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Impact of the diffusion coefficient and non-linear incidence rate on the dynamics of the
SIR model

Kuldeep Malik, Pranay Goswami∗ and Vikash Yadav

abstract: This paper proposes a Susceptible-Infected–Recovered (SIR) mathematical model with diffusion
coefficient. Nonlinear incidence and treatment rates are employed to control infectious diseases and epidemics.
In this study, the treatment rate is regarded as Holling type II function, while the infection incidence rate
is viewed as Crowley–Martin type function. A detailed mathematical analysis is carried out that includes
non-negativity and existence of solution, existence of both type disease free and endemic equilibrium points.
Further, stability analysis at equilibrium points is performed. Additionally, the numerical simulation is con-
ducted and graphical representations are displayed. The results show the impact of diffusion coefficients and
non-linear incident and recovery rates on susceptible, infected and recovered populations.

Key Words: Existence of Equilibrium Points, Numerical simulation, SIR model with non-linear
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1. Introduction

Mathematical modeling plays a crucial role in various scientific disciplines, including physics, biology,
earth science, and chemistry, as well as in engineering fields such as computational science and electrical
engineering. One field that utilizes mathematical modeling to forecast the spread of infectious diseases is
epidemiology, a vital area of study in population biology with applications in public health. An epidemic
is characterized as an unexpected disease outbreak that causes significant harm to a large proportion
of the population before it can be controlled. Several years can pass between pandemic outbreaks be-
fore they reoccur. Epidemiology is the study of disease occurrence. The widespread transmission of
infectious diseases affects millions of people and negatively impacts the economic, political, social, and
geographic aspects of society. Cholera, malaria, and other infectious diseases are considered endemic
in many countries worldwide. Some diseases, like influenza, are caused by viruses; others, like tubercu-
losis, are caused by bacteria; while others, like malaria, are spread by vectors such as flies, ticks, and
mosquitoes. Epidemiological models are crucial tools for understanding the factors influencing the rise
and fall of infectious diseases. Mathematical modeling is particularly useful when obtaining information
through direct observation or experimentation is not feasible. It aids in comprehending the mechanisms
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of disease transmission. For a better understanding of epidemiological models, as well as infection con-
trol and prevention strategies, mathematical modeling of infectious disease transmission is essential. It
provides both short- and long-term predictions of disease occurrence in the general population while
accounting for multiple influencing factors.

Numerous mathematical models have been presented in the literature on epidemic modelling to re-
strict the transmission of disease, including SIS [5,3], SIR [13,16,17,20], SEIR [19,8,22], SV EIR [10],
SIRS [30,1], and several more. The aforementioned models comprise systems of ordinary differential
equations ODE or Partial differential equations (PDE) and rely primarily on compartmental analysis.
These compartments are identified as the susceptible population (S), the infected population (I), and
the recovered population (R). Infection, progression, healing, or migration are the factors that drive
movement across these compartments. These variables display the total number of people in each section
at any given time. In this case, S represents the total count of susceptible persons. When a suscepti-
ble individual encounters an infected individual, they contract the illness and become a member of the
infected group. I represents the overall number of infected individuals. They are contagious and can
spread to vulnerable groups R is the share of recovered immune people. The SIR model, put forth by
W.O. Kermack and A.G. McKendrick in 1927, was essential to mathematical epidemiology [14]. In sub-
sequent work, Kermack and McKendrick (1932) first included the consequences of considerable dynamics
[15]. H.W. Hethcote summarised the model’s applications in 1976 [12]. All of the human population is
represented by N = S + I + R, where N is kept constant throughout the simulation. The following is
the model put forth by Kermack and Mckendrick in 1927:

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dI

dt
= αI.

(1.1)

Where β and α stand for the infection and recovery rates of the infected individuals, respectively.
In the literature, many different models of epidemics have been put forth to control the disease spread.

