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Finite-Time Synchronization in a Novel Discrete Fractional SIR Model for COVID-19
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abstract: This paper proposes a novel discrete fractional-order (FO) SIR model to capture the complex
transmission dynamics of COVID-19. By incorporating memory effects via Caputo fractional difference op-
erators, the model extends the classical SIR framework to account for nonlocal interactions and historical
dependencies inherent in epidemic data. A master-slave configuration is introduced, and sufficient conditions
for finite-time synchronization (FTSY) between these systems are derived using the Lyapunov stability theory
and the discrete Mittag–Leffler function. The analysis demonstrates that, under appropriate control laws, the
error dynamics between the master and slave systems converge to zero within a finite settling time. Numerical
simulations are provided to validate the theoretical findings, illustrating the impact of various parameters on
the evolution of susceptible, infected, and recovered populations. The integration of fractional calculus in
this discrete framework enhances the accuracy of epidemic predictions and offers a robust control strategy for
coordinating interventions across different regions.
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1. Introduction

In 2020, the World Health Organization (WHO) declared COVID-19 a global pandemic, resulting in
a devastating loss of life, with reported global deaths exceeding 5 million. Various preventive measures,
such as mask-wearing, sanitization, and enforced quarantine protocols, were implemented worldwide
[1]. From a mathematical perspective, developing accurate models to describe the spread and impact
of the COVID-19 pandemic is essential [2,3]. One of the most widely recognized frameworks for this
purpose is the Susceptible-Infectious-Recovered (SIR) model, which effectively captures the dynamics of
infectious diseases and evaluates different transmission scenarios. The SIR model is useful for assessing
the efficacy of various intervention strategies. It consists of a system of ordinary differential equations that
categorize the total population into compartments representing susceptibility, infection-related mortality,
and recovery over a specified period [4].

In mathematical modeling, ODEs are typically employed for continuous-time systems, while dif-
ference equations are utilized for discrete-time systems. A notable example is the development of a
time-dependent SIR model presented in [5], which analyzed the transmission rate of COVID-19 across
different regions of India. Utilizing ArcGIS 10.2, district-wise spatial distribution maps were created to
examine the effects of complete lockdowns on the virus’s spread. This mode and other pioneering works
have significantly contributed to understanding COVID-19 transmission in continuous-time frameworks.
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Recently, discrete-time models have gained prominence in the study of infectious diseases, primarily due
to the nature of pandemic data, which is often recorded at discrete intervals [6]. For instance, random
walk models for daily time series of confirmed COVID-19 cases in various countries were introduced in
[7], where the models incorporated evolutionary equations with memory functions to account for non-
ergodic fields observed in COVID-19 data. Additionally, [8] applied mathematical modeling to analyze
the spread and treatment of several infectious diseases, including COVID-19, in its SIR form.

In this context, FO models have emerged as powerful tools in epidemiological studies [9,10,11]. A
FO SIR model based on a continuous-time random walk was developed, introducing time-since-infection
dependencies for both infectivity and recovery [12,13,14,15,16,17]. Another FO-SIR model proposed by
Naik focused on global dynamics [18,19,20]. Moreover, in [21], a generalized FO-SIR model was designed
to predict the spread of COVID-19 using the Grünwald-Letnikov nabla FO difference operator for time-
domain implementation [22,23]. Furthermore, vaccination strategies have been integrated into various
discrete-time models. For instance, Xiang et al. [24] examined a discrete-time epidemic model with
vaccination, focusing on its dynamic behavior. Bifurcations and stability in a discrete-time susceptible-
infected-susceptible (SIS) model with vaccination were explored in [25]. A discrete SIR epidemic model
with a constant vaccination strategy was also analyzed for its dynamical properties. Readers interested
in a broader overview of discrete-time models can refer to [26], which illustrates that models often exhibit
more complex dynamics than their continuous-time counterparts.

