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ABSTRACT: Hepatitis B Virus (HBV) is a major global health threat, causing chronic liver inflammation,
cirrhosis, and liver cancer. This study develops a novel epidemic model integrating a constant vaccination
strategy, where susceptible individuals are immunized at a fixed rate due to vaccination, reducing the risk of
infection. The model incorporates the Crowley-Martin functional response to capture nonlinear transmission
dynamics. We analyze the dynamical behaviour, focusing on the basic reproduction number (Ry) and their
stability properties. We establish the global asymptotic stability of Hepatitis-free equilibrium, ensuring the
system remains disease-free when Ry < 1. Also, transcritical bifurcation occurs when Ry = 1 marks the
threshold between disease eradication. For Ry > 1, we prove the global stability of the endemic equilibrium
using Dulac’s criteria. The sensitivity analysis of Ry helps us understand which parameters have the biggest
impact on disease transmission. In numerical simulations we use Non-Standard Finite Difference (NSFD)
scheme to validate our findings, with phase-plane analysis at h = 0.1 showing greater accuracy compared
to traditional methods such as Runge-Kutta (RK4) and Euler, effectively capturing the model’s long-term
dynamics.
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1. Introduction

Hepatitis B Virus (HBV) represents a major public health concern, affecting over 290 million chron-
ically infected worldwide [1]. As a major cause of liver infection, including cirrhosis and hepatocellular
carcinoma, understanding the dynamics of HBV transmission and infection is crucial for effective public
health interventions and treatment strategies. The virus is primarily transmitted through contact with
infectious body fluids, and its chronic form can lead to severe long-term health complications [2,3,4].
HBYV can cause a severe and potentially life-threatening liver disease. It is a DNA virus that belongs to
the Hepadnaviridae family of viruses [5,6]. Mathematical modeling has emerged as a powerful tool in
epidemiology, providing insights into the complex interactions between the virus, host immune responses,
and various risk factors associated with transmission. By simulating the dynamics of HBV infection,
researchers can explore the effects of different intervention strategies, such as vaccination, antiviral thera-
pies, and public health policies, on disease prevalence and transmission rates. This study aims to develop
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a comprehensive mathematical model of HBV infection that incorporates key biological and epidemio-
logical factors. By analyzing the model’s dynamics, we seek to identify critical parameters that influence
the spread of the virus and assess the potential impact of various control measures. Our ultimate aim is
to enhance the understanding of HBV epidemiology and to guide strategies aimed at reducing the impact
of this preventable disease. At 2013 World Health Organization, the global health impact report on viral
hepatitis indicates that chronic liver disease caused by HBV and HCV affects over 240 million and 150
million individuals, respectively. Africa ranks second, after Asia, in the number of chronic HBV carriers
and is acknowledged as a region with significant endemicity [7,8]. Ethiopia has a high prevalence of
hepatitis virus, which includes infections caused by viruses such as Hepatitis B and C. [9]. This neglect
can lead to increased morbidity and mortality associated with chronic liver disease, as well as a lack of
awareness and education about the disease among the population. Significant research has been carried
out to create both stochastic and deterministic models that describe the dynamics of infectious disease
spread and surface antigen [10,11,12,13,14,15]. Also, the Hattaf-Yousfi incidence rate of m
[42,43] generalizes numerous types of incidence rate like the bilinear incidence, the saturation incidence,
the Beddington-DeAngelis incidence rate, and the Crowley-Martin incidence rate.

Regular monitoring of liver health in individuals with chronic HBV can help in early detection of
complications, such as cirrhosis or liver cancer. This proactive approach is vital for improving long-term
health outcomes. The Hepatitis B vaccine is made from a non-infectious part of the virus, specifically
the surface antigen (HBsAg). It is produced using recombinant DNA technology, where the gene for the
HBsAg is inserted into yeast or mammalian cells, which then produce antigen. The vaccine demonstrates
high efficacy, successfully preventing over 90 percent viruses in immunized individuals. Also greatly lowers
the chance of developing chronic HBV and its complications, including liver cirrhosis and cancer [16].
The standard vaccination schedule typically consists of three doses:

The first dose is administered at birth or as soon as possible afterward. The second dose follows 1 to
2 months later, and the third dose is given 6 months after the initial dose. Different vaccination schedules
may be applied for particular groups, including adults or people with a higher risk of infection. The
vaccine is recommended for all infants, children, and adolescents, as well as adults at high risk for HBV
infection, including healthcare workers, individuals with multiple sexual partners, and those with chronic
liver disease [17,18,19]. McKendrick and Kermack established SIR model in 1927, making it one of the
simplest and most used models in epidemiology [20]. In this paper, we will develop a predictable approach
for HBV spread using the fundamental assumptions of the traditional SIR model. In epidemiology, models
often in the various incidence rate, which measures the new infections during a particular time and plays
a key role in understanding the dynamics of disease transmission.