Interventions such as treatment, immunisation, quarantine, and many more are crucial in epidemiology
because they aid in preventing the spread of illness. Numerous researchers have used various treatment
functions to examine the effects of treatment. An effective and prompt treatment approach can signif-
icantly lessen the impact of illness on society. The rate of treatment of infectious persons is thought
either to be constant or proportionate to the count of infected people in traditional epidemic models.
Nonetheless, we are aware that the community’s resources for treatment are scarce. As a result, selecting
an appropriate disease treatment rate is crucial. The tactics for controlling epidemics in the absence
of feasible therapeutic treatments and vaccinations rely on adopting suitable preventive measures. The
following describes a SIR epidemic model that Wang and Ruan [28] examined in 2004 with a treatment
rate of constant (i.e., the recovery from infected subgroup per unit time)

H (I) =

{
b, I > 0
0, I = 0

, (1.2)

with a positive constant b and share of infected people I. They demonstrated that this model displays a
variety of bifurcations by performing stability analysis. An enhanced treatment rate was also covered by
Zhang and Liu [32] and is represented by the continuous differentiable function below, which saturates
at a maximum value:

H (I) =
aI

1 + bI
, a ≥ 0, b ≥ 0, I ≥ 0, (1.3)

where the cure rate is indicated by the positive constant a and the treatment availability constraint is
measured by the non-negative constant b. Recently, Zhang et al. [33], Dubey et al. [8] and Zhou et al.
[34] investigated this nonlinear saturation treatment rate in a somewhat distinct manner. Holling type
II is another name for the used nonlinear treatment rate.
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It is well known that the incidence rate is crucial for controlling and simulating the dynamics of an
epidemic. A number of researchers have recently focused on nonlinear type incidence rates [16,17,25,2],
although the incidence rate was characterised as bilinear in standard models. Despite being based on the
law of mass action, the bilinear incidence rate used in the literature is irrational for large populations.
Researchers have taken into account a variety of nonlinear incidence rate types [8,18,31,21], including
Beddington–DeAngelis type, Holling type II and many more, to comprehend the underlying dynamics of
infectious diseases. Thus, incorporating the aforementioned elements, we suggest a mathematical model
for SIR epidemics by utilising an incidence rate of the Crowley-Martin type, which is described as

βSI

(1 + θ1S) (1 + θ2I)
. (1.4)

In 1989, P. H. Crowley and E. K. Martin first presented this functional response [7,24]. At time t,
the term βSI

(1+θ1S)(1+θ2I)
denotes the ratio by which a susceptible person departs from the susceptible

category and subsequently joins the infectious category. Even when susceptible populations are highly
concentrated, the incidence rate of Crowley-Martin type normalises the inhibition impact on infectious
agents [9]. This is evident in the following way:

lim
S→∞

βSI

(1 + θ1S) (1 + θ2I)
=

βI

θ1 (1 + θ2I)
. (1.5)

More general kinds of realistic models result from models where the transfer rates are dependent on
compartment sizes both at the time of transfer and in the past. Diffusion has a substantial impact on the
mechanisms of epidemic and it profoundly affects model outcomes. Thus, the current study intends to
investigate the influence of diffusion on the epidemic model in which the incidence rate of Crowley-Martin
establishes the progression of infection in individuals while the rate of treatment as Holling type II, which
creates programs for the management of illness and disease in human population. An extended version
of the SIR epidemic model, known as the SIR reaction-diffusion model, is examined both qualitatively
and quantitatively in this work. Additionally, by using Crowley–Martin incidence rate and recovery rate
as a Holling type II, the study is connected with the availability of resources, such as numbers of beds in
hospitals, oxygen cylinders, or dosages of vaccines, depending on the disease being studied. The purpose
of this research is to solve the epidemic model numerically to aid in the disease’s geographical spread
in a community that has not received the vaccination, as well as to look into how the reaction-diffusion
system behaves asymptotically.

The SIR reaction–diffusion model can be explained by choosing η, boundary’s outward unit normal
vector and Ψ, bounded domain in Rn with a smooth boundary ∂Ψ and is described as

St − τ1∆S = (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS,

It − τ2∆I =
βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I,

Rt − τ3∆R =
λ1I

1 + λ2I
+ πI + ρδN − µR,

(1.6)

subject to homogeneous Neumann boundary restrictions

∂ηS = ∂ηI = ∂ηR = 0, ω ∈ ∂Ψ, t > 0,

and the initial conditions

S(ω, 0) = S0 = exp
(
−
( ω

1.4

))
∗ 0.86, ω ∈ Ψ̄,

I(ω, 0) = I0 = exp
(
−ω2

)
∗ 0.04, ω ∈ Ψ̄,

R(ω, 0) = R0 = N − S0 − I0,

with the parameters stated as
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• S(ω, t)- the susceptible population where ω occupies space and time t,

