(3s.) **v. 2025 (43)** : 1–10. ISSN-0037-8712 doi:10.5269/bspm.75791

Automatic Boundedness in Certain Bornological Algebras

Mohamed Aboulekhlef and Youssef Tidli

ABSTRACT: In this paper, we deal with the automatic boundedness of linear operators in some classes of bornological algebras, with a special emphasis on homomorphisms. In emphasizing one of the main results on multiplicatively p-convex and *-semi-simple algebras is the application of classical boundedness theorems to bornological algebras. Applications are given to spectral theory and operator analysis.

Key Words: Banach algebras, generalized derivations, bornological algebras, multiplicatively convex.

Contents

liminaries
onvex Bornological Vector Spaces
Canonical Bornology and Topology
Mackey Convergence and the Topology of M-Closure
Bounded Mappings
3.3.1 Network Bornology
Bornological Algebras
Separator Space
Characterizations of Bounded Operators:
Automatic Boundedness

1. Introduction

In [5], A.M. Sinclair established fundamental results for the investigation of the continuity of homomorphisms, derivations, and operator pairs in Banach spaces. In [4], A. Tajmouati generalized some results of A.M. Sinclair to bornological vector spaces (b.v.s.), which gave a tool to answer questions concerning the boundedness of linear operators. He thus generalized the concept of the separator space $\mathfrak{S}(S)$ of a linear operator S, defined on a bornological space X and taking values in a bornological space Y (see Definition 3.1). The importance of the separator space comes from the fact that a linear operator is bounded if and only if its separator space reduces to the singleton $\{0\}$. In this paper, we deal with the automatic boundedness of homomorphisms in some complete bornological algebras. Motivated by the techniques of A.M. Sinclair [5], we transfer results from the normed case to bornological algebras. We then obtain results on the automatic boundedness of surjective (or dense-image) homomorphisms in complete $a.b.m.c_p$ *-simple (Theorem 3.5) and *-semi-simple (Theorem 4.1) algebras. The algebras in consideration are complex, associative but not unital, in general, and non-commutative.

2. Preliminaries

Definition 2.1

Let \mathcal{X} be a set. A bornology on \mathcal{X} is a family β of subsets of \mathcal{X} which has the following properties:

 (P_1) : β forms a covering of \mathcal{X} ,

Submitted February 19, 2025. Published August 12, 2025 2010 Mathematics Subject Classification: 46-XX, 16-XX, 47-XX.

- (P_2) : β is hereditary under inclusion ($\mathcal{B} \in \beta$ and $\mathcal{A} \subset \mathcal{B}$ imply $\mathcal{A} \in \beta$),
- (P_3) : β is stable under finite unions.

A bornological set is a couple (\mathcal{X}, β) consisting of a set \mathcal{X} and a bornology β on \mathcal{X} .

A basis of a bornology β' for β is a subfamily β' of β such that:

$$\forall \mathcal{B} \in \beta, \ \exists \mathcal{B}' \in \beta', \ \mathcal{B} \subset \mathcal{B}'.$$

In other words, β' covers \mathcal{X} , and any finite union of elements of β' is included in an element of β' .

Definition 2.2

A bornology β on a vector space \mathcal{E} (over \mathbb{R} or \mathbb{C}) is called vectorial if it satisfies for all $x \in \mathcal{E}$ and all scalar λ :

- Stability under addition: for any A, $B \in \beta$, we have $A + B \in \beta$,
- Stability under homothety: for every $A \in \beta$ and all $\lambda \in \mathbb{R}$ or \mathbb{C} we have $\lambda A \in \beta$,
- Closure under taking convex hulls: if $A \in \beta$, then the convex hull of A also is an element of β .

These properties are equivalent to saying that the maps $(x,y) \mapsto x+y$ and $(\lambda,x) \mapsto \lambda x$ are bounded.

A bounded disk is a balanced, convex, and bounded set. A bornology is said to be convex when it can be defined by bounded disks. In that case, the space \mathcal{E} is called a convex bornological space (c.b.s.).

A bornological vector space (b.v.s.) \mathcal{E} is said to be of type M_1 if it satisfies the following condition, known as Mackey's countability condition: for every sequence $(B_k)_{k\in\mathbb{N}}$ of bounded sets in \mathcal{E} , there exists a sequence of positive scalars $(\lambda_k)_{k\in\mathbb{N}}$ such that the set $\bigcup_{k=0}^{\infty} \lambda_k B_k$ is bounded in \mathcal{E} .

3. p-Convex Bornological Vector Spaces

Let $0 and <math>\mathcal{E}$ be a vector space. A bornology β on a vector space \mathcal{E} (over \mathbb{R} or \mathbb{C}) is said to be vectorial if it satisfies the following conditions:

- Stability under addition: for all $\mathcal{A}, \mathcal{B} \in \beta$, we have $\mathcal{A} + \mathcal{B} \in \beta$,
- Stability under scalar multiplication: for all $A \in \beta$ and all $\lambda \in \mathbb{R}$ or \mathbb{C} , we have $\lambda A \in \beta$,
- Stability under taking the balanced hull: if $A \in \beta$, then the balanced hull of A also belongs to β .

These properties are equivalent to stating that the maps $(x, y) \mapsto x + y$ and $(\lambda, x) \mapsto \lambda x$ are bounded. A bounded p-disk is a set that is balanced, p-convex, and bounded. A vectorial bornology is said to be p-convex if it can be defined by bounded p-disks. In this context, the space \mathcal{E} is referred to as a p-convex bornological space $(e.b.c_p)$.