Kermack and McKendrick’s SIR model represents disease dynamics using three compartments: sus-
ceptible (5), infected (I), and recovered (R). The incidence rate of new infections is given by 8ST, where
B is the transmission rate, indicating that new infections occur through interactions between suscepti-
ble and infected individuals. This model effectively captures how an infectious disease spreads within a
population and how those dynamics change over time. It is generally called bilinear incidence or mass
action [21,22,23]. The standard incidence rate in epidemiological models is expressed as NSBST, where
N is the total population size. While this bilinear incidence rate works under stable population con-
ditions, it diverges when population size varies, particularly with increased disease exposure risk. May
and Anderson [24] investigated a modified incident rate %, accounting for epidemic control measures

through the saturation term ~;. Similarly, Capasso and Serio [25] proposed another variant, %, where

the denominator captures the behavioral changes and crowding effects in susceptible individuals caused
by the infected population. These adjustments enhance the realism of disease spread models in varying
population dynamics. The Beddington-DeAngelis (BD) form of non-linear incidence rate, denoted as
%, was independently proposed in 1975 by Beddington [26] and DeAngelis [27]. This incidence
rate has been adopted by many researchers in their epidemiological models in later studies. Hattaf et al
[44] investigated a delayed SIR (Susceptible-Infected-Recovered) epidemic model that incorporates a gen-
eralized incidence rate, where the time delay represents the incubation period of the disease. The study
focuses on determining the threshold parameter Ro(7), which indicates whether the disease will become
extinct or persist in the population. Additionally, the author employs Lyapunov functional techniques to
establish the global stability of both the disease-free equilibrium and the endemic equilibrium within the
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model. Our model extends the approach in [44] by incorporating a more generalized incidence function.

Kaddar [28,29] introduced a delayed model that incorporates Beddington—DeAngelis incidence rate.
They demonstrated significant values of the inhibitory effect. Therefore, inspired by the preceding dis-
cussion, this work employs a new rate called Crowley-Martin perspective [30]. It is typically represented
as a nonlinear function that reflects the interactions between healthy and diseased individuals. The
equation is expressed as Ws({ﬂd) with « as a transmission rate. However, Kaddar [28,29] does not
specify the stage of infection. Moreover, the model does not account for the vaccination rate. Building
on this observation, the present study adopts a different approach by employing Crowley-Martin per-
spective. In addition, vaccination plays a vital role in controlling the propagation of infectious pathogens
within a population. To address this, a vaccination (I') is introduced in the system, enhancing its abil-
ity to accurately represent infection dynamics and disease progression. Also, some researchers have
explored epidemic model with vaccination [31,32]. Other examiner use Crowley-Martin perspective in
Eco-epidemiological model to analysis stability [33,34,47]. In most cases, systems consisting of non-linear
differential or difference equations are used to develop epidemiological models. Several methods can be
used to discretize a model that is represented by a nonlinear system of differential equations. As many
of the continuous dynamical model features must be preserved as much as feasible in the discretized
model. Runge-Kutta and Euler procedures, as well as a few other finite-difference methods, are popular
discretization techniques. Unfortunately, these techniques can sometimes lead to unfavorable dynamic
patterns, including the appearance of oscillatory cycles or numerical instabilities [35,36]. Discretizing
the equation helps identify inaccuracies when comparing numerical simulation results. Mickens [37,38]
introduced an innovative technique known as non-standard finite difference (NSFD) method to overcome
these challenges. Recent studies [44,45,46] have explored the role of memory effects in disease dynamics
using fractional-order derivatives, such as the Hattaf mixed fractional derivative and fractal-fractional
derivative. These approaches can capture long-term dependencies in infection progression, making them
valuable for modeling chronic diseases like HBV. While our study employs classical time derivatives for
analytical tractability and ease of comparison with existing models, incorporating fractional derivatives
remains a potential future direction to enhance the model’s realism.