• I(ω, t)- the infected population where ω occupies space and time t,

• R(ω, t)- the recovered population where ω occupies space and time t,

• τ1- the diffusion coefficient for the susceptible individuals,

• τ2- the diffusion coefficient of the infected population,

• τ3- the diffusion coefficient of the recovered individuals,

• ρ- the ratio of vaccination,

• δ- the rate of natural births,

• N - total population,

• β- the rate of infection,

• θ1- the degree of inhibition taken by susceptible population,

• θ2- the degree of inhibition taken by infected population,

• µ- the rate of natural morality,

• ϑ- the diseased induced morality rate,

• λ1- the rate of cure,

• λ2- the limiting rate in resource availability,

• π- the natural rate of recovery.

2. Mathematical Analysis

2.1. Non-negativity, existence and uniqueness of solution

Consider the system

St − τ1∆S = (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS,

It − τ2∆I =
βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I,

Rt − τ3∆R =
λ1I

1 + λ2I
+ πI + ρδN − µR,

in addition to homogeneous Neumann boundary restrictions

∂ηS = ∂ηI = ∂ηR = 0, ω ∈ ∂Ψ, t > 0,

and the initial conditions are

S(ω, 0) = S0 = exp
(
−
( ω

1.4

))
∗ 0.86, ω ∈ Ψ̄,

I(ω, 0) = I0 = exp
(
−ω2

)
∗ 0.04, ω ∈ Ψ̄,

R(ω, 0) = R0 = N − S0 − I0.

According to the maximum principle [23], for ω ∈ Ψ̄ and t ∈ (0,Γmax), where Γmax is the longest period
of time that the system (1.6) solutions exist, all the compartments S(ω, t), I(ω, t), and R(ω, t) are non-
negative. Also all S(ω, t), I(ω, t), and R(ω, t) are bounded over Ψ̄× (0,Γmax). Therefore, with the same
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approach as of [11] and by the conventional approach to semilinear parabolic systems it can be derived
that Γmax = ∞ and the system (1.6) has unique classical solution S(ω, t), I(ω, t), and R(ω, t) for whole
time-space. Now by the method applied in [4] the overall count of people in Ψ at t = 0 is

N =

∫
Ψ

[S(ω, 0) + I(ω, 0) +R(ω, 0)] dω > 0, for all t > 0.

By adding all three equations in (1.6) and applying integration over Ψ, we get

∂

∂t

∫
Ψ

[S + I +R] dω =

∫
Ψ

[τ1∆S + τ2∆I + τ3∆R] dω = 0,

suggests that the population’s overall size is constant and should be treated as N for the purposes of the
study. The impact of R is absent from the first two equations of model (1.6). Hence the system (1.6) can
be reduced as 

St − τ1∆S = (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS,

It − τ2∆I =
βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I,

(2.1)

with R can be determined by R(ω, t) = N − S(ω, t) − I(ω, t). The reduced model will be used for
subsequent mathematical analysis.

2.2. Disease free equilibrium(DFE)

The method described in [26] will be used to determine whether equilibrium points exist and to
perform a stability study at equilibrium points for system (2.1). Consider the system

St − τ1∆S = (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS,

It − τ2∆I =
βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I.

To determine equilibrium points, we need to solve
(1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS = 0,

βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I = 0.

(2.2)

The aforementioned system needs to be solved for I = 0 in order to achieve disease-free equilibrium
points. Hence

(1− ρ)δN − µS = 0,

implies, the unique DFE is E0

(
(1−ρ)δN

µ , 0
)
or say E0

(
B
µ , 0

)
with B = (1− ρ)δN .

2.3. Basic reproduction number

The average number of subsequent infections that an infected person produces throughout their in-
fected phase when they are placed in a completely susceptible community is known as the basic re-
production number. The basic reproduction number, denoted by ℜ0, will be ascertained using the
next-generation matrix technique methodology [27]. On comparing 2.1 with [27], it is obtained

f =
βSI

(1 + θ1S)(1 + θ2I)

,

v =
λ1I

1 + λ2I
+ (µ+ ϑ+ π)I
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. The partial derivative will now be used to evaluate F and V at the equilibrium point free from disease,
which is

F =
∂f

∂I

∣∣∣∣
E0

, V =
∂v

∂I

∣∣∣∣
E0

,

implies

F =

[
βS

(1 + θ1S)