The concept of FTSY in discrete FO systems, including those modeling the COVID-19 pandemic,
refers to the phenomenon where a set of dynamical systems converge to a common state within a fi-
nite period [27,28,29,30,31,32,33,34,35,36,37,38,39]. For a discrete FO COVID-19 system, this typically
involves the following key components:

• The COVID-19 dynamics can be modeled using a set of FO difference equations that describe the
interaction among susceptible, infected, and recovered populations. The FO reflects memory effects
and non-local interactions.

• The goal is for multiple discrete FO systems, each representing a different population or region, to
synchronize their states (e.g., the number of infected individuals) despite potential differences in
their initial conditions or parameter values.

• Synchronization is achieved within a predetermined, finite time T , meaning that there exists a time
t ≤ T such that the states of all systems converge to a common trajectory or state.

• To facilitate FTSY, control strategies (e.g., state feedback controllers) can be designed based on
Lyapunov’s stability theory. These strategies aim to minimize the difference between the states of
the synchronized systems.

• Sufficient conditions for FTSY may involve the application of Lyapunov functions, which help
establish the stability of the synchronization process and ensure that the systems converge to the
desired state within the specified time.

This work aims to contribute to the epidemiological modeling of COVID-19 by proposing a novel
FO discrete-time model. To our knowledge, FO discrete-time models for COVID-19 have not been
extensively explored, motivating this study due to the predominant focus on continuous-time models
in previous works. For instance, delayed incommensurate FO-SIR models were studied for bifurcation
control and stability [40], while [12] concentrated on numerical simulations for FO-SIR models. Over
the past few years, numerous SIR models based on FO differential equations have been developed in
epidemiology [41,42,43]. The key objectives of this research paper include:

• Constructing a mathematical model to predict the behavior of COVID-19, categorizing the popu-
lation into susceptible (S), infected (I), recovered (R), and deceased (D) groups.

• Utilizing FO calculus to capture memory effects and non-local interactions in the dynamics of
disease transmission, which traditional models might overlook.
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• Investigating the conditions necessary for multiple FO-SIR systems to synchronize their dynamics,
assessing stability and the impact of network topology on synchronization.

• Employing Lyapunov functions to derive conditions that ensure FTSY, providing a framework to
guarantee the convergence of state variables to a common trajectory.

• Validating the model and synchronization strategies through simulations to demonstrate how vari-
ous parameters influence the system’s dynamics.

• Offering insights applicable to real-world scenarios, such as controlling disease outbreaks and opti-
mizing vaccination strategies.

• Identifying challenges such as parameter estimation and the robustness of synchronization in uncer-
tain environments while proposing future research directions to improve synchronization techniques
in more complex epidemic models.

This paper is organized as follows: Section 2 introduces and formalizes key concepts related to FO and
discrete calculus. Section 3 studies the formulation of a mathematical model to understand and predict
the dynamics of COVID-19, focusing on creating a discrete FO-SIR model that categorizes the popula-
tion into susceptible (S), infected (I), recovered (R), and deceased (D) groups. Section 4 examines the
synchronization behavior of discrete FO SIR models, investigating how interconnected systems modeling
the spread of infectious diseases can align their state variables rapidly over a FTSY. Finally, Section 5
applies theoretical stability results to numerical examples based on a discrete COVID-19 model.

2. Mathematical Background

This section introduces various concepts about FO and variable discrete calculus. Let a,T ∈ R. We
denote the set of natural numbers starting from a as follows:

Na = {a, a + 1, a + 2, . . .}.

Additionally, we define the set of natural numbers from a to T as:

NT
a = {a, a + 1, a + 2, . . . ,T}.

Definition 2.1 ( [1]) Let µ > 0. The FO sum of a function h : Na → R is defined by

∆−µ
a h(t) =

1

Γ(µ)

t−µ∑
s=a

(
t− s− 1

)µ−1
h(s), t ∈ Na+µ. (2.1)

Here, Γ(·) denotes Euler’s gamma function,

Γ(µ) =

∫ ∞

0

tµ−1e−t dt, (2.2)

and the generalized factorial is given by

t(µ) =
Γ(t + 1)

Γ(t + 1− µ)
. (2.3)

Definition 2.2 ( [1]) For a function h : Na → R, the µ-th order Caputo fractional difference operator is
defined as

C∆µ
ah(t) =

∆
−(1−µ)
a ∆h(t) =

1

Γ(1− µ)

t−(1−µ)∑
s=a

(t− s− 1)
−µ

∆h(s), if 0 < µ < 1,

∆h(t), if µ = 1.