Remark 3.1

• A subset \mathcal{B} of \mathcal{E} is said to be p-disked if for all $x, y \in \mathcal{B}$, $\lambda x + \mu y \in \mathcal{B}$ for all positive λ and μ such that $|\lambda|^p + |\mu|^p \leq 1$. Clearly, any intersection of p-disks is p-disked. The p-disked hull of a subset \mathcal{B} of \mathcal{E} , denoted by $\Gamma_p(\mathcal{B})$, is the intersection of all p-disks containing \mathcal{B} . It is shown that:

$$\Gamma_p(\mathcal{B}) = \left\{ \sum_{1 \le i \le n} \lambda_i x_i, \quad x_i \in \mathcal{B}, \text{ and } \sum_{1 \le i \le n} |\lambda_i|^p \le 1, \ n \in \mathbb{N}^* \right\}.$$

Let $\mathcal{B} \subset \mathcal{E}$ and p a real number. Define:

$$J_{\mathcal{B},p}(x) = \inf \{ |\lambda|^p : x \in \lambda \mathcal{B} \},$$

with the convention that $\inf(\emptyset) = +\infty$. The function $J_{\mathcal{B},p}$ is called the p-gauge of \mathcal{B} . If \mathcal{B} is absorbing, $J_{\mathcal{B},p}$ is a finite function. It is then shown that the p-gauge of an absorbing p-disk \mathcal{B} is a p-semi-norm.

• A subset \mathcal{B} of \mathcal{E} is said to be ℓ^p -disked if the sums of series $\sum_{i=1}^{\infty} \lambda_i x_i$ belong to \mathcal{B} for $(x_i) \in \mathcal{B}$ and (λ_i) a sequence of scalars such that $\sum_{i=1}^{\infty} |\lambda_i|^p \leq 1$. The ℓ^p -disked hull of a subset \mathcal{B} of \mathcal{E} , denoted by $\nu_p(\mathcal{B})$, is the intersection of all ℓ^p -disks containing \mathcal{B} . It is shown that:

$$\nu_p(\mathcal{B}) = \left\{ \sum_{i=1}^{\infty} \lambda_i x_i \text{ where } (x_i) \in \mathcal{B} \text{ and } \sum_{i=1}^{\infty} |\lambda_i|^p \le 1 \right\}.$$

• When p = 1, the p-convex subsets of \mathcal{E} coincide with the convex subsets of \mathcal{E} , leading to the notion of a convex bornological space.

An endowed vector space (e.v.b.) \mathcal{E} is said to be of type M_1 if it satisfies the following condition, called Mackey's countability condition: for every sequence $(\mathcal{B}_k)_{k\in\mathbb{N}}$ of bounded subsets of \mathcal{E} , there exists a sequence of positive scalars $(\lambda_k)_{k\in\mathbb{N}}$ such that the set $\bigcup_{k=0}^{\infty} \lambda_k \mathcal{B}_k$ is bounded in \mathcal{E} .

3.1. Canonical Bornology and Topology

Let \mathcal{E} be a locally convex space (l.c.s.). The Von Neumann bornology on \mathcal{E} is defined as the family β of bounded subsets of \mathcal{E} , i.e., the sets absorbed by every neighborhood of 0. This construction yields a convex bornological space (c.b.s.), denoted (\mathcal{E}, β) or simply $\beta \mathcal{E}$.

Conversely, for a convex bornological space (c.b.s.) \mathcal{E} , one can associate a locally convex space (l.c.s.), denoted $T\mathcal{E}$, whose base of neighborhoods of 0 consists of bornivorous disks, i.e., sets that absorb all bounded sets. If $T\mathcal{E}$ is separated, \mathcal{E} is said to be t-separated.

In general, the topology $TB\mathcal{E}$ defined on an l.c.s. is finer than its initial topology, while the bornology $BT\mathcal{E}$ associated with a c.b.s. is coarser than its initial bornology. An l.c.s. is called bornological if $TB\mathcal{E}$ coincides with the initial topology of \mathcal{E} , and a c.b.s. is called topological if $\mathcal{E} = BT\mathcal{E}$.

3.2. Mackey Convergence and the Topology of M-Closure

Let \mathcal{E} be a bornological vector space (b.v.s.), and $(x_n)_n$ a sequence in \mathcal{E} . The sequence $(x_n)_n$ is said to converge in the Mackey sense to $x \in \mathcal{E}$ if there exists a bounded set \mathcal{B} in \mathcal{E} and a decreasing sequence of real numbers $(\lambda_n)_n$ tending to 0 such that for all $n, x_n - x \in \lambda_n \mathcal{B}$. When \mathcal{E} is regarded as a c.b.s., the following result holds:

Proposition 3.1

A sequence $(x_n)_n$ in a c.b.s. \mathcal{E} converges to $x \in \mathcal{E}$ in the Mackey sense if and only if there exists a bounded disk \mathcal{B} in \mathcal{E} such that $(x_n)_n$ converges to x in the semi-normed space $\mathcal{E}_{\mathcal{B}}$.

If $(x_n)_n$ and $(y_n)_n$ converge bornologically to x and y, respectively, and λ is a scalar, then $(x_n + y_n)_n$ and $(\lambda x_n)_n$ converge to x + y and λx , respectively.

A bornological vector space (b.v.s.) is said to be separated if it contains no bounded lines. This is equivalent to stating that the limit of any M-convergent sequence is unique.

