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abstract: This work aims to investigate the existence and uniqueness of solutions for a boundary value
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Our findings are demonstrated using Krasnoselkii’s fixed point theorem and the Banach contraction principle.
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1. Introduction

In recent years, fractional differential equations (FDEs) and fractional calculus (FC) have become the
most significant and well-known fields of interdisciplinary study. Although FC has been around for more
than 300 years, its versatility in several fields has only lately become apparent. The field has had expo-
nential growth in the previous three decades, and many academics worldwide are currently researching
on this subject see [7, 8, 9]. By taking into consideration the Caputo fractional derivative of a function
with respect to another function ψ, Almeida [1] expanded the concept of the Caputo fractional derivative
and examined several helpful aspects of the fractional calculus. The benefit of this new definition of
the fractional derivative is that by selecting an appropriate function ψ, the model’s accuracy could be
increased. Some sufficient conditions for the existence of solutions to the linear fractional boundary value
issue were recently provided by Benlabess, Benbachir, and Lakrib in [5]:{

Dα
0+u(t) = f(t, u(t)), t ∈ J := [0, 1], 2 < α ≤ 3

Dα−1
0+ u(1) = 0, u(0) = 0, u′(0) = 0

Where Dα
0+ is the standard Riemann-Liouville fractional differential operator of order α and the non

linear function f : [0, 1] × [0,+∞) → R is continuous. Inspired by the previously stated works, this
paper deals with the existence of solutions for the following nonlinear fractional boundary value problem,
generalizing the conclusions found in [5] using ψ-Caputo type fractional derivative of order 3 < α ≤ 4.{

CDα;ψ
0+ u(t) = f(t, u(t)), t ∈ J := [0, 1]

u(0) = u′(0) = 0 and CDα−1;ψ
0+ u(1) = 0,CDα−2;ψ

0+ u(1) = 0
(1.1)

Where CDα;ψ
0+ is the ψ-Caputo fractional derivative of order 3 < α ≤ 4 and f : J × [0,∞) → R is a given

continuous function. The paper is organized as follows. In section 2, we introduce notations, definitions
and preliminary facts which are used .In section 3, we introduce the basic assumptions and the state the
main result on the existence and uniqueness of nonlinear fractional boundary value problem.
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2. Preliminaries.

In order to lay the groundwork for future improvements, we begin this part by providing some essential
definitions and fundamental findings. The Banach space of all continuous functions from J = [0, 1] into
R with the norm was designated by ∥u∥∞ = supt∈J |u(t)|

Definition 2.1 ( ψ-Riemann-Liouville fractional integral [4] )
It is assumed that α > 0, f is an integrable function defined on [a, b] and that ψ : [a, b] → R is an
increasing differentiable function such that ψ′(t) ̸= 0 for all t ∈ [a, b]. The definition of a function f ’s
ψ-Riemann-Liouville fractional integral operator of order α is

Iα;ψa f(t) =
1

Γ(α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))α−1f(s)ds

Definition 2.2 ( ψ-Riemann-Liouville fractional derivative [4] )
Assume that n ∈ N, f, ψ ∈ Cn([a, b]) are two functions such that, for all t ∈ [a, b], ψ is growing with
ψ′(t) > 0. The ψ-Riemann-Liouville The definition of the fractional derivative of order α of a function
f is

Dα;ψ
a f(t) =

(
1

ψ′(t)

d

dt

)n (
In−α;ψa f(t)

)
=

1

Γ(n− α)

(
1

ψ′(t)

d

dt

)n ∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1f(s)ds

where n = [α] + 1 and [α] denotes the integer part of α.

Definition 2.3 ( ψ-Caputo fractional derivative [4] )
Assume that n ∈ N, f, ψ ∈ Cn([a, b]) are two functions such that, for all t ∈ [a, b], ψ is growing with
ψ′(t)eq0. A function f ’s ψ-Caputo fractional derivative of order α is defined by

CDα;ψ
a f(t) =

(
In−α;ψa f

[n]
ψ

)
(t)

=
1

Γ(n− α)

∫ t

a

ψ′(s)(ψ(t)− ψ(s))n−α−1f
[n]
ψ (s)ds

where n = [α] + 1, for α /∈ N, and f [n]ψ (t) =
(

1
ψ′(t)

d
dt

)n
f(t) on [a, b].