(2.4)

Here, t ∈ Na+1−µ.
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Definition 2.3 ( [1]) Let h : Na → R be a function. Then, for all t ∈ Na, the following identity holds:

∆−µ
a+(1−µ)

C∆µ
ah(t) = h(t)− h(a). (2.5)

Definition 2.4 ( [44]) Let Λ ∈ R and µ, t ∈ R∗+. The discrete Mittag-Leffler function is defined by

Eµ(Λ, t) =

∞∑
k=0

Λk

(
t + (k− 1)(µ− 1)

)(kµ)

Γ(µk + 1)
. (2.6)

We consider the following linear fractional difference equation with a fractional delay:{
C∆µ

aΘ(t) = ΛΘ(t + µ), t ∈ Na+1−µ, |Λ| < 1,

Θ(a) = Θa.
(2.7)

Definition 2.5 ( [45]) System (2.7) is finite–time stable with respect to {ζ, ε, J} if

∥Θa∥ < ζ implies ∥Θ(t)∥ < ε, ∀ t ∈ J. (2.8)

Lemma 2.1 ( [45]) The linear fractional difference equation (2.7) admits a unique solution expressed in
terms of the discrete Mittag–Leffler function:

Θ(t) = Θa Eµ(Λ, t). (2.9)

Theorem 2.1 ( [45]) Let ϑ(t) and χ(t) be nonnegative, nondecreasing discrete functions with χ(t) ≥ M
for all t ∈ J . Suppose that the following FO sum inequality holds:

Θ(t) ≤ ϑ(t) + χ(t)∆−µ
a+1−µΘ(t + µ), t ∈ Na+1. (2.10)

Then, it follows that
Θ(t) ≤ ϑ(t) Eµ(χ(t), t). (2.11)

3. A Novel Discrete Fractional SIR Model for COVID-19 Dynamics

In this section, we introduce a novel discrete fractional SIR model that captures the complex dynam-
ics of COVID-19 transmission. Traditional integer-order models, although useful, often fail to account
for intrinsic memory effects. Moreover, non-local interactions play a significant role in disease spread.
Our model incorporates the Caputo fractional difference operator, which effectively integrates historical
dependencies. This integration results in a more accurate and realistic representation of the epidemic’s
evolution. The key parameters governing the dynamics of the proposed model are summarized in Table
1.

Table 1: Description of the model’s parameters
Parameter Description

η Death rate due to COVID-19
δ Natural death rate
ν Number of new births
d Infection rate
b Recovery rate
ρ Rate at which a recovering individual is at risk of reinfection
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Following [1], the transmission dynamics of the proposed FO discrete SIR model are described by the
following nonlinear system:

S(t + 1) = S(t) + ν + ρR(t)− dS(t)I(t)− δS(t),

I(t + 1) = I(t) + dS(t)I(t)− (η + δ + b)I(t),

R(t + 1) = R(t) + bI(t)− (δ + ρ)R(t),

D(t + 1) = D(t) + µI(t).

(3.1)

The system is subject to the initial conditions (ICs):

S(0) = S0, I(0) = I0, R(0) = R0. (3.2)

Note that the first three equations do not involve the D class. Therefore, the D class can be analyzed
independently using

N(t) = S(t) + I(t) + R(t) + D(t). (3.3)

As a result, the last equation of system (3.1) can be omitted, allowing us to focus on the first three
equations.

Moreover, note that the parameter d is very small. It is defined as

d =
pk

N
,

where k is the contact rate per unit time (0 ≤ k ≤ 1), p is the probability of contagion (0 ≤ p ≤ 1), and
N is the total population (typically tens of thousands or more). Consequently, the terms dS(t) and dI(t)
are also relatively small.

