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Fractional Variational Calculus with the Truncated M-series Fractional Derivative
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abstract: In this paper, we investigate a variational problem defined by a functional involving the truncated
M-series fractional derivative of the dependent variable. The necessary optimality conditions are derived in
the form of the Euler-Lagrange equation, and several illustrative examples are presented to highlight the
results.
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1. Introduction

Fractional calculus is an extension of classical calculus that deals with operations of integration and
differentiation of non-integer order [1,2,3,4]. It was introduced toward the end of the seventeenth century
and has since gathered numerous important contributions to mathematics. This is primarily due to
its ability to capture the memory effect, nonlocal properties, and its capacity to describe intermediate
behaviors. For instance, fractional derivatives are useful in modeling viscoelastic substances and rheology
(see e.g. [5]), as well as in economics, where the behavior of economic agents may depend on the history
of past economic changes [6]. Today, the field of fractional calculus continues to attract the interest of
many researchers, particularly in the solution of fractional differential equations. As a result, various
methods have been developed to solve such equations, including the Lie symmetry method, Adomian
decomposition method, and others [7,8,9,10,11].

To address certain challenges associated with these fractional derivatives, such as the violation of
classical properties, new derivatives have been introduced. These include the conformable fractional
derivative, the alternative fractional derivative, the truncated V-fractional derivative, and others [12,13,
14,15].

In mathematical physics, the calculus of variations is an essential topic, underpinning the Lagrangian
formulation of mechanics from which numerous dynamical equations can be derived [16,17]. Variational
calculus has been developed to address problems where the aim is to identify a function that makes a
given quantity optimal, such as the shortest distance between two points on a surface. The objective is
to determine the unknown function that optimizes the value of a functional.

In this study, we assume that the derivative in the Lagrangian is the truncated M-series fractional
derivative. The formulation we adopt is a generalization that encompasses classical variational calculus
results as a special case. Recall that several works have addressed similar topics involving different types
of fractional operators [18,19,20].
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The structure of the paper is as follows: Section two provides a brief overview of the fundamental
definitions and properties of the truncated M-series fractional derivative. Section three is dedicated
to presenting and proving the necessary optimality conditions, followed by the examination of some
illustrative examples.

2. Preliminaries

Various definitions of fractional integrals and derivatives exist, but for the purposes of this paper, we
address the truncated M-series fractional derivative and the M-series fractional integral as presented in
[13].

Definition 2.1 The truncated M -Series is defined for β > 0 as

iMβ,γ
p,q (t) :=

i∑
k=0

(a1)k · · · (ap)k
(c1)k · · · (cq)k

tk

Γ(βk + γ)
,

with β, γ, t ∈ R, p, q ∈ N, an, cm ∈ R, cm ̸= 0,−1,−2, . . . (n = 1, 2, . . . , p;m = 1, 2, . . . , q), where (ρ)k
is a generalization of the Pochhammer symbol, given by :

(ρ)k =
Γ(ρ+ k)

Γ(ρ)
.

Definition 2.2 Let f : [0,∞) → R. For β > 0, t > 0 and 0 < α ≤ 1, the truncated M-series fractional
derivative of order α of a function f is

iDα
Mf(t) := lim

ε→0

f
(
Γ(γ)tiMβ,γ

p,γ (εt−α)
)
− f(t)

ε
.

Note that if f is M-differentiable in some interval (0, a), a > 0, and

lim
t→0+

iDα
Mf(t),

exists, then we have

iDα
Mf(0) = lim

t→0+
iDα

Mf(t).

In the following discussion, we review the main properties of the truncated M-series fractional deriva-
tive, highlighting its fundamental properties.

Theorem 2.1 Let 0 < α ≤ 1, β > 0, a, b ∈ R and f, g are M-differentiable at the point t > 0. Then

1. iDα
M(af + bg)(t) = aiDα

Mf(t) + biDα
Mg(t).

2. iDα
M(f · g)(t) = f(t)iDα

Mg(t) + g(t)iDα
Mf(t).

3. iDα
M

(
f
g

)
(t) =

g(t)iDα
Mf(t)−f(t)iDα

Mg(t)
(g(t))2 .

4. iDα
M(f(t)) = 0, where f is constant .

5. If, furthermore, f is differentiable, then iDα
Mf(t) = Kt1−α df(t)

dt , where K =
a1···ap

c1···cq
Γ(γ)

Γ(β+γ) .