According to the definition, when α = n ∈ N, we have

CDα;ψ
a f(t) = f

[n]
ψ (t)

We observe that if f ∈ Cn([a, b]). The ψ-Caputo fractional derivative of order α of f can be found as

CDα;ψ
a f(t) = Dα;ψ

a

(
f(t)−

n−1∑
k=0

f
[k]
ψ (a+)

k!
(ψ(t)− ψ(a))k

)

Theorem 2.1 (4) Let f ∈ Cn([a, b]) and α > 0. Then we have

Iα;ψCa Dα;ψ
a f(t) = f(t)−

n−1∑
k=0

f
[k]
ψ (a+)

k!
(ψ(t)− ψ(a))k

In particular, given α ∈ (0, 1) we have:

Iα;ψ
C

a Dα;ψ
a f(t) = f(t)− f(a)
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Theorem 2.2 Given a function f ∈ C([a, b]) and α > 0, we have:

CDα−1;ψ
a+ Iα;ψa+ f(x) =

∫ x

a

f(t)ψ′(t)dt

Proof: By definition,

CDα−1;ψ
a+ Iα;ψa+ f(x) =

1

Γ(n− 1− α+ 1)

∫ x

a

ψ′(t)(ψ(x)− ψ(t))n−1−α+1−1F
[n−1]
ψ (t)dt

with

F
[n−1]
ψ (x) =

f(a)

Γ(α− n+ 2)
(ψ(x)− ψ(a))α−n+1 +

1

Γ(α− n+ 2)

∫ x

a

(ψ(x)− ψ(t))α−n+1f ′(t)dt.

Then,

CDα−1;ψ
a+ Iα;ψa+ f(x) =

f(a)

Γ(n− α)Γ(α− n+ 2)

∫ x

a

ψ′(t)(ψ(x)− ψ(t))n−α−1(ψ(t)− ψ(a))α−n+1dt

+
1

Γ(n− α)Γ(α− n+ 2)

∫ x

a

∫ t

a

ψ′(t)(ψ(x)− ψ(t))n−α−1(ψ(t)− ψ(τ))α−n+1f ′(τ)dτdt

=
f(a)× (ψ(x)− ψ(a))n−α−1

Γ(n− α)Γ(α− n+ 2)

∫ x

a

ψ′(t)

(
1− ψ(t)− ψ(a)

ψ(x)− ψ(a)

)n−α−1

(ψ(t)− ψ(a))α−n+1dt

+
1

Γ(n− α)Γ(α− n+ 2)

∫ x

a

∫ t

a

ψ′(t)(ψ(x)− ψ(t))n−α−1(ψ(t)− ψ(τ))α−n+1f ′(τ)dτdt

By applying Dirichlet’s formula and the change of variables u = ψ(t)−ψ(a)
ψ(x)−ψ(a) , we arrive at the following

conclusion:

CDα−1;ψ
a+ Iα;ψa+ f(x) =

f(a)× (ψ(x)− ψ(a))

Γ(n− α)Γ(α− n+ 2)

∫ 1

0

(1− u)n−α−1uα−n+1du

+
1

Γ(n− α)Γ(α− n+ 2)

∫ x

a

f ′(t)

{∫ x

t

ψ′(τ)(ψ(x)− ψ(τ))n−α−1(ψ(τ)− ψ(t))n−α+1dτ

}
dt

= f(a)× (ψ(x)− ψ(a)) +
1

Γ(n− α)Γ(α− n+ 2)

∫ x

a

f ′(t)(ψ(x)− ψ(t))n−α−1

×
∫ x

t

ψ′(τ)

(
1− ψ(τ)− ψ(t)

ψ(x)− ψ(t)

)n−α−1

(ψ(τ)− ψ(t))
α−n+1

dτdt

= f(a)× (ψ(x)− ψ(a)) +

∫ x

a

f ′(t)(ψ(x)− ψ(t))dt

Thus,

CDα−1;ψ
a+ Iα;ψa+ f(x) =

∫ x

a

f(t)ψ′(t)dt

2

Theorem 2.3 Given a function f ∈ C([a, b]) and α > 0, we have:

CDα−2;ψ
a+ Iα;ψa+ f(x) =

∫ x

a

f(t)ψ′(t)(ψ(x)− (t))dt

Proof: Similar to proof of (2.2) 2
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Lemma 2.1 Given n ≤ k ∈ N, we have:

CDα;ψ
a+ (ψ(t)− ψ(a))k =

k!