Although our model does not explicitly address age groups and vaccination, this omission does not
imply neglect. High life expectancy contributes to an elevated death rate. Furthermore, while vaccination
does not provide 100% immunity, it reduces the likelihood of infection (thereby decreasing d), lowers virus
mortality (represented by ρ), and increases the recovery rate (denoted by b).

Based on the nonlinear model in equation (3.3), we now introduce the fractional-order model that is
the focus of this study. The model is given by:

C∆µ
aS(t) = ν + ρR(t + µ− 1)− dS(t + µ− 1)I(t + µ− 1)− δS(t + µ− 1),

C∆µ
aI(t) = dS(t+ µ− 1)I(t+ µ− 1)− (η + δ + b)I(t+ µ− 1),

C∆µ
aR(t) = bI(t+ µ− 1)− (δ + ρ)R(t+ µ− 1),

(3.4)

with the initial conditions

S(0) = S0, I(0) = I0, R(0) = R0.

Here, 0 < µ < 1 and t ∈ N1−µ. In the following analysis, we highlight a significant finding regarding the
stability of the solution to the system in equation (3.4).

4. Finite-Time Synchronization of Discrete Fractional SIR Models

This section investigates FTSY in discrete fractional SIR models. It emphasizes the rapid alignment of
state variables in interconnected systems modeling infectious disease spread. By employing FO calculus,
the model captures memory effects and complex transmission dynamics.

We define the slave system as follows:
C∆µ

a Ŝ(t) = ν + ρR̂(t + µ− 1)− dŜ(t + µ− 1)̂I(t + µ− 1)− δŜ(t + µ− 1) + Ĉ1,

C∆µ
a Î(t) = dŜ(t + µ− 1)̂I(t + µ− 1)− (η + δ + b)̂I(t + µ− 1) + Ĉ2,

C∆µ
a R̂(t) = bÎ(t + µ− 1)− (δ + ρ)R̂(t + µ− 1) + Ĉ3,

(4.1)
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Subject to the following ICs:

Ŝ(0) = Ŝ0, Î(0) = Î0, R̂(0) = R̂0. (4.2)

Define the error system as

e(t) =


Ŝ(t)− S(t)

Î(t)− I(t)

R̂(t)− R(t)

 . (4.3)

Using the slave system (4.1) and the master system, we derive the error dynamics:

C∆µ
a e1(t) = ρ e3(t+ µ− 1)− d

(
Ŝ(t+ µ− 1)Î(t+ µ− 1)− S(t+ µ− 1)I(t+ µ− 1)

)
−δ e1(t+ µ− 1) + Ĉ1,

C∆µ
a e2(t) = d

(
Ŝ(t+ µ− 1)Î(t+ µ− 1)− S(t+ µ− 1)I(t+ µ− 1)

)
−(η + δ + b)e2(t+ µ− 1) + Ĉ2,

C∆µ
a e3(t) = b e2(t+ µ− 1)− (δ + ρ)e3(t+ µ− 1) + Ĉ3,

(4.4)

with the error ICs:

e1(0) = Ŝ0 − S0, e2(0) = Î0 − I0, e3(0) = R̂0 − R0. (4.5)

Definition 4.1 ( [46,47]) Master-slave systems (3.4) and (4.1) are said to be FTSY if there exists a
controller Ci(t), (i = 1, 2, 3), and a constant T > 0 such that

lim
t→T

∥e(t)∥1 = 0, (4.6)

and

∥e(t)∥1 = ∥Ŝ(t)− S(t)∥1 + ∥Î(t)− I(t)∥1 + ∥R̂(t)− R(t)∥1 ≡ 0, (4.7)

for all t > T . Here, (S(t), I(t), R(t))
T

and
(
Ŝ(t), Î(t), R̂(t)

)T

are the solutions of the master system

(3.4) and the slave system (4.1) with initial conditions (S0, I0, R0)
T
and

(
Ŝ0, Î0, R̂0

)T

, respectively. The

constant T is called the settling time.