6. iDα
M(f ◦ g)(t) = f ′(g(t))iDα

Mg(t), for f differentiable at g(t).

Definition 2.3 Let a ≥ 0, t > a, 0 < α ≤ 1 and f be a function defined in (a, t]. Then, the M-series
fractional integral of order α the function f is defined by

Iα
Mf(t) := K−1

∫ t

a

f(x)

x1−α
dx.
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The truncated M-series fractional derivative and the M-series fractional integral are connected in the
following way :

Theorem 2.2 Let a ≥ 0, 0 < α ≤ 1 and f be a continuous function such that there exists Iα
Mf . Then

1. iDα
M(Iα

Mf(t)) = f(t),

2. Iα
M(iDα

Mf(t)) = f(t)− f(a).

The formula for integration by parts is expressed as follows :

Theorem 2.3 Let f, g : [a, b] → R be two functions such that f, g are differentiables and 0 < α ≤ 1.
Then ∫ b

a

f(x)iDα
Mg(x)dαx = [f(x)g(x)]

b
a −

∫ b

a

g(x)iDα
Mf(x)dαx, (2.1)

where dαx = K−1 dx
x1−α .

In what follows, we present, the fundamental lemma for fractional calculus of variations :

Lemma 2.1 Let f and y be continuous functions on [a, b], if∫ b

a

η(x)f(x, y(x), iDα
My(x))dαx = 0,

for any η ∈ C[a, b], with η(a) = η(b) = 0, then

f(x, y(x), iDα
My(x)) = 0.

3. The truncated M-series fractional variational problem

We examine variational problems in this section that include independent and dependent variables, as
well as the truncated M-series fractional derivative. The objective is to find y ∈ C1[a, b] that minimizes
or maximizes the functional :

J [y(x)] =

∫ b

a

L (x, y(x), iDα
My(x)) dαx. (3.1)

The problem is subject to the boundary conditions y(a) = ya and y(b) = yb, where L is the Lagrangian,
assumed to be continuous with respect to all of its arguments, and the following conditions are satisfied

L ∈ C1([a, b]× R× R),

x → ∂2L (x, y(x), iDα
My(x)) ∈ L1(a, b),

x → ∂3L (x, y(x), iDα
My(x)) ∈ AC[a, b],∀y ∈ AC[a, b].

The corresponding Euler-Lagrange equation for the variational problem (3.1) is provided by the following
result.

Theorem 3.1 When J defined in (3.1) has a local extremum, the truncated M-series fractional Euler-
Lagrange equation is given by :

∂L
∂y

− iDα
M

(
∂L

∂ (iDα
My)

)
= 0. (3.2)

To begin, we consider variation functions of the type y+ ϵη, where η : [a, b] → R is a function of class
C1, with η(a) = η(b) = 0. Then we can write

J [y + ϵη] =

∫ b

a

L (x, y + ϵη, iDα
My + ϵiDα

Mη) dαx.
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The functional J reaches its extremum if dJ[y+ϵη]
dϵ = 0, which means that :∫ b

a

(
∂L
∂y

η +
∂L

∂ (iDα
My)

iDα
Mη

)
dαx = 0,

therefore, this leads to : ∫ b

a

∂L
∂y

ηdαx+

∫ b

a

∂L
∂ (iDα

My)
iDα

Mηdαx = 0.

Using (2.1), we can conclude that :∫ b

a

∂L
∂y

ηdαx+

[
∂L

∂ (iDα
My)

η

]b
a

−
∫ b

a

ηiDα
M

(
∂L

∂ (iDα
My)

)
dαx = 0.

Since η(a) = η(b) = 0, we conclude that :∫ b

a

(
∂L
∂y

− iDα
M

(
∂L

∂ (iDα
My)

))
ηdαx = 0.

Based on the lemma and the arbitrary choice of η, we get :

∂L
∂y

− iDα
M

(
∂L

∂ (iDα
My)

)
= 0.

The following section presents a few examples for illustration.