Γ(k + 1− α)
(ψ(t)− ψ(a))k−α,

and
CDα;ψ

b− (ψ(b)− ψ(t))k =
k!

Γ(k + 1− α)
(ψ(b)− ψ(t))k−α.

Theorem 2.4 (Krasnselskii’s fixed point theorem)
Let S be a closed convex non-empty subset of a Banach space X. Suppose that A,B map S into X such
that

1. Au+Bv ∈ S, ∀u, v ∈ S,

2. A is a contraction mapping,

3. B is continuous and B(S) is contained in a compact set.

Then there exists u ∈ S such that Au+Bu = u.

3. Existence result

We begin by defining the term ”solution” for the boundary value problem (1.1).

Definition 3.1 A function u ∈ C(J,R) is said to be a solution of problem (1.1) if, u satisfies the equation

CDα;ψ
0+ u(t) = f(t, u(t)), t ∈ J

and the conditions
u(0) = u′(0) = 0 and CDα−1;ψ

0+ u(1) = CDα−2;ψ
0+ u(1) = 0

Lemma 3.1 For a given h : J → R continuous, the unique solution of the nonlinear fractional differential
equation {

CDα;ψ
0+ u(t) = h(t), t ∈ J

u(0) = u′(0) = 0 and CDα−1;ψ
0+ u(1) = CDα−2;ψ

0+ u(1) = 0
(3.1)

is given by:
u(t) = c2(ψ(t)− ψ(0))2 + c3(ψ(t)− ψ(0))3 + Iα;ψ0+ h(t)dt (3.2)

with:

C2 = −
(∫ 1

0

h(s)ψ′(s)(ψ(1)− ψ(s))ds

)
Γ(5− α)

2
(ψ(1)− ψ(0))α−4

+
Γ(5− α)

(6− α)× 2
(ψ(1)− ψ(0))α−3 ×

∫ 1

0

h(s)ψ′(s)ds

and

c3 = −
(∫ 1

0

h(s)ψ′(s)ds

)
Γ(5− α)

6
(ψ(1)− ψ(0))α−4

Proof: The following is obtained by applying the ψ-Riemann-Liouville fractional integral of order α to
the first equation of (3.1)

u(t) = c0 + c1(ψ(t)− ψ(0)) + c2(ψ(t)− ψ(0))2 + c3(ψ(t)− ψ(0))3 + Iα;ψ0+ h(t)dt

Given that u(0) = 0 as well as u′(0) = 0, We conclude that c0 = c1 = 0.. Then,

u(t) = c2(ψ(t)− ψ(0))2 + c3(ψ(t)− ψ(0))3 + Iα;ψ0+ h(t)dt
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With the condition CDα−1;ψ
0+ u(1) = 0 and theorem(2.2) and lemma(2.1), we have:

CDα−1;ψ
0+ u(t) =

6c3
Γ(5− α)

(ψ(t)− ψ(0))4−α +

∫ t

0

h(s)ψ′(s)ds

so,

c3 = −
(∫ 1

0

h(s)ψ′(s)ds

)
Γ(5− α)

6
(ψ(1)− ψ(0))α−4

Additionally, under the prerequisite CDα−2;ψ
0+ u(1) = 0 and lemma(2.1) and theorem(2.2), we have:

CDα−2;ψ
0+ u(1) =

2c2
Γ(5− α)

(ψ(1)− ψ(0))4−α +
6× Γ(5− α)× c3

Γ(6− α)× 6
(ψ(1)− ψ(0))1 ×

∫ 1

0

h(s)ψ′(s)ds

+

∫ 1

0

h(s)ψ′(s)(ψ(1)− ψ(s))ds

so,

c2 = −
(∫ 1

0

h(s)ψ′(s)(ψ(1)− ψ(s))ds

)
Γ(5− α)