If \mathcal{E} is a convex bornological space (c.b.s.), it is separated if, for every bounded disk \mathcal{B} , the space $\mathcal{E}_{\mathcal{B}}$ is a normed space.

If \mathcal{E} is a topological vector space (t.v.s.), it is separated if and only if its Von Neumann bornology is separated.

Let \mathcal{F} be a subspace of \mathcal{E} . The traces of bounded sets of \mathcal{E} on \mathcal{F} form a bornology on \mathcal{F} , called the induced bornology. In this case, \mathcal{F} is called a bornological subspace of \mathcal{E} .

On the quotient \mathcal{E}/\mathcal{F} , the family $\{q(\mathcal{B}) \mid \mathcal{B} \text{ bounded in } \mathcal{E}\}$, where q is the canonical projection, forms a vector bornology on \mathcal{E} , called the quotient bornology. This bornology is separated if and only if \mathcal{F} is b-closed.

A subset \mathcal{B} of a b.v.s. is said to be M-closed or b-closed if $\mathcal{B} = \mathcal{B}^1$, where \mathcal{B}^1 is the set of Mackey limits in \mathcal{E} of sequences in \mathcal{B} .

The collection of M-closed subsets of \mathcal{E} defines a topology on \mathcal{E} , denoted $\tau \mathcal{E}$, called the topology of M-closure (or b-closure).

Let \mathcal{E} be a b.v.s. The bornological closure of a subset \mathcal{B} of \mathcal{E} is the intersection of all bornologically closed subsets of \mathcal{E} containing \mathcal{B} , denoted $\bar{\mathcal{B}}$. An element $x \in \bar{\mathcal{B}}$ is not necessarily the bornological limit of a sequence of points in \mathcal{B} .

A convex bornological space \mathcal{E} is said to satisfy the M-closure property if, for every subset \mathcal{B} of \mathcal{E} , we have $\mathcal{B}^{(1)} = \bar{\mathcal{B}}$.

3.3. Bounded Mappings

A mapping $f:(\mathcal{X},\beta)\to(\mathcal{Y},\beta_1)$ is said to be bounded if it satisfies $f(\beta)\subseteq\beta_1$. Furthermore, if β and β_1 are two bornologies on the set \mathcal{X} , β is said to be finer than β_1 when $\beta\subseteq\beta_1$. This is equivalent to stating that the identity mapping id: $(\mathcal{X},\beta)\to(\mathcal{X},\beta_1)$ is bounded.

3.3.1. Network Bornology.

Let \mathcal{F} be a vector space. A network in \mathcal{F} is a family R of disks in \mathcal{F} , indexed by $\mathbb{N}^{\mathbb{N}}$: e_{n_1,n_2,\ldots,n_k} , where $k,n_1,n_2,\ldots,n_k \in \mathbb{N}$, satisfying the following condition R:

$$r = \bigcup_{n_1=0}^{\infty} e_{n_1, n_2, \dots, n_k}, \text{ and } e_{n_1, n_2, \dots, n_{k-1}} = \bigcup_{n_k=1}^{\infty} e_{n_1, n_2, \dots, n_k}, \quad \forall k \ge 1.$$

If β is a convex and separated bornology on \mathcal{F} , β and R are said to be compatible if the following two properties hold:

• (βR_1) : For every sequence of natural numbers $(n_k)_k$, there exists a sequence of positive real numbers $(v_k)_k$ such that for any $f_k \in e_{n_1,n_2,...,n_k}$ and $\mu_k \in [0,v_k]$, the series $\sum \mu_k f_k$ is M-convergent in (\mathcal{F},β) . Moreover, the sum of this series satisfies:

$$\sum_{k=k_0}^{\infty} \mu_k f_k \in e_{n_1, n_2, \dots, n_0}, \quad \forall k_0 \in \mathbb{N}.$$

• (βR_2) : For every pair $[(n_k), (v_k)]$, where $(n_k)_k \subset \mathbb{N}$ and $(v_k)_k \in (\mathbb{R}^+)^*$, the following set is bounded in (\mathcal{F}, β) :

$$\bigcap_{k=1}^{\infty} v_k e_{n_1, n_2, \dots, n_k}.$$

Example 3.1

Every complete bornological vector space (c.b.s.) with a countable bornology basis is a network space.

Let \mathcal{F} be a convex bornological space (c.b.s.) that is separated. \mathcal{F} is said to have the M-closed graph property if any linear map from a Banach space \mathcal{E} to \mathcal{F} , whose graph is M-closed in $\mathcal{E} \times \mathcal{F}$, is bounded. This is equivalent to assuming that \mathcal{F} is a complete convex bornological space.

The main types of separated convex bornological spaces (c.b.s.) that possess the M-closed graph property are as follows:

- 1. Network c.b.s. (in particular, complete c.b.s. with a countable basis).
- 2. Souslin c.b.s.

Theorem 3.1

Let \mathcal{E} be a complete convex bornological space (c.b.s.), and let \mathcal{F} be a networked c.b.s. Any linear mapping $u: \mathcal{E} \to \mathcal{F}$ that is both bijective and bounded is a bornological isomorphism.

Proposition 3.2 (3)

Let \mathcal{E} and \mathcal{F} be two complete p-convex bornological spaces with \mathcal{F} having a countable basis. Any linear mapping $u: \mathcal{E} \to \mathcal{F}$ whose graph is M-closed is bounded.

Proposition 3.3 ([3])

Let \mathcal{E} and \mathcal{F} be two complete p-convex bornological spaces with \mathcal{E} having a countable basis. Any bounded linear bijection $u: \mathcal{E} \to \mathcal{F}$ is a bornological isomorphism.

