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Relative controllability of the nonlinear fractional dynamical systems with multiple delays
in control ∗

Mustafa Aydin

abstract: Relative controllability of linear and nonlinear fractional systems with time-variable delays in
control variables for finite-dimensional spaces is considered. Sufficient and necessary circumstances for the
controllability of a linear fractional system are offered. Employing Schauder’s fixed point theorem, sufficient
circumstances for the controllability of nonlinear fractional systems are presented.
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1. Introduction

Although factional calculus seeing as a generalisation of integer calculus has been studied by the
mathematicians for the last three centuries, it has been drawn to many applied areas of science. It
was discovered that interdisciplinary applications can be more sensitively formulated via the fractional
derivatives. Fractional integrals and derivatives offer more accurate formulation of systems. The reason
of this may be the numerical value of the fraction parameter provides a closer characterisation of un-
certainties in systems. Several researchers have examined applications of fractional calculus in nonlinear
oscillation of earthquakes [14], signal processing [15], interfaces between substrate and nanoparticles [16],
bioengineering [17], circuit theory [18], behaviour of visco-elastic materials [20,21], statistic mechanics [22].
It is shown in [23] that fractional differential equations are eminent tools in order to formulate several
physical problems.

Prabhakar fractional calculus have shown up in the literature in the last ten years. The fractional
integral operator firstly defining in [3] gives rise to the Prabhakar fractional calculus. The integral
operator is elegantly studied and interrogated in [2] and extended to the notion of fractional derivatives
in [4]. It is used to pure and applied mathematics [1,5] and several applications [6,7]. The Prabhakar
fractional derivatives contain within distinct sorts of fractional operators like Riemann-Liouville, the
Lorenzo-Hartly, Gorenflo-Minerdi, the Miller-Ros, Caputo fractional operators, etc.

It is easily realized that an interest in the field of control theory has been increased. To put it simply,
controllability means that it enables to steer a system to any final state from any initial state by employing
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(admissible) control functions. Modelling of dynamical equations mostly involve delays in control variables
or in state variables. Controllability outcomes for linear fractional systems have been investigated by
many researchers [13,24,26,27,28]. Balachandran and Dauer [29] debated the controllability of nonlinear
dynamical systems by means of fixed point approach. Several monographs have expressed controllability
of integer order nonlinear system with several kinds of delays in control variables, e.g., point constant
delays [19,25,30], point time-variables delays, distributed delays. The researchers in [31,32] investigated
controllability of nonlinear dynamical equations with time-varying multiple delays in control variables.
Klamka in [33,34] examined controllability of nonlinear dynamical system with distinct kinds of delays in
control variables. Balachandran et al., in [12] considered linear Caputo fractional system multiple delays
in control and shown it controllable. It should be stressed that the theory of controllability for nonlinear
fractional systems is not yet satisfactory and it is even now under development. Inspired by this reality
and the cited-above works, we consider the below nonlinear Prabhakar fractional differential dynamical
systems of Caputo-type with time-varying multiple delays in control variables:

pcT ν,δ
η,αρ (ς) = Zρ (ς) +

M∑
i=0

Hiu (ri(ς)) + ℸ(ς, ρ(ς), u(ς)), ς ∈ (0, T ],

ρ(0) = ρ0,

(1.1)

where pcT ν,δ
η,α symbolizes the Prabhakar fractional derivative of Caputo-type of orders 0 < α ≤ 1, ρ ∈ Rn,

u ∈ Rm, Z ∈ Rn×n, and Hi ∈ Rn×m for each i = 0, 1, 2, . . . ,M .
We will build our theoretical results on the below assumptions.

A1 : Let rj : [0, T ] → R, j = 0, 1, . . . ,M be so twice continuously differentiable and strictly increasing
that rj(ς) ≤ ς, ς ∈ [0, T ], j = 0, 1, . . . ,M .

A2 : Let r0(ς) = ς and the below inequalities be hold for ς = T

rM (T ) ≤ rM−1(T ) ≤ . . . ≤ rm+1(T ) = 0 < rm(T ) = . . . = r0(T ) = T.

A3 : Let the time-lead function hj : [rj(0), rj(T )] → [0, T ], j = 0, 1, . . . ,M be defined by hj(rj(ς)) = ς,
ς ∈ [0, T ], j = 0, 1, . . . ,M .