Theorem 4.1 The master-slave system given by (3.4) and (4.1) achieves FTSY under the following
control strategies: 

C1(t) = −ρ e3(t + µ− 1),

C2(t) = 0,

C3(t) = −b e2(t + µ− 1).

(4.8)

This synchronization is achieved provided that

Eµ

(
max {η + δ + b, δ + ρ} , t

)
<

ε

ζ
. (4.9)

Proof: Substitute the control laws (4.8) into the error dynamics (4.4) to obtain:
C∆µ

a e1(t) = −δ e1(t + µ− 1)− d
(
Ŝ(t + µ− 1)̂I(t + µ− 1)− S(t + µ− 1)I(t + µ− 1)

)
,

C∆µ
ae2(t) = d

(
Ŝ(t+ µ− 1)Î(t+ µ− 1)− S(t+ µ− 1)I(t+ µ− 1)

)
+ (η + δ + b) e2(t+ µ− 1),

C∆µ
ae3(t) = −(δ + ρ) e3(t+ µ− 1).

(4.10)
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Using Definition 2.3, the solutions of (4.10) can be written as:

e1(t) = e1(0)−∆−µ
a+1−µ

[
δ e1(t+ µ− 1) + d

(
Ŝ(t+ µ− 1)Î(t+ µ− 1)− S(t+ µ− 1)I(t+ µ− 1)

)]
,

e2(t) = e2(0) + ∆−µ
a+1−µ

[
d
(
Ŝ(t+ µ− 1)Î(t+ µ− 1)− S(t+ µ− 1)I(t+ µ− 1)

)
+(η + δ + b) e2(t+ µ− 1)

]
,

e3(t) = e3(0)− (δ + ρ)∆−µ
a+1−µ e3(t+ µ− 1).

(4.11)

Next, summing the error components yields:

e1(t) + e2(t) + e3(t) = e1(0) + e2(0) + e3(0)

+ ∆−µ
a+1−µ

[
−δ e1(t + µ− 1) + (η + δ + b) e2(t + µ− 1)− (δ + ρ) e3(t + µ− 1)

]
.

(4.12)

It follows that

∥e1(t)∥1 + ∥e2(t)∥1 + ∥e3(t)∥1 ≤ ∥e1(0)∥1 + ∥e2(0)∥1 + ∥e3(0)∥1

+∆−µ
a+1−µ

(
δ ∥e1(t + µ− 1)∥1 + (η + δ + b) ∥e2(t + µ− 1)∥1

+ (δ + ρ) ∥e3(t + µ− 1)∥1
)

≤ ∥e1(0)∥1 + ∥e2(0)∥1 + ∥e3(0)∥1

+max
{
η + δ + b, δ + ρ

}
×

∆−µ
a+1−µ

(
∥e1(t + µ− 1)∥1 + ∥e2(t + µ− 1)∥1 + ∥e3(t + µ− 1)∥1

)
.

(4.13)

Thus, we have:

∥e(t)∥1 ≤ ∥e(0)∥1 +max
{
η + δ + b, δ + ρ

}
∆−µ

a+1−µ∥e(t + µ− 1)∥1. (4.14)

Applying Theorem 2.1, we obtain:

∥e(t)∥1 ≤ ∥e(0)∥1 Eµ

(
max

{
η + δ + b, δ + ρ

}
, t
)

≤ ζ Eµ

(
max

{
η + δ + b, δ + ρ

}
, t
)
.

(4.15)

Thus, by Definitions 2.5 and 4.1, the master-slave systems (3.4) and (4.1) achieve finite-time synchro-
nization. 2

5. Modeling and Numerical Solutions for the Discrete Fractional COVID-19 Model

In this section, we demonstrate the application of the theoretical stability results to two numerical
examples based on the discrete COVID-19 model. Because most FO difference equations lack analytical
solutions, numerical and approximation methods are essential. We utilize a numerical approach for these
equations and derive formulations specifically tailored to the delta variant of COVID-19.
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The discrete FO master system (3.4) is solved as follows:

S(n) = S(0) +
1

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)
[ν + ρR(j− 1)− dS(j− 1)I(j− 1)− δS(j− 1)] ,

I(n) = I(0) +
d

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)
[dS(j− 1)I(j− 1)− (η + δ + b)I(j− 1)] ,

R(n) = R(0) +
1

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)
[bI(j− 1)− (δ + ρ)R(j− 1)] ,

n > 0.

