = (y1, . . . , yN ), v(t, y) = u(t, x),
µj(t, y) = ∂jϕ(t, x) if 0 ≤ j ≤ N , b = (a1, . . . , aN−1, 0), we obtain from (3.3) that

∂tv +
∑

1≤j≤N−1

Bj(v)∂yjv +B(t, y, v)∂yN
v = G(v) (3.8)

if yN > 0 and (t, y) is close to (0, b), where Bj = EAj and B(t, y, v) = −µ0(t, y)
−
∑

1≤j≤N

µj(t, y)Bj(v). (3.5) implies that

vj =
µj
µ0
v0, 1 ≤ j ≤ N (3.9)

if yN = 0 and (t, y) is close to (0, b). The system in (3.8) is symmetrizable hyper-
bolic. Indeed let S(v), |v| small, be the (N+1)×(N+1) matrix defined by S1,1(v) =
1, S1,i(v) = Si,1(v) = 0 if 2 ≤ i ≤ N+1, Si,j(v) = −A1,i

j−1(v)(1−g0,0(v))−1 if 2 ≤ i,
j ≤ N +1. Then S(v) is symmetric positive definite and each (SBj)(v) is symmet-
ric. Now rank B(t, y, 0) = N if (t, y) is close to (0, b), and a computation using (2.3)
shows that B(t, y, v)µ = 0 if v satisfies (3.9) and µ = tr(µ0, µ1, . . . , µN ). Hence
dim Ker B(t, y, v) = 1 near (0, b, 0) if yN = 0 and v satisfies (3.9). Furthermore it
is easy to check that the boundary conditions in (3.9) are maximal dissipative near
(0, b, 0). Recall that this means that S(v)B(t, y, v) is ≤ 0 on Et,y if yN = 0, if (t, y, v)
is close to (0, b, 0) and if v satisfies (3.9), where Et,y = {w ∈ RN+1, wj =

µj
µ0

(t, y)w0,
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1 ≤ j ≤ N}, and that Et,y is maximal with this property. Thm 2.1 now readily
follows from the results of [5].

4. Proof of Theorem 2.2

When each F i is identically constant, Thm 2.2 has been proved in [2]. We are
going to use the same method as in [2] in order to prove estimates which will enable
us to obtain Thm 2.2 by a continuation method. If h(t, x) is a function of t, x and

U ⊂ RNx , we shall put |h(t)|U = sup
x∈U

|h(t, x)|, ||h(t)||U =
(∫

U

|h(t, x)|2 dx
)1/2

. We

have the following energy estimate (where X,Λij are as before).

Proposition 4.1 One can find δ, C > 0 such that the following holds. If T >

0, f̄ ij ∈ C∞(D(T )), 0 ≤ i, j ≤ N , with f̄ ij = f̄ ji,
∑

0≤i,j≤N

|f̄ ij | ≤ δ in D(T ),∑
0≤i,j≤N

f̄ ij∂iϕ∂jϕ = 0 on S(T ), L = �−
∑

0≤i,j≤N

f̄ ij∂2
ij and w ∈ C∞(D(T )), then

||w′(T )||2Ω(T ) ≤ C

(
||w′(0)||2Ω +

∫∫
D(T )

(
|Lw| |∂tw|+

∑
|α|=1

|∂αf̄ ij(t)|Ω(t)|w′|2
)
dt dx

+
∫
S(T )

(
(Xw)2 +

∑
1≤i<j≤N

(Λijw)2

+
( ∑

0≤i,j≤N

|f̄ ij |
)( ∑

1≤q≤N

|Λ0qw|
)(
|∂tw|+

∑
1≤q≤N

|Λ0qw|
))
dσ

)
,

(4.1)

where dσ is the canonical hypersurface measure on S(T ).

Proof of Prop 4.1. One writes Lw · ∂tw as the sum of a divergence and a quadratic
form in w′, and integrates over D(T ). This is done as in the proof of Prop 5.1 of
[2] (see also Prop 3.4 of [4]). We may omit the details.