2
(ψ(1)− ψ(0))α−4

+
Γ(5− α)

(6− α)× 2
(ψ(1)− ψ(0))α−3 ×

∫ 1

0

h(s)ψ′(s)ds

The integral equation (3.2) is thus obtained, and the proof is completed by the direct computation of the
opposite. 2

We will now discuss our main result concerning the existence of solutions of problem (1.1) .
In order to establish the existence result we make the following assumption:
(Hh) : There exists a constant L > 0, such that

|h(t, u(t))− h(t, v(t))| ≤ L|u(t)− v(t)|,∀u, v ∈ R,∀t ∈ J

Theorem 3.1 Let h : J × [0,∞) → R be a continuous function such that (Hh) holds, and if we have,
that

L(ψ(1)− ψ(0))α
{
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

}
< 1

Then problem (1.1) has a unique solution on J .

Proof: Suppose that:

Pu(t) =
−Γ(5− α)(ψ(1)− ψ(0))α−4

2
(ψ(t)− ψ(0))2 ×

(∫ 1

0

h(s, u(s))ψ′(s)(ψ(1)− ψ(s))ds

)
+

Γ(5− α)(ψ(1)− ψ(0))α−3

2(6− α)
(ψ(t)− ψ(0))2 ×

(∫ 1

0

h(s, u(s))ψ′(s)ds

)
+

−Γ(5− α)(ψ(1)− ψ(0))α−4

6
(ψ(t)− ψ(0))3 ×

(∫ 1

0

h(s, u(s))ψ′(s)ds

)
+

1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s, u(s))ds
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Then,

|Pu(t)− Pv(t)| ≤ −Γ(5− α)(ψ(1)− ψ(0))α−4

2
(ψ(t)− ψ(0))2

×
(∫ 1

0

|h(s, u(s))− h(s, v(s))|ψ′(s)(ψ(1)− ψ(s))ds

)
+

Γ(5− α)(ψ(1)− ψ(0))α−3

2(6− α)
(ψ(t)− ψ(0))2 ×

(∫ 1

0

|h(s, u(s))− h(s, v(s))|ψ′(s)ds

)
+

−Γ(5− α)(ψ(1)− ψ(0))α−4

6
(ψ(t)− ψ(0))3 ×

(∫ 1

0

|h(s, u(s))− h(s, v(s))|ψ′(s)ds

)
+

1

Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1|h(s, u(s))− h(s, v(s))|ds

≤ LΓ(5− α)(ψ(1)− ψ(0))α

4
∥u− v∥∞ +

LΓ(5− α)(ψ(1)− ψ(0))α

2(6− α)
∥u− v∥∞

+
LΓ(5− α)(ψ(1)− ψ(0))α

6
∥u− v∥∞ +

L

Γ(α+ 1)
(ψ(1)− ψ(0))α∥u− v∥∞

= L(ψ(1)− ψ(0))α
(
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

)
∥u− v∥∞.

because P is a contraction. The unique solution to problem (1.1) is P ’s unique fixed point, according to
the Banach fixed point theorem. 2

Example 3.1 Consider the following nonlinear fractional boundary value problem with α = 3.5 (so
3 < α ≤ 4) and ψ(t) = t (the identity function):

CD3.5;t
0+ u(t) = h(t, u(t)), t ∈ [0, 1],

with boundary conditions:

u(0) = u′(0) = 0, CD2.5;t
0+ u(1) = CD1.5;t

0+ u(1) = 0.

Here, CD3.5;t
0+ is the ψ-Caputo fractional derivative with ψ(t) = t, which simplifies to the standard

Caputo derivative.
Define the Function h(t, u(t)) Let’s choose:

h(t, u(t)) =
1

10
sin(u(t)).

This function is continuous and satisfies the Lipschitz condition with L = 1
10 , because:

|h(t, u(t))− h(t, v(t))| =
∣∣∣∣ 110 sin(u(t))− 1

10
sin(v(t))

∣∣∣∣ ≤ 1

10
|u(t)− v(t)|.

Verify the Condition of Theorem (3.1) We need to check if:

L(ψ(1)− ψ(0))α
{
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

}
< 1.