(5.1)

Likewise, the discrete FO slave system (4.1) is given by:

Ŝ(n) = Ŝ(0) +
1

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)

[
ν + ρR̂(j− 1)− dŜ(j− 1)I(j− 1)− δŜ(j− 1)− ρe3(j− 1)

]
,

Î(n) = Î(0) +
d

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)

[
dŜ(j− 1)̂I(j− 1)− (η + δ + b)̂I(j− 1) + (η + δ + b)e2(j− 1)

]
,

R̂(n) = R̂(0) +
1

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)

[
bÎ(j− 1)− (δ + ρ)R̂(j− 1)− be2(j− 1)

]
,

n > 0.

(5.2)

Finally, the discrete FO error system (4.10) is given by:

e1(n) = e1(0)−
1

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)

[
δe1(j− 1) + d(Ŝ(j− 1)̂I(j− 1)− S(j− 1)I(j− 1))

]
,

e2(n) = e2(0) +
1

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)

[
d
(
Ŝ(j− 1)̂I(j− 1)− S(j− 1)I(j− 1)

)
+ (η + δ + b)e2(j− 1)

]
,

e3(n) = e3(0)−
δ + ρ

Γ(µ)

n∑
j=1

Γ (n− j + µ)

Γ (n− j + 1)
e3(j− 1),

n > 0.

(5.3)

Table 2: Model Parameters and Their Descriptions
Parameter Description Value

η Mortality rate attributed to COVID-19 infections 0.01
δ Rate of natural mortality in the population 0.1
ν Birth rate in the population per unit time 1
d Rate of new infections in the susceptible population 0.35
b Recovery rate of infected individuals 0.14
ρ Probability of reinfection for recovered individuals 0.15
µ Order of the fractional derivative 0.14905
h Time step in the discrete evolution equation 0.1
N Number of spatial points in the system 100

The ICs for the master and slave systems in (5.1) and (5.2) are:{
S(0) = 1.5, I(0) = 1.25, R(0) = 0.5,

Ŝ(0) = 1, Î(0) = 0.75, R̂(0) = 0.25,
(5.4)

and the ICs for the error system (5.3) are:

e1(0) = −0.5, e2(0) = −0.5, e3(0) = −0.25. (5.5)
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We obtain the values:

ζ = 1.26, ε = 1.999268627717895, (5.6)

and, according to Theorem 4.1, the condition (4.9) is verified:

E0.14905(0.25, t) ≤ E0.14905(0.25, 10) = 1.586524487152021 < 1.586721133109440. (5.7)

Thus, the master-slave system defined by (3.4) and (4.1) achieves FTSY.
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Figure 1: Simulation results for the master system: evolution of S(t), I(t), and R(t).
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In this study, parameter values play a crucial role in defining system dynamics and determining
whether finite-time synchronization between the master and slave systems is achieved. The fractional-
order master, slave, and error systems are governed by parameters that capture various biological and
epidemiological processes, directly influencing the evolution of susceptible, infected, and recovered pop-
ulations over discrete time steps.

Key Roles of Parameter Values:

• Model Parameters

– Parameters such as the infection rate d, recovery rate b, mortality rate η, and reinfection prob-
ability ρ determine the system’s behavior by capturing real-world aspects of disease transmis-
sion, recovery, and demographic changes.

– The fractional derivative order µ = 0.14905 is critical, as it effectively captures memory effects
and long-term dependencies in the system.

• Initial Conditions

– The slight differences in initial conditions for the master and slave systems enable the analysis
of synchronization dynamics.

• Synchronization and Stability

– The synchronization condition from Theorem 4.1 relies on key values (e.g., ζ = 1.26 and
ε = 1.9950) that ensure finite-time synchronization. In particular, verifying that the Mittag-
Leffler function E0.15(0.14905, 10) is below 1.5893 confirms synchronization.