A4 : Let the function uς , ς ∈ [0, T ] be defined by uς(s) = u(ς+s), s ∈ [−r, 0) with functions u : [−r, T ] →
Rm for given r > 0.

2. Preliminaries

In this section, fundamental concepts on which we will build our theoretical findings are offered.
N and C stand for the natural numbers and the complex numbers, respectfully. Rm is a Euclidean

space for m ∈ N. For a < b, ACm(a, b) consists of such a real-valued function ρ that ρ(n−1) exists on
(a, b) in addition to being absolutely continuous.

Definition 2.1 [1,2,3] For α, η, w, δ ∈ C, Re(η) > 0 and Re(α) > 0, the Prabhakar fractional integral
is defined as noted below (

0I
ν,δ
η,αρ

)
(ς) =

∫ ς

0

(ς − s)
α−1

eδη,α (ν (ς − s)
η
) ρ (s) ds,

where the reputed three-parameter Mittag-Leffler function is given by

eδη,α (ς) =

∞∑
k=0

(δ)k
Γ(kη + α)

ςk

k!
, Re(η) > 0,

here, Γ(.) is the well-known gamma function and (δ)i is the Pochhammer notation, that is, (δ)k = Γ(δ+k)
Γ(δ)

or
(δ)0 = 1, (δ)k = δ(δ − 1)...(δ − k + 1), k = 0, 1, 2, ... .
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Definition 2.2 [4] The Prabhakar factional derivatives of Riemann-Liouville-type of order 0 < α < 1 is
defined by

(
prT ν,δ

η,αρ
)
(ς) =

d

dς

(
Iν,−δ
η,1−αρ

)
(ς) =

d

dς

∫ ς

0

(ς − s)
−α

e−δ
η,1−α (ν (ς − s)

η
) ρ (s) ds,

and the Prabhakar factional derivatives of Caputo-type of order 0 < α < 1 is defined by(
pcT ν,δ

η,αρ
)
(ς) = Iν,−δ

η,1−α

(
d

dς
ρ

)
(ς) =

∫ ς

0

(ς − s)
−α

e−δ
η,1−α (ν (ς − s)

η
)
d

ds
ρ (s) ds,

where ρ ∈ AC1(0, T ), η, α, ν, δ ∈ C, Re(α) ≥ 0, and Re(η) > 0.

Remark 2.1 The Prabhakar derivative of Caputo type PCDν,δ
η,α for δ = 0 corresponds to Caputo fractional

derivative of order α.

Lemma 2.1 [4] There is a tie between Riemann-Liouville and Caputo types derivatives in the Prabhakar
sense for 0 < α < 1, (

pcT ν,δ
η,αρ

)
(ς) = prT ν,δ

η,α (ρ (ς)− ρ(0)) .

Lemma 2.2 [9] For ν, η, α > 0, the laplace transform of the three-parameter Mittag-Leffler function
eδη,α(νς

η) is

L
{
ςα−1eδη,α(νς

η)
}
(s) = s−α

(
1− νs−η

)−δ
, Re(s) > ∥ν∥ 1

α ,

where L stands for the well-known laplace transform.

Lemma 2.3 [9] The laplace transform of Prabhakar Caputo-type fractional derivative of order 0 < α < 1
is given by

L
{
pcT ν,δ

η,αρ (ς)
}
(s) = sα

(
1− νs−η

)δ
L {ρ (ς)} (s)− sα−1

(
1− νs−η

)δ
ρ(0).

Lemma 2.4 [8] The laplace integral transform of the convolution of ρ and ℸ on [0,∞) is given by

L {(ρ ∗ ℸ) (ς)} (s) = L {ρ (ς)} (s)L {ℸ (ς)} (s) , s ∈ C,

provided that the laplace transforms of the functions ρ and ℸ are available.

Definition 2.3 [10] A (control) function u(t) ∈ Rm is admissible if it is bounded and measurable on
every finite time interval.

Lemma 2.5 [11, Proposition 1] If the function ℸ is locally bounded in Rn × Rm and satisfies

lim
|(v,u)|→∞

|ℸ (t, v, u)|
|(v, u)|

= 0,

uniformly in [0, T ] then, for each pair of constants a and b, there exists a constat r such that if ∥(v, u)∥ ≤ r,
then

a |ℸ (t, v, u)|+ b ≤ r for all t ∈ [0, T ].