Substitute L = 1
10 , α = 3.5, and ψ(1)− ψ(0) = 1:

1

10
· (1)3.5

{
Γ(1.5)

(
5

12
+

1

2(2.5)

)
+

1

Γ(4.5)

}
< 1.

Calculate the terms:
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• Γ(1.5) =
√
π
2 ≈ 0.8862,

• Γ(4.5) ≈ 11.6317,

• 5
12 + 1

2(2.5) =
5
12 + 1

5 = 25
60 + 12

60 = 37
60 ≈ 0.6167.

Now, substitute these values:

1

10

{
0.8862 · 0.6167 + 1

11.6317

}
=

1

10
{0.5467 + 0.0859} =

1

10
· 0.6326 = 0.06326.

Since 0.06326 < 1, the condition of Theorem(3.1) is satisfied.
Conclusion, By Theorem(3.1), the boundary value problem:

CD3.5;t
0+ u(t) =

1

10
sin(u(t)), t ∈ [0, 1],

with the given boundary conditions, has a unique solution on the interval [0, 1].

Example 3.2 Consider the following nonlinear fractional boundary value problem with α = 3.8 (so
3 < α ≤ 4) and ψ(t) = t (the identity function):

CD3.8;t
0+ u(t) = h(t, u(t)), t ∈ [0, 1],

with boundary conditions:

u(0) = u′(0) = 0, CD2.8;t
0+ u(1) = CD1.8;t

0+ u(1) = 0.

Here, CD3.8;t
0+ is the ψ-Caputo fractional derivative with ψ(t) = t, which simplifies to the standard

Caputo derivative.
Define the Function h(t, u(t)): Let’s choose:

h(t, u(t)) =
1

15

(
u(t)− u(t)3

3

)
.

This function is continuous and satisfies the Lipschitz condition with L = 1
15 , because:

|h(t, u(t))− h(t, v(t))| =
∣∣∣∣ 115

(
u(t)− u(t)3

3

)
− 1

15

(
v(t)− v(t)3

3

)∣∣∣∣ ≤ 1

15
|u(t)− v(t)|.

Verify the Condition of Theorem (3.1): We need to check if:

L(ψ(1)− ψ(0))α
{
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

}
< 1.

Substitute L = 1
15 , α = 3.8, and ψ(1)− ψ(0) = 1:

1

15
· (1)3.8

{
Γ(1.2)

(
5

12
+

1

2(2.2)

)
+

1

Γ(4.8)

}
< 1.

Calculate the terms:

• Γ(1.2) ≈ 0.9182,

• Γ(4.8) ≈ 17.837,

• 5
12 + 1

2(2.2) =
5
12 + 1

4.4 ≈ 0.4167 + 0.2273 = 0.6440.
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Now, substitute these values:

1

15

{
0.9182 · 0.6440 + 1

17.837

}
=

1

15
{0.5913 + 0.0561} =

1

15
· 0.6474 ≈ 0.0432.

Since 0.0432 < 1, the condition of Theorem (3.1) is satisfied.
Conclusion: By Theorem (3.1), the boundary value problem:

CD3.8;t
0+ u(t) =

1

15

(
u(t)− u(t)3

3

)
, t ∈ [0, 1],

with the given boundary conditions, has a unique solution on the interval [0, 1].

Theorem 3.2 Assuming that h fulfills (Hh) and that β > 0 exists; such that:

| f(t, u) |≤ β, ∀t ∈ J, ∀x ≥ 0

And if there exists γ > 0 such that:

β(ψ(1)− ψ(0))α
(
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

)
≤ γ

then the problem (1.1) has at least one solution on J .

Proof: We define a subset S of X by:

S = {u ∈ C(J,R), ∥u∥∞ ≤ γ}

Define two operators A : S → X and B : S → X by:

Au(t) =
−Γ(5− α)(ψ(1)− ψ(0))α−4

2
(ψ(t)− ψ(0))2 ×

(∫ 1

0

h(s, u(s))ψ′(s)(ψ(1)− ψ(s))ds

)
+

Γ(5− α)(ψ(1)− ψ(0))α−3

2(6− α)
(ψ(t)− ψ(0))2 ×

(∫ 1

0

h(s, u(s))ψ′(s)ds

)
+

−Γ(5− α)(ψ(1)− ψ(0))α−4

6
(ψ(t)− ψ(0))3 ×

(∫ 1

0

h(s, u(s))ψ′(s)ds

)
+

1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s, u(s))ds

and

Bu(t) =
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1f(s, u(s))ds

Then, the equation (3) is transformed into the operator equation as

u(t) = Au(t) +Bu(t)

