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A new and efficient numerical algorithm to solve fractional boundary value problems

Muhammad Arshad, Samia Bushnaq∗, Hassan Khan, Qasim Khan and Evren HINÇAL

abstract: In this paper, we developed a new numerical technique based on Lagrange Interpolation Polyno-
mials (LIPs) to obtain the solutions of fractional higher order nonlinear boundary value problems. The newly
established method is called the Lagrange Interpolation Transform Method (LITM). The fractional derivatives
are represented by the Caputo operator. The validity of the proposed technique is confirmed with the help
of illustrative examples. The exact and (LITM) solutions are compared by using graphs and tables, which
show the closed contact between the actual and (LITM) solutions. The results of the suggested technique are
compared with the solutions of the Chebyshev Wavelet Method (CWM) and the Optimal Homotopy Asymp-
totic Method (OHAM). The comparison has shown that the (LITM) has better accuracy as compared to the
(CWM) and (OHAM) solutions. The fractional order solutions are investigated, which are convergent towards
integer order solutions of the targeted problems. Moreover, the present technique has a straightforward and
simple procedure to solve both fractional and integer order problems. The computational work is correctly
done with the help of MAPLE software and requires less CPU time. The present method can be used directly
to solve the problems expressed in tabular form, which confirms the novelty of (LITM).

Key Words: Lagrange Interpolation Polynomials (LIPs), Lagrange Interpolation Transform Method
(LITM), fractional nonlinear boundary value problems.
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1. Introduction

Nowadays, the fractional calculus (FC), which is the generalisation of the ordinary calculus, plays a
vital role in modelling various phenomena in science and engineering. The origin of (FC) can be traced
back to 1695, when Leibniz and L’Hospital conversed about how we can find the derivative of fractional

order i-e d1/2y
dx1/2 . Later on, (FC) was considered as an apparent paradox (prediction given by Leibniz and

L’Hospital) and later on gained popularity among researchers. Then, in 1819, Lacroix [1] published a
paper in which (FC) was introduced for the first time, and in 1823, Abel [2] applied (FC) to tautron
problems. Later, (FC) applications are found to be very useful in modelling other physical problems, such
as fluid dynamics [3], blood alcohol model [4], Coronavirus model [5], fluid traffic model [6], financial
model [7], air foil model [8], and Poisson-Nerst-Planck diffusion model [9].
Many researchers have analysed that fractional order derivatives are very useful for modelling various
phenomena in nature, and the dynamics of the damping laws and diffusion processes are discussed in
terms of fractional order derivatives. The newly developed technique is called the Lagrange Interpolation
Transform method (LITM), because many physical phenomena in nature have been found to have deriva-
tives of fractional order that are very important for modelling various physical problems, such as damping
laws, diffusion processes, etc. Moreover, the subject of (FC) has numerous applications in different areas
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of applied sciences, such as ,astrophysics [10], the narrow convecting layers bounded by stable layers
which are believed to surround A-type stars [11]. For example, Hassan et al. presented the solutions
of some nonlinear fractional differential equations (FDEs) in [12,13,14,15,16,17], and investigated the
solutions of systems of linear and nonlinear (FDEs) in [18].
Numerical and analytical methods are frequently used to obtain the solutions of important mathematical
models of physical processes in nature. Mathematicians have devised a number of techniques for solving
(FDEs) and their systems. The obtained results of both fractional and integer order problems support
the actual dynamics of the problems and thus become a prominent area of research. Thus, the researchers
have made their best efforts and established valuable techniques at regular intervals of their time. In this
connection, important and efficient techniques have been used for the solutions of (FDEs) and their sys-
tems, such as the Chebyshev Wavelet Method (CWM) [19], the Finite Difference Method (FDM) [20], the
Adomian Decomposition Method (ADM) [21], the Homotopy Perturbation Transform Method (HPTM)
[22], the Haar Wavelet Method (HWM) [23], the Variational Iteration Transform Method (VIM) [24], the
Differential Transform Method (DTM) [25], Homotopy Analysis Sumudu Transform Method (HASTM)
[26], Local Fractional Natural Homotopy Analysis Method (LFNHAM) [27], etc.
In this research work, the solutions of boundary value problems of fractional orders are investigated by
using a newly established method, which is known as the Lagrange Interpolation Transform Method
(LITM). The (LITM) provides the approximation with a sufficient degree of accuracy. The solutions ob-
tained by the proposed technique are compared with the results of (CWM) and (OHAM) [28,29], which
confirmed the higher accuracy of the (LITM). Some numerical examples related to fractional boundary
value problems are considered for the numerical solutions and compared with the results of (CWM).
(LITM) solutions are represented by using graphs and tables. The tabular and graphical representations
have been done for both fractional and integer order solutions. The (LITM) and actual solutions are
observed to be very close to each other. The fractional solutions confirmed the actual dynamics of the
suggested problems. Our new technique is very useful if the problem is described in tabular form. In
these kinds of problems, other existing methods do not work, and thus the present method has the novelty
to handle the situation. Moreover, the fractional solutions are calculated, which explains the valuable
information about the targeted problems. It analysed that the fractional solutions are convergent to the
integer solution of each problem and thus confirmed the validity of the new method.