4. Illustration examples

Example 4.1 Consider the truncated M-series fractional geodesic problem, given by :

J [y] =

∫ b

a

L (x, y, iDα
My) dαx =

∫ b

a

√
1 + (iDα

My)
2
dαx, (4.1)

where y ∈ C1[a, b], y(a) = ya and y(b) = yb.
As L does not explicitly depend on y, using the truncatedM-series fractional Euler-Lagrange equation

(3.2), we obtain :

iDα
M

(
∂L

∂ (iDα
My)

)
= 0, (4.2)

therefore, we have

iDα
M

 iDα
My√

1 + (iDα
My)

2

 = 0. (4.3)

Using the above equation and the fact that if iDα
Mf(t) = 0, then

f(t) = constant we conclude that :
iDα

My√
1 + (iDα

My)
2
= c0, (4.4)

with c0 is a constant.
By applying simplifications, we obtain :

iDα
My = c1, (4.5)

where c1 is a constant given in terms of c0.
By assuming that y is differentiable and by applying the fifth property from theorem 2.1, we obtain :

Kx1−αy′(x) = c1. (4.6)
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Therefore, the solution of (4.1) is of the form

y(x) =
c1
αK

xα + c2, (4.7)

where c2 is an arbitrary constant.

Remark 4.1 In particular, if α = β = γ = 1 and an = cm = 1 (n = 1, 2, . . . , p;m = 1, 2, . . . , q),
which implies that K = 1, we retrieve the equation of the line, which geometrically is the curve that
minimizes the distance between two points, i.e.

y(x) = c1x+ c2.

Example 4.2 Let L denote the Lagrangian of the system, defined by :

L (t, y(t), iDα
My(t)) =

1

2
m (iDα

My(t))
2 − V (y(t)), (4.8)

which characterizes the motion of a particle with the mass m and the truncated M-series fractional
derivative velocity iDα

My(t) under the influence of the potential V in one dimension.
In this situation, the variational problem takes the form of :

J [y(t)] =

∫ 1

0

L (t, y(t), iDα
My(t)) dαt, (4.9)

with y(0) = y0 and y(1) = y1.
A solution y to the variational problem exists if it satisfies the corresponding truncated M-series

fractional Euler–Lagrange equation (3.2)

∂L
∂y

− iDα
M

(
∂L

∂ (iDα
My)

)
= 0.

Case 1. If V (y(t)) = 0 ( free particle) the Lagrangian (4.8) takes the form :

L (t, y(t), iDα
My(t)) =

1

2
m (iDα

My(t))
2
. (4.10)

Because L, as defined in (4.10), is independent of y and taking into account that

∂L
∂ (iDα

My)
= miDα

My(t),

then (3.2) becomes

iDα
M (miDα

My(t)) = 0,

By performing some algebraic calculations, we derive the truncatedM-series fractional Euler-Lagrange
equation of motion for a free particle, which takes the form of a second-order differential equation :

y′′(t) +
(1− α)

t
y′(t) = 0. (4.11)

The general solution to this equation is expressed as :

y(t) =
c1
α
tα + c2. (4.12)

where c1 and c2 are arbitrary constants.
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Figure 1: Solution of (4.12) with c1 = c2 = 1 and different values of α.

In this figure, we see the impact of the fractional order α on the solution. In fact as α gets closer to
1, the solution increasingly becomes a linear equation

Case 2. The equation of motion of a charged particle in gravity V (y) = mgy where g is the
acceleration of gravity.

The Lagrangian L is defined by

L (t, y(t); iDα
My(t)) =

1

2
m (iDα

My(t))
2 −mgy(t). (4.13)

Based on (3.2), the truncated M-series fractional Euler-Lagrange equation becomes

−mg − iDα
M (miDα

My(t)) = 0.

From this, we deduce that :

iDα
M (iDα

My) + g = 0.

We obtain :
K2t2−2αy′′ + (1− α)K2t1−2αy′ + g = 0. (4.14)

The truncated M-series fractional Euler-Lagrange equation of motion of a charged particle in gravity
is simplified to be of the form

y′′ +
(1− α)

t
y′ +

g

K2t2−2α
= 0. (4.15)

The general solution of this equation is given by

y(t) =
−g

2α2K2
t2α + atα + b. (4.16)

where a and b are the arbitrariness constants.
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Remark 4.2 When α = K = 1, the equation becomes y′′(t) + g = 0, which is the standard equation
of motion for a charged particle under the influence of gravity, and its general solution is

y(t) = −gt2

2
+ c1t+ c2. (4.17)

where c1 and c2 are constants.

Case 3. The equation of motion of an harmonic oscillator V (y) = 1
2mω2y2, where w is the natural

frequency.