]
S=B

µ

,

V = [λ1 + (µ+ ϑ+ π)]S=B
µ
,

and ℜ0 will be the spectral radius of FV −1, hence

ℜ0 =
β(1− ρ)δN

(µ+ θ1(1− ρ)δN) (λ1 + µ+ ϑ+ π)
=

βB

(µ+ θ1B) (λ1 + µ+ ϑ+ π)
. (2.3)

2.4. Endemic equilibrium(EE)

For the endemic equilibrium E =
(
S#, I#

)
, we may rewrite the system (2.2) equations for the endemic

equilibrium points S# and I# as

S# =
B + (Bλ2 − µ− ϑ− π − λ1) I

# − λ2 (µ+ ϑ+ π)
(
I#
)2

µ (1 + λ2I#)
,

and I# satisfies the fourth order equation

H1

(
I#
)4

+H2

(
I#
)3

+H3

(
I#
)2

+H4

(
I#
)
+H5 = 0, (2.4)

where coefficients are demonstrated by

H1 = θ2(λ2)
2
θ1(µ+ ϑ+ π)

2
,

H2 = θ2λ2θ1 (µ+ ϑ+ π) (µ+ ϑ+ π + λ1)

+ λ2 (µ+ ϑ+ π)
(
−λ2θ1 (µ+ ϑ+ π) + θ2µλ2

+ θ2θ1 (Bλ2 − µ− ϑ− π − λ1)
)

+B(λ2)
2
(µ+ ϑ+ π) ,

H3 = (µ+ ϑ+ π + λ1)
(
−λ2θ1 (µ+ ϑ+ π)

+ θ2µλ2 + θ2θ1
(
Bλ2 − µ− ϑ− π − λ1

))
+ λ2 (µ+ ϑ+ π)

×
(
µλ2 + θ1 (Bλ2 − µ− ϑ− π − λ1) + θ2

(
µ+ θ1B

))
−Bλ2 (Bλ2 − 2µ− 2ϑ− 2π − λ1) ,

H4 = (µ+ ϑ+ π + λ1)
(
µλ2 + θ1 (Bλ2 − µ− ϑ− π − λ1)

+ θ2µ+ θ2θ1B
)
+ λ2 (µ+ ϑ+ π) (µ+ θ1B)

− β (2Bλ2 − µ− ϑ− π − λ1) ,

H5 = (µ+ ϑ+ π + λ1) (µ+ θ1B) (1−ℜ0) .

Using Descartes’ rule of signs [29], the biquadratic equation (2.4) has a unique positive real root I# if
any of the following is true:

i.
H1 > 0, H2 < 0, H3 < 0, H4 > 0, and H5 < 0.

ii.
H1 > 0, H2 > 0, H3 < 0, H4 < 0, and H5 < 0.
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iii.
H1 > 0, H2 > 0, H3 > 0, H4 < 0, and H5 < 0.

iv.
H1 > 0, H2 > 0, H3 > 0, H4 > 0, and H5 < 0.

The value of S# can be deduced from a unique I# that exists if any of the previously listed conditions
are satisfied. This suggests that a distinct endemic point of equilibrium E

(
S#, I#

)
exists.

2.5. Stability analysis

To conduct a stability study at equilibrium points for system (2.1), the methodology outlined in [26]
will be applied. Consider the system

St − τ1∆S = (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS,

It − τ2∆I =
βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I.

Using the Jacobian matrix approach, the system’s characteristic equation at DFE point E0

(
B
µ , 0

)
is

obtained by

(Γ + µ)

(
Γ + µ+ ϑ+ π + λ1 −

βB

(µ+ θ1B)

)
= 0,

implies that
(Γ + µ) (Γ + (1−ℜ0)) .

Therefore, roots are
Γ1 = −µ, Γ2 = − (1−ℜ0) . (2.5)

It is evident from equation (2.5) that only if ℜ0 < 1 holds, both eigenvalues for the characteristic equation

corresponding to the system (2.1) at DFE point E0

(
B
µ , 0

)
will be negative. As a result, we conclude:

Theorem 2.1 If ℜ0 is less than 1, the DFE point E0

(
B
µ , 0

)
is locally asymptotically stable; if ℜ0 is

greater than 1, E0 is unstable.