2. PRELIMINARIES

In this section of the paper, we included some basic definitions and preliminary concepts about
fractional calculus, which is the foundation for this paper. These definitions and preliminary concepts
are necessary to complete the present research task.

Definition 2.1 The Lagrange nth Lagrange interpolating polynomial is given by, [30]

Pn(x) = f(x0)Kn,0 (x) + f(x1)Kn,1 (x) + · · ·+ f(xn)Kn,n (x) = Σn
k=0f(xk)Kn,k (x) (2.1)

where

Kn,k (x) =
(x− x0)(x− x1) · · · (x− xk−1)(x− xk+1)...(x− xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1)...(xk − xn)
, k = 0, 1, · · · , n. (2.2)

Definition 2.2 The Riemann-Liouville fractional differential operator of order ϑ > 0, denoted by Dϑ
x ,

for a function f(x) in the interval (a, b) is expressed as [28]

Dϑ
xf(x) =

1

Γ(m− ϑ)

dm

dxm

∫ x

a

(x− t)ϑ−1f(t)dt, m− 1 < ϑ ≤ m, m = 1, 2,· · · (2.3)

Definition 2.3 The Riemann-Liouville fractional integral of order ϑ > 0, denoted by D−ϑ
x , for a

function f(x) in the interval (a, b) is defined as [28]

D−ϑ
x f(x) =

1

Γ(ϑ)

∫ x

a

(x− t)ϑ−1f(t)dt, m− 1 < ϑ ≤ m, m = 1, 2,· · · (2.4)



A new and efficient numerical algorithm to solve fractional boundary value problems 3

Definition 2.4 The fractional differential operator defined by Caputo derivative of order ϑ > 0, is
expressed as, [32]

Dϑ
τ f(x) =

∂ϑ

∂tϑ
v (x, t)

=

{
1

Γ(ℏ−ϑ)

∫ x

0
(x− τ)ℏ−ϑ−1f (ℏ)(τ)dτ, ℏ− 1 < ϑ ≤ ℏ

∂ℏ

∂tℏ
v (x, t) , ϑ = ℏ ∈ N

(2.5)

Lemma 2.1 For m− 1 < γ ≤ m with m ∈ N and h ∈ Cτ with τ ≥ 0 , then [28]


IγIϑh(ξ) = Iγ+ϑh(ξ), ϑ, γ ≥ 0,

Iγκϑ = Γ(ϑ+1)
Γ(γ+ϑ+1)κ

γ+ϑ, γ > 0, ϑ > −1, κ > 0

IγDγh(κ) = h(κ)−
∑m−1

k=0 hk(0+)κ
k

k! ,

(2.6)

where κ > 0, m− 1 < γ ≤ m.