Denote by Γ1, . . . ,Γn the vector fields xi∂j − xj∂i (1 ≤ i < j ≤ N), t∂j +
xj∂t (1 ≤ j ≤ N), t∂t +

∑
1≤j≤N

xj∂j , introduced in [6]. If α = (α1, . . . , αn) ∈

Nn, put Γα = Γα1
1 . . .Γαn

n . If f(t, x) is a function of (t, x), write ||f(t)||k,U =∑
|α|≤k

(∫
U

|(Γαf)(t, x)|2 dx
)1/2

, |f(t)|k,U =
∑
|α|≤k

sup
x∈U

|Γαf(t, x)|.

If z ∈ C∞(D(T )) satisfies �z =
∑

0≤i,j≤N

f ij(z′)∂2
ijz + f(z′) in D(T ), it follows

that
(�−

∑
0≤i,j≤N

f ij(z′)∂2
ij)Γ

αz = fα in D(T ),
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where

fα = [�,Γα]z +

Γα

 ∑
0≤i,j≤N

f ij(z′)∂2
ijz

−
∑

0≤i,j≤N

f ij(z′)Γα∂2
ijz


+

∑
0≤i,j≤N

f ij(z′)[Γα, ∂2
ij ]z + Γαf(z′).

Applying Prop 4.1 with f̄ ij = f ij(z′) and w = Γαz, |α| ≤ k, we obtain if z ∈
C∞(D(T )) satisfies �z =

∑
0≤i,j≤N

f ij(z′)∂2
ijz + f(z′), if |z′| ≤ R, and if t ≤ T :

||z′(t)||2k,Ω(t) ≤ C
(
||z′(0)||2k,Ω

+
∫ t
0
(||fα(s)||Ω(s)||z′(s)||k,Ω(s) + |z′′(s)|Ω(s)||z′(s)||2k,Ω(s))ds+ J1 + J2

)
,

(4.2)

where z′′(s, x) = {∂αz(s, x), |α| = 2},

J1 =
∑
|α|≤k

∫
S(T )

(XΓαz)2 +
∑

1≤i<j≤N

(ΛijΓαz)2

 dσ,

J2 =
∑
|α|≤k

∫
S(T )

|z′| |ΛΓαz| (|∂tΓαz|+ |ΛΓαz|) dσ,

with the notation |Λf | =
∑

1≤q≤N

|Λ0qf |. Using the calculus properties of the deriva-

tives Γα (cf. [6]), we find that

||fα(s)||Ω(s) ≤ Cr,k|z′(s)|[ k+1
2 ],Ω(s)||z

′(s)||k,Ω(s) if |α| ≤ k and |z′(s)|[ k
2 ],Ω(s) ≤ r;

(4.3)
[λ] means sup{ν ∈ Z, ν ≤ λ} and r is small. To estimate J1 + J2 in (4.2), we may
use the following result.

Proposition 4.2 One can find ε0, Cα > 0 (α ∈ Nn) such that the following holds:
if T > 0 and z ∈ C∞(D(T )) is a solution to (2.1) in D(T ), to (2.4) on {0} × Ω,

and to (3.1), and if (2.6) and (2.7) with ε
∫ T

0

(1 + s)
1−N

2 ds ≤ ε0 hold, then

|XΓαz|+
∑

0≤i<j≤N

|ΛijΓαz| ≤ Cαε(1 + t)−
N+1

2 log|α|+1(2 + t) on S(T ),

|(Γαz)′| ≤ Cαε(1 + t)−
N−1

2 log|α|(2 + t) on S(T ).

Admitting Prop 4.2 for a moment, and using it to estimate J1 + J2, we obtain
from (4.2), (4.3), if ε is small :

||z′(t)||2k,Ω(t) ≤ Ckε
2 + Ck,r

∫ t

0

|z′(s)|[ k+1
2 ],Ω(s)||z

′(s)||2k,Ω(s) ds (4.4)
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if 0 ≤ t ≤ T , |z′(s)|[ k
2 ],Ω(s) ≤ r for 0 ≤ s ≤ t, and k ≥ 1. Now, as proved in Prop

B.1 of [2], we have the following variation on an inequality of [7]: if k0 = [
N

2
] + 1,

one can find C > 0 such that for all U ∈ C∞(D(T )) and all (t, x) ∈ D(T ) :

|U(t, x)| ≤ C(1 + t)−
N−1

2 ||U(t)||k0,Ω(t). (4.5)