3. A solution to a linear system

In this section, we look for an explicit solution to the just-below given linear Prabhakar Caputo-type
fractional differential system. {

pcT ν,δ
η,αρ (ς) = Zρ (ς) + ℸ(ς) ς ∈ (0, T ],

ρ(0) = ρ0,
(3.1)

where pcT ν,δ
η,α symbolizes the Prabhakar fractional derivative of Caputo-type of orders 0 < α ≤ 1, ρ ∈ Rn,

Z ∈ Rn×n, and ℸ : [0, T ] → Rn is continuous.



4 M. Aydin

In order to obtain the desired solution of the system, we will use the reputed laplace transform,
although it is an old technique, since it is adapted to the Prabhakar fractional derivatives of Caputo
type. Obtaining this solution with such an old technique does not diminish anything from the novelty of
the solution and the paper.

We start with applying the laplace transform to the both sides of the system (3.1) to get the solution

sα(1− νs−η)δR(s)− sα−1(1− νs−η)δρ0 = ZR(s) +D(s),

where R(s) = L {ρ (ς)} (s) and D(s) = L {ℸ (ς)} (s). If it is rearranged and R(s) is left alone, one can get

R(s) = s−α(1− νs−η)−δ(I − s−α(1− νs−η)−δZ)−1D(s)

+ s−1(I − s−α(1− νs−η)−δZ)−1ρ0,

where I is the identity matrix. If ∥s−α (1− νs−η)
−δ

Z∥ < 1, by the well-known Neumann series one can
obtain

R(s) =
∞∑
k=0

s−kα−α(1− νs−η)−kδ−δZkD(s) +

∞∑
k=0

s−kα−1(1− νs−η)−kδZkρ0.

Applying the inverse laplace transform and using the definition of the reputed convolution of two func-
tions, one can get the desired solution as follows

ρ(ς) =

∞∑
k=0

∫ ς

0

(ς − s)
(k+1)α−1

e
(k+1)δ
η,(k+1)α (ν (ς − s)

η
)Zkℸ(s)ds

+

∞∑
k=0

ςkαekδη,kα+1 (νς
η)Zkρ0.

4. Controllability of a linear system with multiple delays in control

In this section, we will offer the necessary and sufficient circumstances to show the just-below given
system relatively controllable.

The linear fractional dynamical system with multiple delays in control is given by
pcT ν,δ

η,αρ (ς) = Zρ (ς) +

M∑
i=0

Hiu (ri(ς)), ς ∈ (0, T ],

ρ(0) = ρ0,

(4.1)

where pcT ν,δ
η,α symbolizes the Prabhakar fractional derivative of Caputo-type of orders 0 < α ≤ 1, ρ ∈ Rn,

u ∈ Rn, Z ∈ Rn×n, and Hi ∈ Rn×m for each i = 0, 1, 2, . . . ,M .

Definition 4.1 The system is relatively controllable if, for an arbitrary initial control u0(ς), ς ∈ [−r, 0],
and the final state ρT ∈ Rn with time T , then there exists an admissible control function u(ς), ς ∈ [0, T ]
such that the corresponding solution ρ(ς), ς ∈ [0, T ] to the system satisfies ρ(T ) = ρT .

Based on the section 3, an explicit solution to the system 4.1 can be given as follows

ρ(ς) =

M∑
i=0

∞∑
k=0

∫ ς

0

(ς − s)
(k+1)α−1

e
(k+1)δ
η,(k+1)α (ν (ς − s)

η
)ZkHiu (ri(s)) ds

+

∞∑
k=0

ςkαekδη,kα+1 (νς
η)Zkρ0.

For simplicity, we set

ΩZ
1 (ς) =

∞∑
k=0

ςkαekδη,kα+1 (νς
η)Zk, ΩZ

2 (ς) =

∞∑
k=0

ς(k+1)α−1e
(k+1)δ
η,(k+1)α (νςη)Zk.
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One can rewrite a representation of the solution as follows

ρ(ς) = ΩZ
1 (ς)ρ0 +

M∑
i=0

∫ ς

0

ΩZ
2 (ς − s)Hiu (ri(s)) ds.