In this paper, we provide Hepatitis model that contains a Crowley-Martin perspective, together with
treatment and vaccination strategies. Our study addresses a gap in the literature, as no previous re-
search has explored the impacts of vaccination and Crowley-Martin incidence rate are examined. We
focus on a Hepatitis epidemiological model that is more comprehensive than those previously proposed.
By analyzing its continuous structure, we aim to better understand how vaccination strategies and the
Crowley-Martin incidence rates impact the spread of Hepatitis, providing insights that can enhance public
health interventions and strategies. Initially, we performed a dynamical study to determine the presence
of positive solutions to the proposed model, discovering both free of disease and endemic states. The basic
reproduction number, Ry, was computed using the next-generation matrix. We then used the linear sta-
bility theorem to examine the model’s locallly asymptotic stability (LAS), and we use Poincaré-Bendixson
theorem to analyze its global asymptotic stability. The existence of a transcritical bifurcation was also
confirmed. Following this, we created a NSFD numerical scheme by Mickens’ technique. We investigated
the stability features of the continuous HBV model to determine their dynamical consistency. Finally,
we conducted numerical simulations to support our theoretical findings, demonstrating the efficiency of
the proposed model in capturing HBV dynamics of transmission under the defined parameters.

The structure of the work is organized into various key divisions that systematically address HBV
model. In Section 2, we introduce the mathematical formulation of the model (2.1), along with the
assumptions that underlie its structure. This foundational analysis lays the groundwork for exploring
the model’s behavior. Section 3 is devoted to establishing the well-posedness of the model by proving
that the solutions remain non-negative and bounded, thereby ensuring its biological relevance. Section
4 focuses on the existence of equilibrium points by deriving the secondary infection and finding the
Hepatitis-free equilibrium (HFE). Furthermore, we construct and analyze theorems related to the local
and global asymptotic stability (LAS and GAS) of the HFE, offering insights into the system’s stability
under different scenarios. Section 5 extends this analysis to the endemic equilibrium (EE), examining
both LAS and GAS to deepen our understanding of the model’s long-term dynamics. Additionally, we
investigate the occurrence of a transcritical bifurcation at Ry = 1. In Section 6, we perform a sensitivity
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analysis of the basic reproduction number to identify key parameters influencing disease transmission.
This is complemented by numerical simulations that validate the theoretical results and provide practical
insights into the model’s implications. Section 7 concludes with a summary of the main findings and
suggests directions for future research. Fig 1 presents a schematic representation of the Hepatitis B
model, visually capturing the interactions.

2. Model Formulation

Let N (t) refers to the overall population size at a given time ¢, which is categorized as three groups:
susceptible, diseased and recovered population, represented as S(t), I(t), and R(t), respectively. There-
fore, we can express the total population as N(t) = S(t) + I(t) + R(t). This model incorporates several
key elements to simulate the dynamics of disease within a population. It features a fixed recruitment
rate, allowing new susceptible individuals to enter the population at a constant rate, which represents
births or new arrivals. The incidence rate, calculated using the Crowley-Martin framework, measures
how quickly susceptible individuals become infected based on their interactions. Additionally, the model
includes vaccination for some susceptible individuals, which reduces the pool of those who can contract
the disease. Mortality rates are also accounted for, encompassing both disease-related deaths from the
infection and natural deaths from other causes. Furthermore, the model posits that certain infected
individuals may recover on their own without medical intervention, depending on their physical strength.
Together, these components create a comprehensive framework for understanding disease spread and
evaluating the impact of interventions like vaccination on overall population health.

'S

oSl

9) (T+n8)(1+pl) Y/

Figure 1: Block Diagram of the HBV Epidemic Framework

e The model begins with biologically feasible population values, recognizing that negative population
sizes are not meaningful, as a population cannot consist of fewer than zero individuals. The notation
S(0), I(0), and R(0) represents the initial counts of susceptible, infected, and recovered individuals,
respectively.

The newborns are typically born without immunity to diseases. Therefore, they are categorized as
susceptible until they either become infected or are vaccinated.

e The level of incidence is expected to correlate with the Crowley-Martin perspective. This model
accounts for the effects of both the density of uninfected population and the infected population on
the rate of new infectives.

Individuals who are vaccinated and acquire immunity move from the susceptible class to the recov-
ered class, illustrating that vaccination not only shields individuals from infection but also enhances
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Table 1: Epidemiological interpretation of variables in the HBV model with their respective units

’ Variables \ Epidemiological Interpretation \ Units

S Susceptible HBV Population Individuals

1 Diseased HBV Population Individuals

R Recovered HBV Population Individuals

Q Recruitment rate Individuals per unit time
« Disease transmission rate Per unit time
n Preventive measures Dimensionless
Ry Basic reproduction number Dimensionless
T Constant Vaccination rate Per unit time
L Infected individuals undergoing treatment Per unit time
K Natural death rate of susceptible populations | Per unit time
T Infected individuals receiving treatment Per unit time
T Disease-induced mortality rate Per unit time

the population’s overall immunity.

e Once individuals recover from the infection, they gain lasting immunity and cannot be reinfected.
This is a critical aspect of many infectious disease models, as it influences the dynamics of disease
spread and the potential for future outbreaks. Permanent immunity simplifies the model by remov-
ing recovered individuals from the susceptible pool. Table 1 shows the detailed interpretation of
Hepatitis B Virus model.