Theorem 3.2

Suppose \mathcal{E} is a p-convex bornological space (0 . The following statements are equivalent:

- \mathcal{E} is complete;
- \mathcal{E} is Mackey-complete, and its bornology is l^p -disked.

3.4. Bornological Algebras

Let \mathcal{E} be an algebra, and let β be a bornology on \mathcal{E} such that (\mathcal{E}, β) is a bornological vector space (b.v.s.).

 (\mathcal{E}, β) is called a bornological algebra if the multiplication map $(x, y) \mapsto x \cdot y$ is bounded. In other words, this means that the product of two bounded subsets of (\mathcal{E}, β) is also bounded in β .

If (\mathcal{E}, β) is a complete convex bornological space (c.b.s.) and the multiplication is bounded, then (\mathcal{E}, β) is called a convex bornological algebra (c.b.a.).

A subset $A \subset \mathcal{E}$ of an algebra \mathcal{E} is said to be idempotent if it satisfies $A^2 = A \cdot A \subset A$.

Recall that if β is a vectorial bornology defined on a vector space \mathcal{E} , a pseudo-basis of β is a subfamily $\beta' \subset \beta$ such that every element of β is absorbed by an element of β' .

A bornological algebra on \mathcal{E} is said to be multiplicatively convex if it admits a pseudo-basis consisting of idempotent disks. A multiplicatively convex bornological algebra (abbreviated as m.c.b.a.) is a bornological algebra whose bornology is multiplicatively convex.

Let \mathcal{E} be a bornological algebra, and let $\mathcal{E}^{\#}$ denote the unital algebra obtained by adjoining a unit to \mathcal{E} . Recall that $\mathcal{E}^{\#} = \mathbb{K} \times \mathcal{E}$, equipped with the usual addition and a multiplication defined by:

$$(\lambda, a)(\mu, b) = (\lambda \mu, \lambda b + \mu a + ab),$$

for all $(\lambda, a), (\mu, b) \in \mathbb{K} \times \mathcal{E}$.

The product bornology on $\mathcal{E}^{\#}$ is a bornological algebra, meaning it is compatible with the multiplication defined above. The algebra $\mathcal{E}^{\#}$, equipped with this bornology, is called the bornological algebra obtained by the bornological adjunction of a unit to \mathcal{E} .

If \mathcal{E} is the inductive limit bornological algebra of the system $(\mathcal{E}_i, \pi_{ji})$, then $\mathcal{E}^{\#}$ is the inductive limit bornological algebra of the system $(\mathcal{E}_i^{\#}, \pi_{ji})$.

Theorem 3.3

Let \mathcal{E} be a c.b.a.

 \mathcal{E} is a multiplicatively convex bornological algebra (m.c.b.a.) if and only if it is the bornological inductive limit of semi-normed algebras.

Theorem 3.4

Let \mathcal{E} be a $a.b.c_p$.

 \mathcal{E} is a multiplicatively p-convex bornological algebra $(a.b.m.c_p)$ if and only if it is the inductive limit of p-semi-normable spaces.

Notations:

Let β be a pseudo-basis consisting of p-idempotent disks. We endow β with the following order: For $\mathcal{A}, \mathcal{B} \in \beta$, we say that $\mathcal{A} \geq \mathcal{B}$ if and only if there exists $\alpha > 0$ such that $\mathcal{A} \subset \alpha \mathcal{B}$. With this order, β is a preordered and upward-filtering set.

Furthermore, if $\pi_{\mathcal{B}\mathcal{A}}$ denotes the canonical injection from $\mathcal{E}_{\mathcal{A}}$ into $\mathcal{E}_{\mathcal{B}}$ for $\mathcal{A} \geq \mathcal{B}$, then:

$$\mathcal{E} = \underline{\lim} \left(\mathcal{E}_{\mathcal{A}}, \pi_{\mathcal{B}\mathcal{A}} \right).$$

Consider now a separated multiplicatively p-convex bornological algebra $(a.b.m.c_p)$ $\mathcal{E} = \varinjlim (\mathcal{E}_{\mathcal{A}}, \pi_{\mathcal{B}\mathcal{A}})$. In this case, for every $\mathcal{B} \in \beta$, $(\mathcal{E}_{\mathcal{B}}, P_{\mathcal{B}})$ is a p-normed algebra.

Let \mathcal{A} be a Banach algebra and $a \in \mathcal{A}$. The spectrum of a, denoted $\operatorname{Sp}(a)$, is defined as the subset of \mathbb{C} given by:

$$\operatorname{Sp}(a) = \{ \lambda \in \mathbb{C} \mid a - \lambda e_{\mathcal{A}} \text{ is not invertible} \}.$$

Let \mathcal{E} be a complete and unital $a.b.m.c_p$ with unit e. One can choose a pseudo-basis β such that, for every $\mathcal{B} \in \beta$, $\mathcal{E}_{\mathcal{B}}$ is a unital Banach algebra with unit e. For any $x \in \mathcal{E}$, define:

$$\mathcal{I}(x) = \{ \mathcal{B} \in \beta \mid x \in \mathcal{E}_{\mathcal{B}} \}.$$