We demonstrate in multiple phases that the operators A and B meet all the requirements of theorem
(2.3).
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Step 1. Let u, v ∈ S. Then:

|Au(t) +Bv(t)| =
∣∣∣∣ −Γ(5− α)(ψ(1)− ψ(0))α−4

2
(ψ(t)− ψ(0))2

×
(∫ 1

0

h(s, u(s))ψ′(s)(ψ(1)− ψ(s))ds

)
+

Γ(5− α)(ψ(1)− ψ(0))α−3

2(6− α)
(ψ(t)− ψ(0))2 ×

(∫ 1

0

h(s, u(s))ψ′(s)ds

)
+

−Γ(5− α)(ψ(1)− ψ(0))α−4

6
(ψ(t)− ψ(0))3 ×

(∫ 1

0

h(s, u(s))ψ′(s)ds

)
+

1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s, u(s))ds

+
1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1h(s, u(s))ds

∣∣∣∣
≤ βΓ(5− α)(ψ(1)− ψ(0))α

4
+
βΓ(5− α)(ψ(1)− ψ(0))α

2(6− α)

+
βΓ(5− α)(ψ(1)− ψ(0))α

6
+
β(ψ(1)− ψ(0))α

2Γ(α+ 1)
+
β(ψ(1)− ψ(0))α

2Γ(α+ 1)

= β

(
(Γ(5− α))

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

)
(ψ(1)− ψ(0))α

≤ γ

Step 2. Let u, v ∈ S. Then

|Au(t)−Av(t)| ≤ LΓ(5− α)(ψ(1)− ψ(0))α

4
∥u− v∥∞ +

LΓ(5− α)(ψ(1)− ψ(0))α

2(6− α)
∥u− v∥∞

+
LΓ(5− α)(ψ(1)− ψ(0))α

6
∥u− v∥∞ +

L

Γ(α+ 1)
(ψ(1)− ψ(0))α∥u− v∥∞

= L(ψ(1)− ψ(0))α
(
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

)
∥u− v∥∞

< ∥u− v∥∞ ( by condition (4)).

Step 3. Let (un)n be a sequence such that un → u ∈ C(J,R). For t ∈ J , we have:

|Bun(t)−Bu(t)| ≤ 1

2Γ(α)

∫ t

0

ψ′(s)(ψ(t)− ψ(s))α−1

∣∣∣∣ h((s, un(s))− h(s, u(s)) | ds

≤ L(ψ(1)− ψ(0))α

2Γ(α+ 1)
∥un − u∥∞

Therefore
∥Bun(t)−Bu(t)∥∞ → 0 as ∥un − u∥∞ → 0

to demonstrate the compactness of B. Let Ω ⊂ S be a bounded set. In C(J,R), we must demonstrate
that B(Ω) is substantially compact. For random t ∈ J and u ∈ Ω. We possess:

∥Bu∥ ≤ β(ψ(1)− ψ(0))α

2Γ(α+ 1)
= cste.

Now, for equi-continuity of B take t1, t2 ∈ J with t1 < t2, and let u ∈ Ω. Thus, we get

|Bu (t2)−Bu (t1)| ≤
β

2Γ(α+ 1)
{(ψ (t2)− ψ(0))

α
+ (ψ (t1)− ψ(0))

α}
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The last estimate leads us to the conclusion that when t2 → t1, we have ∥Bu (t2)−Bu (t1)∥ → 0. then
B is equicontinuous as a consequence. Accordingly, the operator B is compact by the Ascoli-Arzela
theorem. Thus, on J , there is at least one solution to issue (1.1).

2

Example 3.3 Consider the following nonlinear fractional boundary value problem with α = 3.5 (so
3 < α ≤ 4) and ψ(t) = t (the identity function):

CD3.5;t
0+ u(t) = h(t, u(t)), t ∈ [0, 1],

with boundary conditions:

u(0) = u′(0) = 0, CD2.5;t
0+ u(1) = CD1.5;t

0+ u(1) = 0.