Now, we remove the delay parameters from the control function in the solution by applying the transfor-
mation x = ri(s). Then, the solution is written by

ρ(ς) = ΩZ
1 (ς)ρ0 +

M∑
i=0

∫ ri(ς)

ri(0)

ΩZ
2 (ς − ri(s))Hir

′

i(s)u (s) ds.

Based on A2, we may separate the summation symbol as follows

ρ(ς) = ΩZ
1 (ς)ρ0 +

M∑
i=m+1

∫ ri(ς)

ri(0)

ΩZ
2 (ς − ri(s))Hir

′

i(s)u0 (s) ds

+

m∑
i=0

∫ 0

ri(0)

ΩZ
2 (ς − ri(s))Hir

′

i(s)u0 (s) ds

+

m∑
i=0

∫ ς

0

ΩZ
2 (ς − ri(s))Hir

′

i(s)u (s) ds.

Let us introduce the following formulas

J(ς) := ΩZ
1 (ς)ρ0 +

M∑
i=m+1

∫ ri(ς)

ri(0)

ΩZ
2 (ς − ri(s))Hir

′

i(s)u0 (s) ds

+

m∑
i=0

∫ 0

ri(0)

ΩZ
2 (ς − ri(s))Hir

′

i(s)u0 (s) ds,

and

ΩH,Z
3 (ς, s) :=

m∑
i=0

ΩZ
2 (ς − ri(s))Hir

′

i(s). (4.2)

We can describe the Gram matrix as follows

W [0, T ] :=

∫ T

0

ΩH,Z
3 (T, s)ΩH∗,Z∗

3 (T, s)ds,

where (ΩH,Z
3 (ς, s))∗ = ΩH∗,Z∗

3 (ς, s), the symbol .∗ stands for the transpose of a matrix.

Theorem 4.1 Suppose that 0.5 < α < 1. The linear fractional system described in (4.1) is relatively
controllable if and only if the Gram matrix W [0, T ] is nonsingular.

Proof: Due to the non-singularity of the Gram matrix W := W [0, T ], it is of the inverse W−1. Let ρς be
the craved final state at time T . Then we allege that the system (4.1) is relatively controllable in terms
of the following control function

u(ς) = ΩH∗,Z∗

3 (T, ς)W−1[ρς − J(T )].

It is easy to confirm that as follows

ρ(T ) = J(T ) +

∫ T

0

ΩH,Z
3 (T, s)u(s)ds

= J(T ) +

∫ T

0

ΩH,Z
3 (T, s)ΩH∗,Z∗

3 (T, s)W−1[ρς − J(T )]ds

= J(T ) +WW−1[ρς − J(T )]

= ρς .



6 M. Aydin

To prove sufficiency, we use the method of the reductio ad absurdum. Suppose that the system (4.1) is
relatively controllable, but, W is singular. Due to the singularity of the Gram matrix W , there is at least
one nonzero vector υ ∈ Rn such that Wυ = 0. Then, one can easily obtain the following equality

υ∗Wυ = 0 =

∫ T

0

υ∗ΩH,Z
3 (T, s)ΩH∗,Z∗

3 (T, s)υds,

which provides that υ∗ΩH,Z
3 (T, s) = 0 for 0 ≤ s ≤ T . Let 0 and υ be the final states for the time T .

Based on the relative controllability of the system (4.1), there exist two distinct control functions u1 and
u2 such that

ρ(T ) = J(T ) +

∫ T

0

ΩH,Z
3 (T, s)u1(s)ds = 0, ρ(T ) = J(T ) +

∫ T

0

ΩH,Z
3 (T, s)u2(s)ds = υ.

One can acquire the following equation

υ =

∫ T

0

ΩH,Z
3 (T, s)(u2(s)− u1(s))ds.