Then:

$$\operatorname{Sp}_{\mathcal{E}}(x) = \bigcap_{\mathcal{B} \in \mathcal{I}(x)} \operatorname{Sp}_{\mathcal{E}_{\mathcal{B}}}(x),$$

where:

$$\operatorname{Sp}_{\mathcal{E}}(x) = \{ \lambda \in \mathbb{C} \mid x - \lambda e \text{ is not invertible in } \mathcal{E} \},$$

and:

$$\operatorname{Sp}_{\mathcal{E}_{\mathcal{B}}}(x) = \{ \lambda \in \mathbb{C} \mid x - \lambda e \text{ is not invertible in } \mathcal{E}_{\mathcal{B}} \}.$$

3.5. Separator Space

Definition 3.1 $(\frac{4}{})$

Let \mathcal{X} and \mathcal{Y} be two bornological vector spaces, and T a linear map from \mathcal{X} to \mathcal{Y} . The separator space of T, denoted $\mathfrak{S}(T)$, is the subset of \mathcal{Y} defined by:

$$\mathfrak{S}(T) = \left\{ y \in \mathcal{Y} \mid \exists (x_n)_n \subset \mathcal{X} : x_n \xrightarrow{M} 0 \text{ and } T(x_n) \xrightarrow{M} y \right\}$$

Definition 3.2

Let \mathcal{X} and \mathcal{Y} be two bornological vector spaces, and T a linear map from \mathcal{X} to \mathcal{Y} . The separator space of T in \mathcal{X} , denoted $\mathfrak{S}'(T)$, is the subset of \mathcal{X} defined by:

$$\mathfrak{S}'(T) = \left\{ x \in \mathcal{X} \mid \exists (x_n)_n \subset \mathcal{X} : x_n \xrightarrow{M} 0 \text{ and } T(x_n) \xrightarrow{M} T(x) \right\}$$

Proposition 3.4 ([4])

Let \mathcal{X} and \mathcal{Y} be two p-convex bornological spaces. Then, the separator space $\mathfrak{S}(T)$ of any linear map $T: \mathcal{X} \longrightarrow \mathcal{Y}$ is a b-closed vector subspace of \mathcal{Y} .

Proposition 3.5 $(\frac{4}{})$

Let \mathcal{X} and \mathcal{Y} be two bornological vector spaces and $T: \mathcal{X} \longrightarrow \mathcal{Y}$ a linear map. Then, we have:

- i) $\mathfrak{S}(T) = \{0\}$ if and only if the graph of T is b-closed.
- ii) If R and S are two bounded operators on \mathcal{X} and \mathcal{Y} respectively and if TR = ST, then:

$$S(\mathfrak{S}(T)) \subset \mathfrak{S}(T)$$
.

Corollary 3.1 ([4]) Let \mathcal{X} be a complete e.b.c_p, \mathcal{Y} a lattice e.b.c_p, and $T: \mathcal{X} \longrightarrow \mathcal{Y}$ a linear map. Then, T is bounded if and only if $\mathfrak{S}(T) = \{0\}$.

3.6. Characterizations of Bounded Operators:

Proposition 3.6 $(\frac{4}{})$

Let \mathcal{X} and \mathcal{Y} be two e.b.c_p of type M_1 and \mathcal{Z} a separated bornological space. Assume that \mathcal{X} is complete and that \mathcal{Y} is a lattice. Let $S: \mathcal{X} \longrightarrow \mathcal{Y}$ and $R: \mathcal{Y} \longrightarrow \mathcal{Z}$ be bounded linear maps. Then, we have: i) RS is bounded if and only if $R\mathfrak{S}(S) = \{0\}$.

ii) $[R\mathfrak{S}(S)]^{(1)} = \mathfrak{S}(RS)$.

Proposition 3.7

Let \mathcal{X} and \mathcal{Y} be two p-convex bornological vector spaces. Then, the separator space $\mathfrak{S}'(S)$ of any linear map $S: \mathcal{X} \longrightarrow \mathcal{Y}$ is a b-closed vector subspace of \mathcal{X} .

Proof:

 $\mathfrak{S}'(S)$ is obviously a vector subspace of \mathcal{X} . Let $\mathfrak{S}(S)$ be the separator space of S in \mathcal{Y} and $Q: \mathcal{Y} \longrightarrow \mathcal{Y}/\mathfrak{S}(S)$ be the canonical surjection. Since $Q(\mathfrak{S}(S)) = \{0\}$, it follows from the previous proposition that QS is bounded. We have:

$$\mathfrak{S}'(S) = S^{-1}|\mathfrak{S}(S)| = \text{Ker}(QS) = (QS)^{-1}(\{0\})$$

Since $\mathfrak{S}(S)$ is b-closed, $\mathcal{YS}(S)$ is separated. Therefore, $\mathfrak{S}'(S) = S^{-1}|\mathfrak{S}(S)|$ is b-closed in \mathcal{X} .

Proposition 3.8 ([4])

Let \mathcal{X} and \mathcal{Y} be two e.b.c_p of type M_1 and $S: \mathcal{X} \longrightarrow \mathcal{Y}$ a linear map. Assume that \mathcal{X} is complete and that \mathcal{Y} is a lattice. Let \mathcal{X}_0 and \mathcal{Y}_0 be two b-closed subspaces of \mathcal{X} and \mathcal{Y} respectively, with: $S(\mathcal{X}_0) \subset \mathcal{Y}_0$. Let $S_0: \mathcal{X}/\mathcal{X}_0 \longrightarrow \mathcal{Y}/\mathcal{Y}_0$ be defined by: $S_0(x + \mathcal{X}_0) = S(x) + \mathcal{Y}_0$. Then, S_0 is bounded if and only if $\mathfrak{S}(S) \subset \mathcal{Y}_0$.