Here, CD3.5;t
0+ is the ψ-Caputo fractional derivative with ψ(t) = t, which simplifies to the standard

Caputo derivative.
Define the Function h(t, u(t)): Let’s choose:

h(t, u(t)) =
1

10
arctan(u(t)).

This function is continuous and satisfies:

1. Lipschitz condition: The derivative of arctan(u(t)) is bounded by 1, so:

|h(t, u(t))− h(t, v(t))| =
∣∣∣∣ 110 arctan(u(t))− 1

10
arctan(v(t))

∣∣∣∣ ≤ 1

10
|u(t)− v(t)|.

Thus, L = 1
10 .

2. Boundedness condition: Since | arctan(u(t))| ≤ π
2 , we have:

|h(t, u(t))| =
∣∣∣∣ 110 arctan(u(t))

∣∣∣∣ ≤ π

20
.

Thus, β = π
20 .

Verify the Inequality Condition:
We need to check if:

β(ψ(1)− ψ(0))α
{
Γ(5− α)

(
5

12
+

1

2(6− α)

)
+

1

Γ(α+ 1)

}
≤ γ.

Substitute β = π
20 , α = 3.5, and ψ(1)− ψ(0) = 1:

π

20
· (1)3.5

{
Γ(1.5)

(
5

12
+

1

2(2.5)

)
+

1

Γ(4.5)

}
≤ γ.

Calculate the terms:

• Γ(1.5) =
√
π
2 ≈ 0.8862,

• Γ(4.5) ≈ 11.6317,

• 5
12 + 1

2(2.5) =
5
12 + 1

5 = 25
60 + 12

60 = 37
60 ≈ 0.6167.

Now, substitute these values:

π

20

{
0.8862 · 0.6167 + 1

11.6317

}
=

π

20
{0.5467 + 0.0859} =

π

20
· 0.6326 ≈ 0.0995.

Thus, we can choose γ = 0.1, since 0.0995 ≤ 0.1.
Conclusion: By Theorem(3.2), the boundary value problem:

CD3.5;t
0+ u(t) =

1

10
arctan(u(t)), t ∈ [0, 1],

with the given boundary conditions, has at least one solution on the interval [0, 1].
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4. Conclusion

This article addresses the existence and uniqueness of solutions for a class of nonlinear fractional
boundary value problems involving ψ-Caputo derivatives. Fractional calculus, particularly fractional
differential equations (FDEs), has gained significant attention in recent years due to its applications in
various scientific and engineering fields. The authors extend the classical Caputo derivative by introducing
the ψ-Caputo fractional derivative, which provides greater flexibility and accuracy in modeling real-world
phenomena by incorporating an arbitrary function ψ. This generalization allows for a more nuanced
analysis of fractional differential equations.

The main focus of the paper is to establish sufficient conditions under which the nonlinear frac-
tional boundary value problem admits a unique or at least one solution. The authors employ powerful
mathematical tools, including Krasnoselskii’s fixed point theorem and the Banach contraction
principle, to derive these conditions. The use of ψ-Riemann-Liouville fractional integrals and derivatives
plays a crucial role in the analysis, providing a solid foundation for the theoretical results.

Two key theorems are presented: Theorem (3.1) guarantees the existence of a unique solution under
a Lipschitz condition on the nonlinear function h(t, u(t)), while Theorem (3.2) ensures the existence
of at least one solution under boundedness and continuity assumptions. These results are significant as
they generalize previous work on fractional boundary value problems and provide a framework for solving
more complex problems involving ψ-Caputo derivatives.

The theoretical findings are complemented by illustrative examples, which demonstrate the practical
applicability of the theorems. These examples show how the conditions of the theorems can be verified
for specific functions and parameters, highlighting the versatility of the approach.

In conclusion, this article makes a valuable contribution to the field of fractional calculus by extending
the classical theory to include ψ-Caputo derivatives and providing new insights into the solvability of
nonlinear fractional boundary value problems. The results open up new avenues for research and have
potential applications in areas such as physics, biology, and engineering, where fractional models are
increasingly used to describe complex systems.
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