Taking into account of all the rules, assumptions and flow chart, the nonlinear differential equation
of Hepatitis B Virus system can be expressed as:

ds aSI
LT +r)S— ,

dt O e )

dI aSI

&« - )1 2.1
R A (2.1)
dR

Sy TS

7 kR+TS

with t
S(0) =Sy >0, 1(0) = Iy > 0 and R(0) = Ry > 0.
3. Well-Posedness

Within the region Ri, HBV model (2.1) ensures that all solutions remain positive for ¢ > 0, and
the system’s solutions are also bounded. By summing the three equations of the model, we obtain the
following result based on population conservation principle:

%ZQ—KN—TISQ—KN (3.1)
we get,
Q Q Q
N(it)<—+ (N(O) — ) e " limsup N(t) < — (3.2)
K K t—o0 K

where N(t) = S(t)+1(t)+ R(t) denotes the total population involved in the Hepatitis B dynamics. Based
on these results, it is sufficient to analyze the Hepatitis B Virus model (2.1) within the specified region.

0
m:{(S,J,R)eRi:S+I+Rg}.
K
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In HBV model (2.1), the first two equations describe the dynamics of the system without relying on the
third equation. This means that the behavior and interactions represented by the first two equations
can be understood and analyzed independently of the third equation’s influence. By excluding the third
equation, the model becomes simpler and more manageable, allowing researchers to focus on the essential
dynamics of the disease spread and treatment without the added complexity of the third equation.

B g rrms- L

dt (14+nS)(1+ ul)

dl aST

P s T R

(3.3)

with the conditions as
S(O) =Sy > 0, I(O) =1y > 0.

We will carry out our analysis in the following regions:
Q
U= {(5,1) ERY:S+1I< K}

4. Stability of hepatitis-free equilibrium state

It is clear that the system always has a Hepatitis-Free Equilibrium (HFE) point by setting the right-
hand side of the system in the simplified Hepatitis B Virus model (3.3) to zero and considering I = 0.

Q
Eo = (S0,1p) = | =—,0 4.1
o= Souto) = () (4.1
The reproduction number (Ry) represents the next generation matrix (NGM) of spectral radius [39,40].
The NGM is obtained by multiplying the transmission matrix and the removal matrix inverses:
af)

T+r+n(k+T+71)

This is the reproduction number (Ry) for the given system. Note that Ry denotes the average number
of secondary infections caused by a single infected individual in an entirely susceptible population. When

Ry > 1, the infection can invade and persist in the population, whereas if Ry < 1, the disease will die
out.

Theorem 4.1 The Hepatitis-Free Equilibrium (HFE) point Eg of model (3.3) remains stable if Ry < 1,
but loses stability when Ry > 1.

Ry =

(4.2)

Proof: The jacobian form of the model (3.3) is

—(T'+ k) —Ry(k+ Y+ 7)

J(Eo) = 0 (Rv — 1)(k+ YT +7)

Solving for A, we get two eigenvalues:
M=—-T+k); e=Ry-—-1DkK+T+7)

These are the eigenvalues of the Hepatitis-free equilibrium point. Note that the stability of the equilibrium
point depends on the values of Ry and the other parameters. If Ry < 1, the equilibrium point is stable,
and if Ry > 1, the equilibrium point is unstable. At Ry = 1, it undergoes transcritical bifurcation. O

Theorem 4.2 For Ry < 1, the Hepatitis-Free Equilibrium (HFE) point Eg of model (3.3) attracts all
solutions, indicating that it is globally asymptotically stable.

Proof: If Ry < 1, the only equilibrium point present is the Hepatitis-free equilibrium point Ey. Fur-
thermore, as indicated in (3.3), the non-negative solution of the system (3.3) is bounded, with the S-axis
being positively invariant and the I-axis repelling any positive solutions. Since Ey is LAS, the Bendixson
Theorem suggests that all non negative solutions of the system will tend toward Ej as the time progresses
towards infinity. Hence, the Hepatitis-free equilibrium point Ey is GAS. This completes the proof. O
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5. Stability of hepatitis endemic equilibrium state

Finding the endemic equilibrium points involves setting the equations to zero and solving the Hep-
atitis population variables, which helps us understand the long-term behavior of the disease within the
population. Where, E* = (S*, T*),

K+7T+ 7+ uQ

o CpC+R)+a—nE+T+71)

B Qe +T+ 74+ uQ)

pQC+ k) + (k+ Y+ 1) RN+ k) +nQRy — 1))
o (D4Rt n)(Ry — 1)

a—nk+T+7)+ I+ k)
B QT +k+nQ)(Ry — 1)
QT+ k) + (k+ Y +7)[Ry(T + &) +nQ(Ry — 1)

If Ry > 1, then the hepatitis endemic equilibrium exists.