3.7. Automatic Boundedness

This section is dedicated to the study of the automatic boundedness of surjective (or dense image) homomorphisms in complete $a.b.m.c_p$ s. In what follows, the algebras considered are assumed to be of type M_1 .

Proposition 3.9

Let \mathcal{X} and \mathcal{Y} be two e.b.c_p and $S: \mathcal{X} \longrightarrow \mathcal{Y}$ a linear map. Assume that \mathcal{X} is complete and that \mathcal{Y} is a lattice.

Let $\mathfrak{S}(S)$ be the separator space of S in \mathcal{Y} (resp. $\mathfrak{S}'(S)$ be the separator space of S in \mathcal{X}). Consider the map $S_0: \mathcal{X}/\mathfrak{S}'(S) \longrightarrow \mathcal{Y}/\mathfrak{S}(S)$ defined by: $S_0(x + \mathfrak{S}'(S)) = S(x) + \mathfrak{S}(S)$ for all $x \in \mathcal{X}$. Thus, S_0 is bounded.

Proof:

Since $S^{-1}(\mathfrak{S}(S)) = \mathfrak{S}'(S)$, it follows that $S(\mathfrak{S}'(S)) \subset \mathfrak{S}(S)$. Moreover, since $\mathfrak{S}(S)$ (resp. $\mathfrak{S}'(S)$) is a b-closed vector subspace of \mathcal{Y} (resp. of \mathcal{X}), it follows that S_0 is a bounded map (Proposition 3.8).

Proposition 3.10

Let \mathcal{A} and \mathcal{B} be two e.b.c_p spaces, and $S: \mathcal{A} \longrightarrow \mathcal{B}$ a linear map. Assume that \mathcal{A} is complete and \mathcal{B} is a lattice. Then, S is continuous if and only if $\mathfrak{S}(S) = \{0\}$.

Proof:

We prove that if S is continuous, then $\mathfrak{S}(S) = \{0\}$. If S is continuous, its graph is b-closed, so by Proposition 3.5, we have $\mathfrak{S}(S) = \{0\}$. Conversely, if $\mathfrak{S}(S) = \{0\}$, the graph of S is b-closed, implying that S is continuous by the closed graph theorem.

Proposition 3.11

Let \mathcal{A} and \mathcal{B} be two complete a.b.m. c_p spaces, and let T be a homomorphism from \mathcal{A} to \mathcal{B} . If $b \in \mathfrak{S}(T)$, then $\operatorname{Sp}(b)$ is a subset of \mathbb{C} containing 0.

Proof:

By contradiction, assume that $0 \notin \operatorname{Sp}(b)$.

Since $b \in \mathfrak{S}(T)$, there exists a sequence $(a_n)_n \subset \mathcal{A}$ such that:

 $a_n \xrightarrow{M} 0$ in \mathcal{A} and $T(a_n) \xrightarrow{M} b$ in \mathcal{B} .

Choose a compact neighborhood V of 0 in \mathbb{C} such that $0 \notin \operatorname{Sp}(b) + V$.

Thus, for large enough n, we have $\operatorname{Sp}(a_n) \cap \operatorname{Sp}(b) + V = \emptyset$.

Now, $\operatorname{Sp}(T(a_n)) \subset \operatorname{Sp}(a_n)$, so for large enough n,

 $\operatorname{Sp}(T(a_n)) \cap \operatorname{Sp}(b) + V = \emptyset.$

This contradicts Proposition (??).

Definition 3.3

Let \mathcal{E} and \mathcal{F} be two complete e.b.c_p spaces, and let T be a linear map from \mathcal{E} to \mathcal{F} . We say that T has a dense image in \mathcal{F} if $(T(\mathcal{E}))^{(1)} = \mathcal{F}$.

Proposition 3.12

Let \mathcal{A} and \mathcal{B} be two complete a.b.m.c_p spaces, and let T be a surjective (or dense image) homomorphism from \mathcal{A} to \mathcal{B} . If \mathcal{B} is simple and has a countable basis, then T is bounded.

Proof:

Let $\mathfrak{S}(T)$ be the separator ideal of T in \mathcal{B} , which is simple.

Thus, $\mathfrak{S}(T) = \{0\}$ or $\mathfrak{S}(T) = \mathcal{B}$.

If $\mathfrak{S}(T) = \mathcal{B}$, then $1_{\mathcal{B}} \in \mathfrak{S}(T)$.

Therefore, by Proposition 3.10, we have $0 \in \text{Sp}(1_{\mathcal{B}})$, which is impossible.

Thus, $\mathfrak{S}(T) = \{0\}.$

Consequently, T is bounded.

Theorem 3.5

Let \mathcal{A} and \mathcal{B} be two complete a.b.m.c_p spaces, and let T be a homomorphism from \mathcal{A} to \mathcal{B} with a countable basis. If B is *-simple and if T is surjective (or has a dense image), then T is bounded.

Proof:

Let β be a pseudo-base formed by completing and idempotent p-disks.

Since \mathcal{B} is a *-simple algebra, there exists a simple unitary subalgebra \mathcal{I} of \mathcal{B} such that: $\mathcal{B} = \mathcal{I} \oplus \mathcal{I}^*$ (Proposition ??).

From the following algebraic isomorphism: $\mathcal{I} \simeq \mathcal{B}/\mathcal{I}^*$, we deduce that \mathcal{I} is a maximal ideal of \mathcal{B} .

Thus, \mathcal{I} (resp. \mathcal{I}^*) is M-closed in \mathcal{B} ([1] Proposition II-1.3).