The fractional Lagrangian L is defined by

L (t, y(t); iDα
My(t)) =

1

2
m (iDα

My(t))
2 − 1

2
mω2y2. (4.18)

The corresponding truncated M-series fractional Euler-Lagrange equation (3.2) gives

−mω2y − iDα
M (miDα

My(t)) = 0.

It yields,

iDα
M (iDα

My) + ω2y = 0.

So, we have
K2t2−2αy′′ + (1− α)K2t1−2αy′ + ω2y = 0. (4.19)

Consequently, the truncated M-series fractional Euler-Lagrange equation of motion of an harmonic
oscillator becomes

y′′ +
(1− α)

t
y′ +

(ω

K

)2 y

t2−2α
= 0 (4.20)

The general solution of this equation is given by

y(t) = a0 cos
( ω

αK
tα
)
+ a1 sin

( ω

αK
tα
)
, (4.21)

where a0 and a1 are the constants.
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Figure 2: Solution of (4.21) with a0 = a1 = 1,K = 1 and different values of α.

The figure demonstrates how the fractional order α affects the solution. It clearly shows that the
introduction of α breaks the periodic behavior of the solution. Nevertheless, as α gets closer to 1, this
periodicity reemerges.

Example 4.3 Let L represent the Lagrangian of the LC circuit system, defined as

L (t, Q(t), iDα
MQ) =

1

2
L (iDα

MQ)
2 − Q2

2C
. (4.22)

The LC-circuit consists of an inductor, L, and a capacitor, C, connected in series. It is a simplified
model of the RLC-circuit, where resistance is neglected, meaning there is no energy loss.

The variational problem is defined by :

J [Q(t)] =

∫ 1

0

L (t, Q(t), iDα
MQ(t)) dαt, (4.23)

with Q(0) = Q0 and Q(1) = Q1.
The variational problem admits a solution Q provided it satisfies the truncated M-series fractional

Euler–Lagrange equation (3.2).

∂L
∂Q

− iDα
M

(
∂L

∂ (iDα
MQ)

)
= 0. (4.24)

−Q

C
− iDα

M (LiDα
MQ(t)) = 0.

Thus,

LiDα
M (iDα

M) +
1

C
Q = 0,
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So, we have

K2

(
(1− α)

tα
t1−αQ̇+ t2−2αQ̈

)
+

1

LC
Q = 0. (4.25)

Consequently, the truncated M-series fractional Euler-Lagrange equation of the LC-circuit becomes

Q̈+
(1− α)

t
Q̇+

1

LCK2

Q

t2−2α
= 0. (4.26)

The general solution of this equation is given by

Q(t) = a cos

(
1

αK
√
LC

tα
)
+ b sin

(
1

αK
√
LC

tα
)
, (4.27)

where a and b are the constants.

Example 4.4 Let L denote the Lagrangian of the system defined by

L (t, θ(t), iDα
Mθ(t)) =

1

2
mR2 (iDα

Mθ(t))
2 −mgR cos(θ(t)), (4.28)

which describes a particle sliding on a hemisphere of fixed radius R without friction with the mass m and
the truncated M-series fractional derivative (α)-velocity iDα

Mθ(t) .
In this case the variational problems is given by,

J [θ(t)] =

∫ 1

0

L (t, θ(t), iDα
Mθ(t)) dαt, (4.29)

with θ(0) = θ0 and θ(1) = θ1.
The variational problem admits a solution θ if it satisfies the corresponding truncated M-series frac-

tional Euler–Lagrange equation (3.2)

∂L
∂θ

− iDα
M

(
∂L

∂ (iDα
Mθ)

)
= 0.

Thus,
mgR sin(θ)− iDα

M
(
mR2

iDα
Mθ

)
= 0.

Therefore, we have

iDα
M (iDα

Mθ)− g

R
sin(θ) = 0.

So, we get the solution of the equation of motion,

θ̈ +
(1− α)

t
θ̇ − g(Γ(β + 1))2

Rt2−2α
sin(θ) = 0. (4.30)

5. Conclusion

In this study, we have presented a variational problem involving the truncated M-series-fractional
derivative. By utilizing the principle of local extremum, we derive the corresponding truncated M-
series fractional Euler-Lagrange equation. Additionally, we explored how the α degree of the derivatives
influences the behavior of the solution through several illustrative examples.
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