Put ψ(t) = sup
0≤s≤t

||z′(s)||k,Ω(s). Making use of (4.5) to bound |z′(s)|[ k+1
2 ],Ω(s) and

applying the Gronwall inequality to (4.4), we deduce that

ψ(t) ≤ Ckεe
Ck,rψ(t)

(∫ t
0 (1+s)−

N−1
2 ds

)

if k ≥
[
k + 1

2

]
+ k0 and sup

0≤s≤t
|z′(s)|[ k

2 ],Ω(s) ≤ r. So finally we obtain that

||z′(t)||k,Ω(t) ≤ Ckε if 0 ≤ t ≤ T, (4.6)

if k ≥
[
k + 1

2

]
+ k0, ε

∫ T

0

(1 + s)−
N−1

2 ds ≤ ε̄k,r with ε̄k,r small, and sup
0≤t≤T

|z′(t)|[ k
2 ],Ω(t)

≤ r. Actually this last inequality is automatically satisfied if k≥
[
k + 1

2

]
+k0,

ε

∫ T

0

(1 + s)−
N−1

2 ds ≤ ε̄k,r, and ε ≤ ¯̄εk,r (with ¯̄εk,r small), as a simple argument

using (4.5) and (4.6) shows. Since (4.6) holds, it follows from the results of [5] (and
from well known results for the classical Cauchy problem) that we may continue z
up to t = T + η, for some η > 0 (as a solution to (2.1) in D(T + η) satisfying (3.1)

on S(T + η)), provided that ε and ε

∫ T

0

(1 + s)−
N−1

2 ds are small. A standard rea-

soning then gives the lower bounds for Tε stated in Theorem 2.2, and Theorem 2.2
is proved. So it remains to prove Prop 4.2. To prove Prop 4.2 we may proceed as
in the proof of Prop 4.2 of [2] (in which f ij ≡ 0 for all i, j). Denote by M1, . . . ,Ml

the vector fields Λij , 1 ≤ i < j ≤ N . One first proves by induction that one can
find ε0 > 0, and Cβkα > 0 for any β ∈ Nl, k ∈ N, α ∈ NN+1, with ε0 and Cβkα
independent of T , such that

|MβXk∂αz′| ≤ Cβkαε(1 + t)−
N−1

2 −|β|−k log|β|(2 + t) (4.7)

on S(T ), if 0 < ε ≤ ε0, β ∈ Nl, k ∈ N, α ∈ NN+1. Then estimates involving Γα

can be deduced (see [2]). In [2], the jump of ∂tz across S(T ) satisfies a differential
equation along the integral curves of X; in the present situation, it satisfies a first
order quasilinear partial differential equation on S(T ). Indeed, put again uj = ∂jz,
0 ≤ j ≤ N . In D(T ) we have

∂tu0 −
∑

1≤j≤N

∂juj =
∑

0≤j,k≤N

f jk(u)∂juk + f(u), (4.8)
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∂tuk − ∂ku0 = 0, 1 ≤ k ≤ N. (4.9)

Adding
∑

1≤k≤N

∂kϕ

∂tϕ
(∂tuk − ∂ku0) (which is 0 by (4.9)) to (4.8), and using that

∂juk = Λ0juk +
∂jϕ

∂tϕ
Λ0ku0 +

∂jϕ∂kϕ

(∂tϕ)2
∂tu0 and that uk =

∂kϕ

∂tϕ
u0 if 1 ≤ k ≤ N , we

finally obtain the equation

(Z +H)u0 =
1
2

∑
0≤j,k≤N

f jk(u0, u0
∂xϕ

∂tϕ
)(Λ0j

∂kϕ

∂tϕ
)u0 +

1
2
f(u0, u0

∂xϕ

∂tϕ
), (4.10)

where Z = X −
∑

0<k,m≤N
0≤j≤N

f jk(u0, u0
∂xϕ

∂tϕ
)
∂jϕ∂mϕ

(∂tϕ)2
Λmk and H =

�ϕ
2∂tϕ

. Estimates

of H are given in [2]. From (4.10) it is not hard to deduce that (4.7) is true if
β = k = α = 0. The general case of (4.7) follows by obvious adaptations of the
reasonings of [2]. This completes the proof of Prop 4.2. Hence the proof of Theorem
2.2 is also complete.
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