The local stability analysis is now carried out at the endemic point of equilibrium E
(
S#, I#

)
. At the

endemic point of equilibrium E
(
S#, I#

)
, the characteristic equation for system (2.1) is defined by

Γ2 + p0Γ + q0 + (p1Γ + q1) = 0,

where

p0 = (2µ+ ϑ+ π) +
λ1

(1 + λ2I#)
2 ,

q0 = µ

(
(µ+ ϑ+ π) +

λ1

(1 + λ2I#)
2

)
,

p1 =
β

(1 + θ1S#)(1 + θ2I#)

[
I#

(1 + θ1S#)
− S#

(1 + θ2I#)

]
,

q1 =
βI#

(1 + θ1S#)
2
(1 + θ2I#)

[
(µ+ ϑ+ π) +

λ1

(1 + λ2I#)
2

]

− µβS#

(1 + θ1S#)(1 + θ2I#)
2 .
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Theorem 2.2 If S#

I# ≤ (1+θ2I
#)

(1+θ1S#)
is satisfied, then the endemic point of equilibrium E

(
S#, I#

)
has local

asymptotic stability.

Proof: Take the system’s (2.1) characteristic equation into consideration at EE point E
(
S#, I#

)
Γ2 + p0Γ + q0 + (p1Γ + q1) = 0,

where the parameter values match the previously stated values.

Anyone can readily demonstrate that if S#

I# ≤ (1+θ2I
#)

(1+θ1S#)
holds, then

p0 + p1 = (2µ+ ϑ+ π) +
λ1

(1 + λ2I#)
2+

β

(1 + θ1S#)(1 + θ2I#)

[
I#

(1 + θ1S#)
− S#

(1 + θ2I#)

]
> 0,

and,

q0 + q1 = µ

(
(µ+ ϑ+ π) +

λ1

(1 + λ2I#)
2

)

+
βI#

(1 + θ1S#)
2
(1 + θ2I#)

[
(µ+ ϑ+ π) +

λ1

(1 + λ2I#)
2

]

− µβS#

(1 + θ1S#)(1 + θ2I#)
2

= µ

(
(µ+ ϑ+ π) +

λ1

(1 + λ2I#)
2

)

+
βI#

(1 + θ1S#)
2
(1 + θ2I#)

[
(ϑ+ π) +

λ1

(1 + λ2I#)
2

]

+
βµ

(1 + θ1S#)(1 + θ2I#)

[
I#

(1 + θ1S#)
− S#

(1 + θ2I#)

]
> 0.

Accordingly, the EE point E
(
S#, I#

)
of the system (2.1) meets the Routh-Hurwitz criterion’s definition

of being locally asymptotically stable. 2

3. Numerical simulation and result discussion

Consider the system of equations (1.6)

St − τ1∆S = (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS,

It − τ2∆I =
βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I,

Rt − τ3∆R =
λ1I

1 + λ2I
+ πI + ρδN − µR,

Using the procedure described in [6], this can be expressed as

∂S

∂t
= (1− ρ)δN − βSI

(1 + θ1S)(1 + θ2I)
− µS + τ1

∂2S

∂ω2
,

∂I

∂t
=

βSI

(1 + θ1S)(1 + θ2I)
− λ1I

1 + λ2I
− (µ+ ϑ+ π)I + τ2

∂2S

∂ω2
,

∂R

∂t
=

λ1I

1 + λ2I
+ πI + ρδN − µR+ τ3

∂2R

∂ω2
.
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We use the same initial and boundary conditions as those specified in the system (1.6) to simulate the
model in order to analyse the impact of diffusive rate.

The pdepe solver for the system of partial differential equations in MATLAB R2017b has been
used to perform the numerical simulation. The following tested values dataset of parameters from the
published literature [16,17] have been used for simulation. Figure 1 depicts the dynamical behaviour of

Table 1: Parameters value used for numerical simulation.
Parameters Values Dimensions
N 1 individual per time unit
τ1 = τ2 = τ3 0.001 (individual per time unit)−1

ρ 0.65 (individual per time unit)−1

δ 0.025 (individual per time unit)−1

β 0.003 (per time unit)−1

θ1 0.005 (per time unit)−1

θ2 0.005 (per time unit)−1

µ 0.003 (per time unit)−1

λ1 0.01 (per time unit)−1

λ2 0.04 (per time unit)−1

ϑ 0.001 (per time unit)−1

π 0.001 (per time unit)−1

susceptible, infected and recovered population using the parametric parameters taken from the published
literature listed in Table 1. Figure 1 shows a diffusion rate of 0.01; however, Figure 2 shows the dynamical
behaviour of susceptible, infected, and recovered populations with an enhanced diffusion rate of 0.1. This
demonstrates unequivocally that when the diffusion rate rises, the susceptible and infected population
declines more quickly, while the recovered population grows more quickly in terms of both space and
time. For susceptible and infected populations with varying diffusion rates, Figures 3 and 4 show
a similar pattern. A higher diffusion rate causes a faster decline in both the susceptible and infected
populations.