• Simulations

– Simulation results illustrate the evolution and synchronization of the master and slave systems
over time. Specifically, Figures 1 and 2 depict the evolution of S(n), I(n), and R(n) for the
master and slave systems, while Figures 3 and 4 show the error dynamics. Figure 5 estimates
the discrete Mittag-Leffler function E0.14905(0.25, t), confirming the synchronization condition.

This study benefits the modeling of real-world dynamics, such as the spread of COVID-19, by employ-
ing a discrete fractional-order master-slave system. By incorporating fractional derivatives, the model
effectively captures memory and hereditary properties, thereby enhancing the accuracy of epidemic sim-
ulations and control strategies.
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We demonstrate finite-time synchronization between the master and slave systems, a feature critical
for coordinating interventions in epidemic control across different populations. Furthermore, the dis-
crete formulation enables numerical simulations that provide insights into system behavior under diverse
parameter settings, aiding policy decisions.

However, selecting inappropriate parameter values can have significant drawbacks, affecting both
theoretical analysis and practical outcomes. Key disadvantages include:

• Inaccurate Model Behavior

– Incorrect parameter values (e.g., for µ, d, or b) may result in unrealistic system dynamics,
making it difficult to derive meaningful conclusions.

• Failure to Achieve Synchronization

– Suboptimal parameter choices may prevent finite-time synchronization if values such as µ, δ,
or ζ do not satisfy the conditions of Theorem 4.1, leading to instability or delayed convergence.

• Instability in Simulations

– Improper values for critical parameters, such as reaction or mortality rates, may cause insta-
bility in simulations, manifesting as unbounded growth, unrealistic oscillations, or numerical
divergence.

• Unrealistic Physical Interpretations

– Choosing non-representative values for birth or infection rates can yield unrealistic interpre-
tations, undermining the model’s relevance to actual population dynamics.

• Misleading Settling Time Estimates

– Inaccurate parameter selection may result in misleading estimates of settling time, giving false
impressions of the system’s stability or synchronization speed.

• Difficulty in Replicating Results

– If parameters are not carefully chosen, replicating the study’s results becomes challenging,
which may question the robustness and scientific impact of the work.

• Sensitivity to Small Changes

– Poor parameter selection can make the system overly sensitive to minor variations, leading to
erratic behavior and unreliable predictions.

• Lack of Practical Relevance

– Choosing values that deviate significantly from real-world scenarios can limit the model’s
practical relevance, reducing the applicability of the study’s conclusions.

• Suboptimal Controller Design

– Incorrect parameter values may lead to ineffective control laws, preventing the system from
reaching the desired synchronization in practical applications.

• Violation of Stability Conditions

– If parameters do not satisfy the stability conditions outlined in the theorems, the system may
become unstable and unsynchronized, contradicting theoretical expectations.

These drawbacks underscore the importance of carefully choosing realistic parameter values when
applying mathematical models, especially in control systems, epidemiology, and robotics.
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6. Conclusion

In this study, we introduced a novel discrete FO-SIR model tailored to capture the complex trans-
mission dynamics of COVID-19. By integrating memory effects through the Caputo fractional difference
operator, our model extends classical epidemiological frameworks to incorporate nonlocal interactions
and historical dependencies inherent in epidemic data. We established a master-slave system configu-
ration and derived sufficient conditions for FTSY using the Lyapunov stability theory and the discrete
Mittag–Leffler function. Numerical simulations validated our theoretical findings by demonstrating that
the error dynamics between the master and slave systems converge to zero within a finite settling time
under appropriately designed control strategies. These results highlight the potential of fractional cal-
culus in enhancing the predictive accuracy of epidemic models and developing robust control strategies
for coordinated interventions. Future research may extend this framework by incorporating additional
epidemiological factors such as vaccination and spatial heterogeneity, thereby broadening its applicability
to real-world scenarios and improving strategies for outbreak mitigation.
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