3. Methodology

In this section, we consider the following fractional boundary value problem:

Dαy(x) = g(x) + f(y), 0 < x ≤ b, n− 1 < α ≤ n, (3.1)

with the boundary conditions:

y(0) = α0, y
′
(0) = α1, y

′′
(0) = α2, · · · yn(0) = αn,

y(b) = β0, y
′
(b) = β1, y

′′
(b) = β2, · · · yn(b) = βn,

(3.2)

f(y) is a linear or nonlinear function and g(x) is the source term.
Now, using the procedure of (LITM), we approximate the solution of Eq. (3.1), by using the Lagrange
interpolation formula.
That is,

y(x) ≃ Pn(x) = f(x0)Kn,0 (x) + f(x1)Kn,1 (x) + · · ·+ f(xn)Kn,n (x) =

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (x), (3.3)

where Kn,0 (x), Kn,1 (x), Kn,2 (x), · · · , Kn,n (x) are Lagrange polynomials defined in Eq. (2.2).
To determine 2k−1M coefficients, we will use 2k−1(M − 1) conditions.
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For this, n conditions are given by the following boundary conditions:

uk,M (0) =

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (0) = α0,

d

dx
uk,M (0) =

d

dx

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (0) = α1,

d2

dx2
uk,M (0) =

d2

dx2

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (0) = α2,

...

dn

dxn
uk,M (0) =

dn

dxn

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (0) = αn,

uk,M (b) =

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (b) = β0,

d

dx
uk,M (b) =

d

dx

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (b) = β1,

d2

dx2
uk,M (b) =

d2

dx2

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (b) = β2

...

dn

dxn
uk,M (b) =

dn

dxn

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (b) = βn,

(3.4)

Now using these n boundary conditions, we need 2k−1(M − 1), extra conditions to calculate the un-
known’s coefficients Kn,k. These conditions can be obtained by putting Eq. (3.3) in Eq. (3.1) as

dα

dxα

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (x) = g(x) + f

2k−1∑
n=1

M−n∑
k=0

f(xk)Kn,k (x)

 . (3.5)

Assume that Equation (3.5) is exact at 2k−1(M − n) points which we consider as xi, then

dα

dxα

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (xi) = g(xi) + f

2k−1∑
n=1

M−1∑
k=0

f(xk)Kn,k (xi)

 . (3.6)

For the choice of xi, the points are the zeros of the shifted Chebyshev polynomials of degree 2k−1(M − n)
in the interval [0, 1] that is

xi =
si+1
2 , where xi = cos

(
(2i−1)π

2k−1(M−1)

)
, i = 1, 2,· · · 2k−1(M − n).

Eq. (3.4) and Eq. (3.6) give 2k−1M linear system or the nonlinear equations as the case may be occur
for the problem. The fractional derivative in Eq. (3.1), is expressed in terms of the Caputo operator
given in Eq. (2.3). Then Eq. (3.1), is converted in to a system of linear or nonlinear algebraic equations.
Some of the equations are obtained by evaluating ordinary differential equations (ODEs) in Eq. (3.1), at
the points where Pn(x) equals y(x).
Finally, we solve the system to obtain the arbitrary constant f(xi), i = 0, 1, · · · , n, which we then plug
into Eq. (3.1), to obtain the (LITM) solution for the given problems.
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4. Numerical Examples

Example 4.1 The fourth order fractional nonlinear boundary value problem is [29]

dαy

dxα
= y2 − x10 + 4x9 − 4x8 − 4x7 + 8x6 − 4x4 + 120x− 48, 3 < α ≤ 4, (4.1)

with the following boundary conditions:

y(0) = 0, y(1) = 1, y
′
(0) = 0, y

′
(1) = 1, (4.2)

the exact solution is

y(x) = x5 − 2x4 + 2x2. (4.3)