Since the susceptible population in our primary model (1.6) depends on three parameters: vaccination,
diffusion coefficient and incident rate, thus, Figure 5(a − c) demonstrates the behaviour of susceptible
population for varying incident rate, vaccination rate and diffusion coefficient, respectively, for fixed
spatial value ω = 0.25.

Figure 6(a) shows the impact of recovery rate on infected population, and Figure 6(b) shows a 2D
graph of the infected population over time for various spatial variable values. The behaviour of infected
people with varying diffusion coefficients is shown in Figure 6(c). Figure 7 shows how vaccinations affect
recovered people at different levels. This indicates that the faster the population gets vaccinated, the
faster it will recover.

4. Conclusion and Future Direction

This study proposed a SIR epidemic model with diffusion. This research employed a nonlinear
treatment rate, which is regarded as Holling type II, and a nonlinear infection incidence rate, which is
regarded as Crowley–Martin type. A thorough mathematical investigation of the proposed model has
been carried out. First, it has been established that the set of solutions is bounded and non-negative. All
potentialities for the existence of endemic and disease-free equilibrium points have also been examined.
Examining the model’s stability at disease-free equilibrium, it was found to be locally asymptotically
stable when ℜ0 < 1 and unstable when ℜ0 > 1. The disease endemic equilibrium is known to exist and
stability has been demonstrated under specific circumstances. It is evident that when the fundamental
reproduction number is larger than one, the infection will continue to exist in the community, and when
it is less than one, the sickness will cease to exist. Further, To observe the impacts of diffusion, cure rate,
limitation rate in accessible treatment, and the degrees of inhibition accepted by susceptible and infected
individuals, simulations have been conducted. The pdepe solver for the system of partial differential
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Figure 1: Output in terms of graph for susceptible, infected, and recovered populations using the para-
metric values given in Table 1 according to time and location.
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Figure 2: Output in terms of graph for susceptible, infected, and recovered populations using the para-
metric values given in Table 1 and diffusion coefficients as τ1 = τ2 = τ3 = 0.1
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Figure 3: Graphical output showing the effect of diffusion coefficient on people who are susceptible at (a)
τ1 = 0.001 (b) τ1 = 0.01 (c) τ1 = 0.1.
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Figure 4: Graphical output showing the impact of diffusion coefficient on people who are infected at (a)
τ2 = 0.001 (b) τ2 = 0.01 (c) τ2 = 0.1.
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Figure 5: Graphical outputs showing the effect of incidence rate, vaccination ratio and diffusion coefficient
on people who are susceptible at (a) β (b) ρ (c) τ1 = 0.001, 0.01, 0.1.
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Figure 6: Graphical outputs showing the effect of recovery rate, location space and diffusion coefficient
on people who are infected at (a) λ (b) ω (c) τ2 = 0.001, 0.01, 0.1.
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Figure 7: Graphical output illustrating the effects of vaccinations at different levels on people who have
recovered

equations in MATLAB R2017b has been used to perform the numerical simulation. Since the entire
population is regarded as one, representing 100% of the population, a graph indicator value of 0.3 will
reflect 30% of the total population. The model’s numerical simulation demonstrates that when the rate of
transmission increases, the infection will increase else decrease due to treatment availability. Additionally,
when the degree of inhibition adopted by susceptible and infectious individuals increases, a decrease in
infection is being noted. Moreover, the effect of the diffusion coefficient has been observed through
graphical representations which indicate that as the diffusion coefficient increases, the susceptible and
infected population decreases rapidly while the recovered population grows more quickly.

Our next research will concentrate on analysing our model’s stability using a variety of nonlinear
treatment function types and incident rates. For this study, we will also consider derivatives of the
fractional kind and determine their benefits and drawbacks.
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