The just-above obtained information υ∗ΩH,Z
3 (T, s) = 0 for 0 ≤ s ≤ T provides ∥υ∥2 = υ∗υ = 0. So, υ = 0

contradicts with υ being a nonzero. So, the Gram matrix W is nonsingular. The proof is completed. 2

Before investigating the relative controllability of the whole system (1.1), we need to make estimations

for the functions ΩZ
1 (ς), Ω

Z
2 (ς) and ΩH,Z

3 (ς, s).
We know from [3] that the three-parameter Mittag-Leffler function is bounded in a closed interval,

that is
∥eδη,α (νςη) ∥ ≤ H, ς ∈ [a, b],

where H, a, b ∈ R. Based on this information, for the fixed k ∈ N, we have

∥ekδη,kα+1 (νς
η) ∥ ≤ H1, ∥e(k+1)δ

η,(k+1)α (νςη) ∥ ≤ H2, ς ∈ [0, T ],

where H1,H2 ∈ R. Then, possible estimations for the functions ΩZ
1 (ς), Ω

Z
2 (ς) and ΩH,Z

3 (ς, s) can be
given as follows

∥ΩZ
1 (ς)∥ = ∥

∞∑
k=0

ςkαH1Z
k∥ ≤ H1

∞∑
k=0

(Tα∥Z∥)k = H1e
(Tα∥Z∥),

∥ΩZ
2 (ς)∥ = ∥

∞∑
k=0

ς(k+1)α−1H2Z
k∥ ≤ H2T

α−1
∞∑
k=0

(Tα∥Z∥)k = H2T
α−1e(T

α∥Z∥),

and

∥ΩH,Z
3 (ς, s)∥ =

m∑
i=0

H2T
α−1e(T

α∥Z∥)∥Hi∥|r
′

i(s)| ≤ H2H3T
α−1e(T

α∥Z∥),

where H3 :=
∑m

i=0 ∥Hi∥maxs∈[0,T ] |r
′

i(s)|. As a result, one can easily find such upper bounds to show

that the matrix functions ΩZ
1 (ς), Ω

Z
2 (ς) and ΩH,Z

3 (ς, s) are bounded.

5. Controllability of a nonlinear system with multiple delays in control

In this section, we will offer the sufficient circumstances to show the system (1.1) relatively controllable.
With C([0, T ],Rn) being the Banach space of all continuous functions from [0, T ] to Rn, it is also well-

known that E = C([0, T ],Rn) × C([0, T ],Rm) is the Banach space with the norm ∥(ρ, u)∥ = ∥ρ∥ + ∥u∥,
where ∥ρ∥ = sup{|ρ(ς)| : ς ∈ [0, T ]}.
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In the similar manner in the previous section, one can easily acquire the following equation as a
solution to the system (1.1) for ς = T ,

ρ(T ) = ΩZ
1 (T )ρ0 +

∫ T

0

ΩZ
2 (T − s)ℸ(s, ρ(s), u(s))ds

+

M∑
i=m+1

∫ ri(T )

ri(0)

ΩZ
2 (T − ri(s))Hir

′

i(s)u0 (s) ds

+

m∑
i=0

∫ 0

ri(0)

ΩZ
2 (T − ri(s))Hir

′

i(s)u0 (s) ds

+

m∑
i=0

∫ T

0

ΩZ
2 (T − ri(s))Hir

′

i(s)u (s) ds.

Let the pair of ρ ∈ Rn, u ∈ Rm be a solution pair to the following nonlinear integral equations:

ρ(ς) = J(ς) +

∫ ς

0

ΩH,Z
3 (ς, s)u(s)ds+

∫ ς

0

ΩZ
2 (ς − s)ℸ(s, ρ(s), u(s))ds, (5.1)

u(ς) = ΩH∗,Z∗

3 (T, ς)W−1[ρ̂−
∫ T

0

ΩZ
2 (T − s)ℸ(s, ρ(s), u(s))ds], (5.2)

where ρ̂ = ρT − J(T ). We claim that ρ(ς) is a solution to the system (1.1) corresponding to the control
function u on [0, T ]. It is quite easy to verify that as follows

ρ(T ) = J(T ) +

∫ T

0

ΩH,Z
3 (T, s)u(s)ds+

∫ T

0

ΩZ
2 (T − s)ℸ(s, ρ(s), u(s))ds

= J(T ) +WW−1[ρT − J(T )−
∫ T

0

ΩZ
2 (T − s)ℸ(s, ρ(s), u(s))ds]

+

∫ T

0

ΩZ
2 (T − s)ℸ(s, ρ(s), u(s))ds

= ρT .