Table 1: Fractional order (LITM) solutions of Example 4.1 at different values of α
xi Exact(α = 4) LITM(α = 4) LITM(α = 3.85) LITM(α = 3.75) LITM(α = 3.50) LITM(α = 3.25) CWM(M = 8)
0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.1 0.0198100 0.0198099 0.0221148 0.0240054 0.0397288 0.0397288 0.0198100
0.2 0.0771200 0.0771199 0.0850947 0.0915821 0.1442169 0.1442169 0.0771200
0.3 0.1662300 0.1662299 0.1809884 0.1928808 0.2865756 0.2865756 0.1662300
0.4 0.2790400 0.2790400 0.2994550 0.3157387 0.4400794 0.4400794 0.2790400
0.5 0.4062500 0.4062500 0.4294537 0.4477703 0.5834084 0.5834084 0.4062500
0.6 0.5385600 0.5385600 0.5607700 0.5781251 0.7031761 0.7031761 0.5385600
0.7 0.6678700 0.6678700 0.6854155 0.6989969 0.7948268 0.7948268 0.6678700
0.8 0.7884800 0.7884800 0.7989376 0.8069657 0.8629800 0.8629800 0.7684800
0.9 0.8982900 0.8982900 0.9016754 0.9042573 0.9223043 0.9223043 0.8982900
1.0 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000

Figure 1: (LITM) fractional solution graphs of Example 4.1.
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Table 2: Error Analysis of the fractional solutions of Example 4.1 at different value of α
xi A.E(α = 4) A.E(α = 3.85) A.E(α = 3.75) A.E(α = 3.50) A.E(α = 3.25) OHAMError
0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.1 7.00E − 10 2.30E − 3 4.19E − 3 1.99E − 2 1.99E − 2 7.27E − 8
0.2 1.40E − 10 7.97E − 3 1.44E − 2 6.70E − 2 6.70E − 2 2.45E − 7
0.3 6.00E − 10 1.47E − 2 2.66E − 2 1.20E − 1 1.20E − 1 4.48E − 7
0.4 8.00E − 10 2.04E − 2 3.66E − 2 1.61E − 1 1.61E − 1 6.18E − 7
0.5 2.10E − 9 2.32E − 2 4.15E − 2 1.77E − 1 1.77E − 1 6.99E − 7
0.6 2.30E − 9 2.22E − 2 3.95E − 2 1.64E − 1 1.64E − 1 6.61E − 7
0.7 1.90E − 9 1.75E − 2 3.11E − 2 1.26E − 1 1.26E − 1 5.07E − 7
0.8 1.10E − 10 1.04E − 2 1.84E − 2 7.45E − 2 7.45E − 2 2.87E − 7
0.9 0.0000000 3.38E − 3 5.96E − 3 2.40E − 2 2.40E − 2 2.87E − 7
1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Figure 2: Error Analysis graph of Example 4.1

Example 4.2 The sixth order fractional nonlinear boundary value problem is [31]

dαy

dxα
= −6ex + y, 5 < α ≤ 6, (4.4)

with the following boundary conditions:

y(0) = 1, y
′′
(0) = −1, yiv(0) = −3, y(1) = 0, y

′′
(1) = −2e, yiv(1) = −4e, (4.5)

The exact solution is

y(x) = (1− x)ex. (4.6)
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Table 3: Fractional order (LITM) solutions of Example 4.2 at different value of α at (M = 7)
xi Exact(α = 6) LITM(α = 6) LITM(α = 5.85) LITM(α = 5.75) LITM(α = 5.50) LITM(α = 5.25) CWM(M = 20)
0.0 1.0000000 0.9999999 0.9999999 0.9999999 0.9999999 0.9999999 1.0000000
0.1 0.9946538 0.9981162 0.9991913 0.9987123 0.9911231 0.9802283 0.9946538
0.2 0.9771222 0.9836474 0.9856090 0.9846223 0.9700383 0.9493174 0.9771222
0.3 0.9449011 0.9537581 0.9562853 0.9547702 0.9343848 0.9058649 0.9449011
0.4 0.8950948 0.9053298 0.9080524 0.9060441 0.8816230 0.8480865 0.8950948
0.5 0.8243606 0.8349220 0.8375003 0.8351271 0.8089162 0.7736319 0.8243606
0.6 0.7288475 0.7387043 0.7408867 0.7383800 0.7129369 0.6793478 0.7288475
0.7 0.6041258 0.6123664 0.6140135 0.6116863 0.5896359 0.5610302 0.6041258
0.8 0.4451081 0.4510112 0.4520842 0.4502776 0.4340125 0.4132051 0.4451081
0.9 0.2459603 0.2490346 0.2495557 0.2485655 0.2399281 0.2289793 0.2459603
1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Figure 3: (LITM) fractional solution graphs of Example 4.2.