Consequently, by Proposition (1, [2]), \mathcal{I} (resp. \mathcal{I}^*) is a complete $e.b.c_p$ of type M_1 in \mathcal{B} .

Let $\beta_{\mathcal{I}}$ be the set defined by: $\beta_{\mathcal{I}} = \{ \mathcal{B} \cap \mathcal{I} / \mathcal{B} \in \beta \}$.

 $\beta_{\mathcal{I}}$ is a base of $a.b.m.c_p$ over \mathcal{I} .

Thus, \mathcal{I} (resp. \mathcal{I}^*) is a complete sub-a.b.m. c_p of type M_1 in \mathcal{B} .

Consider $Pr_1: \mathcal{B} \longrightarrow \mathcal{I}$, the canonical projection of \mathcal{B} onto \mathcal{I} .

And $Pr_2: \mathcal{B} \longrightarrow \mathcal{I}^*$, the canonical projection of \mathcal{B} onto \mathcal{I}^* .

Since Pr_1 (resp. Pr_2) is a bounded epimorphism (or has a dense image if T does),

by Proposition (3.6), we have that $Pr_1 \circ T$ (resp. $Pr_2 \circ T$) is bounded.

Consequently, $T = (Pr_1 + Pr_2) \circ T = Pr_1 \circ T + Pr_2 \circ T$ is bounded.

Proposition 3.13

Let \mathcal{A} be a complete *-a.b.m. c_p space and \mathcal{M} a *-maximal ideal of \mathcal{A} . Then, \mathcal{M} is an M-closed ideal of \mathcal{A} .

Proof:

If \mathcal{M} is a maximal ideal of \mathcal{A} , then \mathcal{M} is M-closed (Proposition II-1.3 [1]).

Otherwise, there exists a maximal ideal \mathcal{N} of \mathcal{A} such that $\mathcal{M} = \mathcal{N} \cap \mathcal{N}^*$ (Proposition ??).

Now, \mathcal{N} (resp. \mathcal{N}^*) is M-closed.

Thus, \mathcal{M} is M-closed in \mathcal{A} .

4. Main Results

Theorem 4.1

Let A and B be two complete a.b.m. c_p algebras and let T be a homomorphism from A to B. If B is *-semi-simple and if T is surjective (or has dense image), then T is bounded.

Proof:

Let β be a pseudo-base consisting of completing and idempotent p-disks.

Let \mathcal{M} be a *-maximal ideal of \mathcal{B} .

Then the involution * induces an involution on \mathcal{B}/\mathcal{M} , also denoted by *, defined by: $(a+\mathcal{M})^* = a^* + \mathcal{M}$. Let $\beta_{\mathcal{M}}$ be the set defined by: $\beta_{\mathcal{M}} = \{\mathcal{B} + \mathcal{M}/\mathcal{B} \in \beta\}$.

 $\beta_{\mathcal{M}}$ is a pseudo-base formed of completing and idempotent p-disks on \mathcal{B}/\mathcal{M} .

Thus, \mathcal{B}/\mathcal{M} is a *-a.b.m. c_p *-semi-simple algebra.

Since \mathcal{M} is M-closed (proposition 3.13), it follows that \mathcal{B}/\mathcal{M} is a complete $e.b.c_p$ algebra ([2] proposition 2).

Consider the canonical surjection $Q: \mathcal{B} \longrightarrow \mathcal{B}/\mathcal{M}$.

Since Q is bounded, it follows from Theorem (3.5) that the homomorphism $Q \circ T$ is bounded.

Thus, $\mathfrak{S}(Q \circ T) = \{0\}$. Since $\mathfrak{S}(Q \circ T) = |Q(\mathfrak{S}(T))|^{(1)}$ (proposition 3.9),

we deduce that $Q(\mathfrak{S}(T)) = \{0\}$. Hence, $\mathfrak{S}(T) \subseteq \mathcal{M}$.

Since \mathcal{M} is arbitrary, it follows that $\mathfrak{S}(T) \subseteq \bigcap \mathcal{M} = \operatorname{Rad}_*(\mathcal{B}) = \{0\}.$

Therefore, T is bounded.

Corollary 4.1

Let \mathcal{A} be a *-semi-simple algebra. If β_1 and β_2 are two complete a.b.m. c_p bornologies with countable bases on \mathcal{A} , then $\beta_1 = \beta_2$.

Proof:

It is sufficient to apply the previous theorem to the identity on A.

Corollary 4.2

Let (A, β) be a complete *-a.b.m.c_p algebra with a countable *-simple basis. Then the involution * is automatically bounded.

Proof:

Let the set β^* be defined by: $\beta^* = \{ \mathcal{B}^* / \mathcal{B} \in \beta \}$.

 β^* is a complete $a.b.m.c_p$ bornology on \mathcal{A} .

Indeed, let x be an element of \mathcal{A} , we can write x = y + iz, where y and z are self-adjoint elements of \mathcal{A} . Let \mathcal{B}_1 and \mathcal{B}_2 be elements of β such that $y \in \mathcal{B}_1$ and $z \in \mathcal{B}_2$. We have, $y \in \mathcal{B}_1^*$ and $z \in \mathcal{B}_2^*$.

Thus, $x \in \mathcal{B}_1^* + i\mathcal{B}_2^* = (\mathcal{B}_1 - i\mathcal{B}_2)^*$, and since $\mathcal{B}_1 - i\mathcal{B}_2 \in \beta$, there exists an element \mathcal{B} of β such that $\mathcal{B}_1 - i\mathcal{B}_2 = \mathcal{B}$.