Our curiosity then is to identify sufficient circumstances which guarantee the existence of a solution pair
to the nonlinear integral equations (5.1) and (5.2). The following theorem satisfies the curiosity.

Theorem 5.1 Assume that 1 > α > 0.5 and the continuous function ℸ fulfills lim|(ρ,u)|→∞
|ℸ(ς,ρ,u)|
|(ρ,u)|

uniformly in ς ∈ [0, T ]. Then, the nonlinear fractional dynamical system (1.1) is relatively controllable
provided that the linear fractional dynamical system (4.1) is relatively controllable.

Proof: We will start the proof with defining an operator ℶ : E → E by ℶ(ρ, u) = (z, v), where

z(ς) = J(ς) +

∫ ς

0

ΩH,Z
3 (ς, s)v(s)ds+

∫ ς

0

ΩZ
2 (ς − s)ℸ(s, ρ(s), u(s))ds,

v(ς) = ΩH∗,Z∗

3 (T, ς)W−1[ρ̂−
∫ T

0

ΩZ
2 (T − s)ℸ(s, ρ(s), u(s))ds].

Introduce the following formulations:

λ = max{T∥ΩH,Z
3 (T, 0)∥, 1},

b1 = 4λ∥ΩH,Z
3 (T, 0)∥∥W−1∥∥ρ̂∥, b2 = 4∥J(T )∥,

a1 = 4λT∥ΩH,Z
3 (T, 0)∥∥W−1∥∥ΩZ

2 (T )∥, a2 = 4T∥ΩZ
2 (T )∥,

a = max{a1, a2}, b = {b1, b2}.
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Based on Lemma 2.5 and the statements of this theorem, there exists such a constant ε > 0 such that
if ∥(ρ, u)∥ ≤ ε, then a|ℸ(ς, ρ, u)| + b ≤ ε for all ς ∈ [0, T ]. We will demonstrate ℶ(Bε) ⊆ Bε, where
Bε = {(ρ, u) ∈ E : ∥(ρ, u)∥ ≤ ε}.

∥v(ς)∥ ≤ ∥ΩH,Z
3 (T, 0)∥∥W−1∥∥ρ̂∥+ T∥ΩH,Z

3 (T, 0)∥∥W−1∥∥ΩZ
2 (T )∥ sup

ς∈[0,T ]

|ℸ(ς, ρ, u)|

≤ b1(4λ)
−1 + a1(4λ)

−1 sup
ς∈[0,T ]

|ℸ(ς, ρ, u)|

≤ (4λ)−1(a sup
ς∈[0,T ]

|ℸ(ς, ρ, u)|+ b)

≤ (4λ)−1ε ≤ ε

4
,

and

∥z(ς)∥ ≤ ∥J(T )∥+ T∥ΩH,Z
3 (T, 0)∥∥v∥+ T∥ΩZ

2 (T )∥ sup
ς∈[0,T ]

|ℸ(ς, ρ, u)|

≤ b2
4

+ λ∥v∥+ a2
4

sup
ς∈[0,T ]

|ℸ(ς, ρ, u)|

≤ 1

4
(a sup

ς∈[0,T ]

|ℸ(ς, ρ, u)|+ b) + λ
ε

4λ

≤ ε

4
+

ε

4
=

ε

2
.

Hence, ∥(z, v)∥ = ∥z∥ + ∥v∥ ≤ 3ε
4 , which gives that the desired result,ℶ(Bε) ⊆ Bε. In fact, ℶ maps the

convex closure of ℶ(Bε) into itself. Because of the boundedness of ℸ on Bε, ℶ(Bε) is equicontinuous.
According to the Schauder fixed point theorem, ℶ is of a fixed point in Bε.

This fixed point (z, v) of ℶ is a solution pair to the nonlinear integral equations (5.1) and (5.2). Since
the initial control function u0 and the final state ρT are arbitrary, the nonlinear system (1.1) is relatively
controllable. 2

Remark 5.1 All discussed results of the paper have matched up with those of the work [12] when it is
taken δ = 0.

6. Numerical verifications

In this section, we numerically verify our theoretical findings.