Table 4: Error Analysis of the fractional solutions of Example 4.2 at different value of α at (M = 7)
xi A.E(α = 6) A.E(α = 5.85) A.E(α = 5.75) A.E(α = 5.50) A.E(α = 5.25) CWMError(M = 20)
0.0 2.00E − 10 2.00E − 10 2.00E − 10 2.00E − 10 2.00E − 10 2.00E − 1000
0.1 3.46E − 3 4.53E − 3 4.05E − 3 3.53E − 3 1.44E − 2 3.53E − 14
0.2 6.52E − 3 8.48E − 3 7.50E − 3 7.08E − 3 2.78E − 2 6.77E − 14
0.3 8.85E − 3 1.13E − 2 9.86E − 3 1.05E − 2 3.90E − 2 9.41E − 14
0.4 1.02E − 2 1.29E − 2 1.09E − 2 1.34E − 2 4.70E − 2 1.12E − 14
0.5 1.05E − 2 1.31E − 2 1.07E − 2 1.54E − 2 5.07E − 2 1.19E − 14
0.6 9.85E − 3 1.20E − 2 9.53E − 3 1.59E − 2 4.94E − 2 1.16E − 14
0.7 8.24E − 3 9.88E − 3 7.56E − 3 1.44E − 2 4.30E − 2 1.01E − 14
0.8 5.90E − 3 6.97E − 3 5.16E − 3 1.10E − 2 3.19E − 2 7.43E − 14
0.9 3.07E − 3 3.59E − 3 2.60E − 3 6.03E − 3 1.69E − 2 3.95E − 14
1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 4.20E − 99
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Figure 4: Error Analysis graph of Example 4.2.

Example 4.3 The fifth order fractional nonlinear boundary value problem is [31]

dαy

dxα
= y − 15ex − 10xex, 4 < α ≤ 5, (4.7)

with the following boundary conditions:

y(0) = 0, y
′
(0) = 1, y

′′
(0) = 0, y(1) = 0, y

′
(1) = −e, (4.8)

The exact solution is

y(x) = x(1− x)ex. (4.9)

Table 5: Fractional order (LITM) solutions of Example 4.3 at different value of α at (M = 8)
xi Exact(α = 5) LITM(α = 5) LITM(α = 4.85) LITM(α = 4.75) LITM(α = 4.50) LITM(α = 4.25) CWM(M = 50)
0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
0.1 0.0994653 0.0994654 0.0994376 0.0994179 0.0993197 0.0993197 0.0994653
0.2 0.1954244 0.1954245 0.1952517 0.1951303 0.1945569 0.1945569 0.1954244
0.3 0.2834703 0.2834705 0.2830292 0.2827222 0.2813314 0.2813314 0.2834703
0.4 0.3580379 0.3580382 0.3572767 0.3567512 0.3544427 0.3544427 0.3580379
0.5 0.4121803 0.4121806 0.4111549 0.4104517 0.4074266 0.4074266 0.4121803
0.6 0.4373085 0.4373088 0.4361798 0.4354100 0.4321432 0.4321432 0.4373085
0.7 0.4228880 0.4228883 0.4218825 0.4212002 0.4183308 0.4183308 0.4228880
0.8 0.3560865 0.3560867 0.3554201 0.3549699 0.3530926 0.3530926 0.3560865
0.9 0.2213642 0.2213643 0.2211269 0.2209674 0.2203094 0.2203094 0.2213642
1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
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Figure 5: (LITM) fractional solution graphs of Example 4.3.