This implies that: $x \in \mathcal{B}^*$.

Therefore, β^* covers \mathcal{A} .

Let \mathcal{B}_1^* be an element of β^* and \mathcal{B}_2 a subset of \mathcal{A} such that: $\mathcal{B}_2 \subset \mathcal{B}_1^*$.

We have $\mathcal{B}_2^* \subset \mathcal{B}_1$, and since $\mathcal{B}_1 \in \beta$ it follows that $\mathcal{B}_2^* \in \beta$ hence $\mathcal{B}_2 \in \beta^*$.

Let \mathcal{B}_1^* and \mathcal{B}_2^* be two elements of β^* . We show that $\mathcal{B}_1^* \cup \mathcal{B}_2^* \in \beta^*$.

We have $\mathcal{B}_1^* \cup \mathcal{B}_2^* \subseteq (\mathcal{B}_1 \cup \mathcal{B}_2)^*$.

Since $\mathcal{B}_1 \cup \mathcal{B}_2 \in \beta$ it follows that $(\mathcal{B}_1^* \cup \mathcal{B}_2^*)^* \in \beta$ thus $\mathcal{B}_1^* \cup \mathcal{B}_2^* \in \beta^*$.

We now show that β^* is a vector bornology.

Let \mathcal{B}_1^* and \mathcal{B}_2^* be two elements of β^* and $\lambda \in \mathbb{C}$.

We have: $\mathcal{B}_1^* + \mathcal{B}_2^* = (\mathcal{B}_1 + \mathcal{B}_2)^*$ and $\lambda \mathcal{B}_1^* = (\bar{\lambda} \mathcal{B}_1)^*$.

Since $\mathcal{B}_1 + \mathcal{B}_2$ and $\bar{\lambda}\mathcal{B}_2$ are in β , it follows that $\mathcal{B}_1^* + \mathcal{B}_2^*$ and $\lambda \mathcal{B}_1^*$ are in β^* . Thus, β^* is a vector bornology. Let \mathcal{B}_1^* and \mathcal{B}_2^* be two elements of β^* . Then, $\mathcal{B}_1^*\mathcal{B}_2^* = (\mathcal{B}_2\mathcal{B}_1)^*$.

Since $\mathcal{B}_2\mathcal{B}_1 \in \beta$, it follows that $\mathcal{B}_1^*\mathcal{B}_2^* \in \beta^*$.

We still need to show that β^* is a complete $a.b.m.c_p$ bornology with a countable basis.

Let \mathcal{B} be a completing and idempotent p-disk of β , then \mathcal{B}^* is also a *-idempotent p-disk.

If $x \in \mathcal{A}_{\mathcal{B}}$ then we have:

$$P_{\mathcal{B}}(x) = \inf\{\lambda^p(\lambda \geqslant 0)/x \in \lambda\mathcal{B}\} = \inf\{\lambda^p(\lambda \geqslant 0)/x^* \in \bar{\lambda}\mathcal{B}^* = \lambda\mathcal{B}^*\} = P_{\mathcal{B}^*}(x^*)$$

Since $(\mathcal{A}_{\mathcal{B}}, P_{\mathcal{B}})$ is a Banach algebra, it follows that $(\mathcal{A}_{\mathcal{B}^*}, P_{\mathcal{B}^*})$ is also a Banach algebra. It is easy to verify that β^* has a countable basis on \mathcal{A} .

By the previous theorem, $\beta = \beta^*$, therefore the involution * is bounded.

References

- 1. H. Hogbe-Nlend, Les fondements de la théorie spectrale des algèbres bornologiques. Bul. Brasil. Math. Soc 3, 19-56, (1972).
- 2. H. Hoghe-Nlend, Bornologies and functional analysis. Amestradam (1977).
- 3. H. Hogbe-Nlend, Théorie des bornologies et applications, Spring-Verlag, Ievime Notes in Math., 213, (1971).
- 4. A. Tajmouati, Sur les diviseurs topologiques et bornologiques de zéro, la bornitude automatique des opérateurs linéaires et les multiplicateurs dans certaines algèbres non associatives, Thèse d'État . Univ. Mohammed V. Rabat. Maroc (1995).
- 5. A. M. Sinclair, Automatic continuity of linear operators. Lond. Math. Soc 21 (1976).
- 6. H. G. Dales, anach algebras and automatic continuity. Lond. Math. Soc 24 (2000).
- 7. B. Aupetit, A primer on spectral theory, Springer ,1990.
- 8. M.Aboulekhlef et Y. Tidli, *The Automatic Continuity of N-Homomorphisms in Certain *-Banach Algebras*, Aust. J. Math. Anal. Appl.(AJMAA), Vol. 20 (2023), No. 2, Art. 11, 6 pp.
- 9. M.Aboulekhlef et al., Automatic Continuity of Generalized Derivations in Certain *-Banach Algebras, Aust. J. Math. Anal. Appl.(AJMAA) ,Vol. 21 (2024), No. 2, Art. 7, 6 pp.

Mohamed Aboulekhlef,

Department of Mathematics,

University of Sultan Moulay Slimane.

Morocco.

 $E\text{-}mail\ address:\ \texttt{aboulekhlef@gmal.com,aboulekhlef.mohamed@usms.ac.ma}$

and

Youssef Tidli,

Department of Mathematics,

University of Sultan Moulay Slimane,

Morocco.

E-mail address: y.tidli@gmal.com