Example 6.1 One can consider the following fractional dynamical systems wit multiple delays in control{
pcT 1,1

1,0.7ρ (ς) = Zρ (ς) +H0u (ς) +H1u (ς − 2) ς ∈ (0, 3],
ρ(0) = ρ0,

(6.1)

here, Z =

(
0.1 0.6
0.5 0.2

)
, H0 =

(
0.3 0.1
0.2 0.4

)
, H1 =

(
0.8 0.7
0.9 1

)
, ρ0 =

(
1
0

)
. It is easy to compute ΩH,Z

3 (ς, s)

from (4.2):

ΩH,Z
3 (ς, s) :=

∞∑
k=0

(t− s)0.7k−0.3ek+1
1,0.7k+0.7(t− s)ZkH0

+

∞∑
k=0

(t− (s+ 2))0.7k−0.3ek+1
1,0.7k+0.7(t− (s+ 2))ZkH1.

The corresponding Gramian matrix is as follows:

W [0, 3] : =

∫ 3

0

ΩH,Z
3 (3, s)ΩH∗,Z∗

3 (3, s)ds

=

(
0.205 0.339
0.339 0.562

)
,
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whose determinant is nonzero. So, the corresponding Gramian matrix is nonsingular. Then, Theorem
4.1 guarantees that the system (6.1) is relatively controllable.

Example 6.2 One can investigate the following fractional dynamical systems with multiple delays in
control

pcT 0.5,0.2
0.1,0.9 ρ (ς) = Zρ (ς) +H0u (ς) +H1u (ς − 1) +H2u (ς − 1.5) + ℸ(ς, ρ, u), ς ∈ (0, 2],

ρ(0) = ρ0,
(6.2)

here, Z =

(
1 3
2 6

)
, H0 =

(
1 2
5 3

)
, H1 =

(
2 1
1 4

)
, H2 =

(
1 2
1 3

)
, ρ0 (t) =

(
1
2

)
, ℸ (t) =

(
1

1+ρ1+u1
ρ2

1+ρ2
2+u2

2

)
where ρ (ς) =

(
ρ1
ρ2

)
, u (ς) =

(
u1

u2

)
. It is easy to compute ΩH,Z

3 (ς, s) from (4.2):

ΩH,Z
3 (ς, s) :=

∞∑
k=0

(t− s)0.9k−0.1e0.2k+0.2
0.1,0.9k+0.9(0.5(t− s)0.2)ZkH0

+

∞∑
k=0

(t− (s+ 1))0.9k−0.1e0.2k+0.2
0.1,0.9k+0.9(0.5(t− (s+ 1))0.2)ZkH1

+

∞∑
k=0

(t− (s+ 1.5))0.9k−0.1e0.2k+0.2
0.1,0.9k+0.9(0.5(t− (s+ 1.5))0.2)ZkH2.

The corresponding Gramian matrix is as follows:

W [0, 2] : =

∫ 2

0

ΩH,Z
3 (2, s)ΩH∗,Z∗

3 (2, s)ds

=

(
1394 3085
3085 6829

)
,

whose determinant is 2401. So, the corresponding Gramian matrix is nonsingular. Then Theorem 4.1
guarantees that the system (6.2) without the nonlinear function ℸ is relatively controllable. Since the
nonlinear function ℸ also satisfies all statements in Theorem 5.1, the nonlinear system (6.2) is relatively
controllable.

7. Conclusion

In brief, by employing Gramian matrix, necessary and sufficient circumstances for controllability of
linear fractional system with time-varying multiple delays in control variables are determined and by
applying Schauder fixed point theorem, sufficient circumstances for controllability of nonlinear fractional
system with time-varying multiple delays in control variables are identified. In a sense, the obtained
findings of the paper can be seen as a generalization to several time-variable delays (or constant delays)
in control, of the results published so far.

Since the results of the paper are comprehensive, we expect, it will take many citations. There is a rich
range of problems on this subject originating from the Prabhakar calculus. For these reasons, we are sure
that this study will inspire many researchers in a very short time. As a future work, all acquired findings
can be extended to distinct kinds of systems in the Prabhakar’s sense such as semilinear system with
distributed delays in control [24], integro differential control system [27] [28]. Furthermore, the examined
system is expandable by adding a delay parameter in state variable, which such a fractional system with
a delay in state and multiple delays in control has not been considered so far as far as we know.
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