Table 6: Error Analysis of the fractional solutions of Example 4.3 at different value of α at (M = 8)
xi A.E(α = 5) A.E(α = 4.85) A.E(α = 4.75) A.E(α = 4.50) A.E(α = 4.25) CWMError(M = 50)
0.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 1.91E − 100
0.1 3.03E − 8 2.77E − 5 4.74E − 5 1.45E − 4 1.45E − 4 5.04E − 69
0.2 1.33E − 7 1.72E − 4 2.94E − 4 8.67E − 4 8.67E − 4 3.58E − 68
0.3 2.37E − 7 4.41E − 4 7.48E − 4 2.13E − 3 2.13E − 3 1.05E − 67
0.4 3.11E − 7 7.61E − 4 1.28E − 3 3.59E − 3 3.59E − 3 2.14E − 67
0.5 3.46E − 7 1.02E − 3 1.72E − 3 4.75E − 3 4.75E − 3 3.48E − 67
0.6 3.46E − 7 1.12E − 3 1.89E − 3 5.16E − 3 5.16E − 3 4.79E − 67
0.7 2.56E − 7 1.01E − 3 1.68E − 3 4.55E − 3 4.55E − 3 5.68E − 67
0.8 1.59E − 7 6.66E − 4 1.11E − 3 2.99E − 3 2.99E − 3 5.58E − 67
0.9 6.63E − 8 2.37E − 4 3.96E − 4 1.05E − 3 1.05E − 3 3.83E − 67
1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 3.26E − 100

Figure 6: Error Analysis graph of Example 4.3.
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5. Results and Discussion

In this section, the (LITM) solutions for Examples 4.1, 4.2 and 4.3 are discussed. The Tables and
Figures are constructed to highlight the obtained results in a sophisticated manner. In this connection,
Table 1 is constructed for (LITM) and exact solutions at different values of the fractional order α of
Example 4.1. In Figure 1, the graphs of (LITM) results at various α are plotted. The fractional order
solutions have shown the closed relationship with the actual dynamics of the problems and verified by
using different plots of Example 4.1. The error analysis of the suggested technique is shown in Table
2. The tables have justified the increase in accuracy at various α levels towards integer order solutions.
Similarly, the error graphs are plotted for various α values, and convergence has been confirmed for
fractional order solutions. Table 3 represent the (LITM) solutions at various fractional orders α, as well
as the exact solution to Example 4.2. The same results are shown by using Figure 3, which has the same
convergence rate as given for Example 4.2. The error analysis of problem 4.2 is given in Table 4 which has
confirmed the sufficient degree of accuracy for Example 4.2. The error graph for Example 4.2 is plotted
in Figure 4 and has shown the valuable dynamics at different values of α. In Table 5 the (LITM) and
exact results are displayed at different fractional orders of Example 4.3. In Figure 5 the fractional order
results are displayed and analyzed for the closed relation. Table 6 included the (LITM) error analysis
where the error varies with α and converges to the error at the integer order derivative. Figure 6 shows
the error graphs for Example 4.3 at different fractional orders of α. The error changes at different α
and converges to the error at integer order derivative. Again, a very consistent dynamical behavioral is
observed for Example 4.3.

6. Conclusion

In this work, a new numerical technique based on the Lagrange Interpolation Polynomial is introduced.
The new method is used for the solution of different fractional boundary value problems and is found to
be an accurate and effective technique for the solution of problems. The solutions, graphs, and tables
are presented for the validation of (LITM). The (LITM) solutions are compared with other numerical
techniques such as (CWM) and (OHAM) and found to be very efficient and effective. The problems that
are described in tabular form can be addressed in a better way by using (LITM). Furthermore, the present
method can be modified for other nonlinear fractional problems in nature by using various interpolation
techniques.

Table 7: Nomenclature
FPDEs Fractional partial differential equations
LITM Lagrange Interpolation Transform method
FC Fractional calculus
VIM Variational iteration method
FDEs Fractional differential equations
HPTM Homotopy perturbation transform method
OHAM Optimal Homotopy asymptotic method
ADM Adomian decomposition method
FDM Finite difference method
DTM Differential transform method
BVPs Boundary value problems
CWM Chebyshev wavelete method
BCs boundary conditions
AE Absolute Error
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Department of Mathematics,

Near East University TRNC, Mersin 10, Turkey.

E-mail address: evren.hincal@neu.edu.tr


	Introduction
	PRELIMINARIES
	Methodology
	Numerical Examples
	Results and Discussion
	Conclusion