Theorem 5.1 The Hepatitis endemic equilibrium state (S*,I*) is LAS when, Ry > 1 in the HBV model

(3.3).

Proof: We assume that Ry > 1 it indicates that the disease is capable of spreading within the population,
leading to the possibility of an endemic state. To analyze the stability of this endemic equilibrium point,
denoted as E*, we can use the Jacobian matrix.

_ (a=n)[0Q—z(y+nQ)] _ [o+p(d+nQ))a?
J(E*) _ (z4+p)a Y (x4+pQ)a
(a=nz)[aQ—(y+n)] lotpytnD))z? .
(z4p)a (z4p2)a

where, © = k+ T 4+ 7, y = ' + k. To determine the stability of the equilibrium point E* using the
Jacobian matrix J(E*), we need to analyze its eigenvalues. The conditions for the eigenvalues to be
negative are given by T'r(J(E*)) < 0, and det(J(E*)) > 0. Thus,

@y n) (B — D[Ry + (By — Di+ 9
aQ(x + pf) Y

Te(J*) =

(Ry — 1)a*(y + nQ)[Ryay + (Ry — 1)anQ + py)
afd(z + pQ)

Clearly, if Ry > 1, then the trace of J(E*) is negative, while the determinant is positive. This indicates

that the equilibrium point of the syystem (3.3) is locally asymptotically stable (LAS). Therefore, the

proof is complete, as required. O

det(J(E*)) =

Theorem 5.2 If Ry > 1, the HBV model described by (3.3) is globally asymptotic stable (GAS) in the
region V.

Proof: Assume Ry > 1. Considering the functions m(S,I) and n(S,I), RHS of the system (3.3). We
define the Dulac function as follows: X (S, ) = I~t. With this definition, we can proceed to analyze the
behavior of the system using the Dulac criterion.
8(Xm)+8(Xn) L a(l+ pl) I'+k Spa <0
oS oI [(1+nS)(1+ pul))? 1 [(1+7nS)(1+ pl)]? '
for all (S,I) € ¥. Therefore, the system (3.3) does not exhibit any periodic orbits within the region .
Given that the model (3.3) are bounded and that Ej acts as an unstable saddle point when Ry > 1.
So, we can apply the Poincaré-Bendixson theorem to conclude that the endemic equilibrium E* is GAS,
This completes the proof. O
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6. Sensitivity Analysis

To determine the impact of each parameter on the basic reproduction number Ry, we use the forward

sensitivity index, defined as:
- 8RN T

xr X )
P ox RN

where x is any parameter in the expression for Ry:

afd

Ry = .
N T T+ e+ k+T +1)

We now compute the sensitivity indices for each parameter.

ORN Q

Oa CT+r+n)k+T+7)

Q «

Pa = CT+x+n12)(k+Y+7) Ry

ORy a[l' + K]
oY (C+r+n22(k+7T+7)

_0Ry 0

PE= 790 Ry

8RN__ af?
or — (TH+r+n22(k+T+71)

_oRy T

PL=79r Ry
IRy _ aQ[T' 425 +nQ+ 7T +17)]
ok [TH+r+n(k+ T +1)2

_Ofn =

P = ok .RN.

(9RN__ OéQQ
o C+r+n02(k+T+7)

_Ofn

8RN__ af?
oY (T +r+n(E+T+7)%

_ORy T

PT="07 Ry

8RN__ af?
or  TH+r+n(k+T+71)2

_ OBy T

pr = 87‘ 'RN
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Sensitivity Analysis of Ry
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Figure 2: Sensitivity Index

The sensitivity analysis of Ry helps us understand which parameters have the biggest impact on
disease transmission. («) has the strongest positive influence, meaning that as it increases, the disease
spreads more easily. (£2) also has a positive effect, but to a lesser extent. On the other hand, (T), (k),
(n), and (T) have negative effects, meaning that increasing these values helps slow down transmission.
(k) and (n) play the most significant role in reducing Ry, making them key targets for disease control.
(1) has a small negative effect, suggesting it has a minor role in controlling the disease. («) through
vaccination and (k) and (1) through treatment could be effective strategies. These results highlight the
importance of limiting transmission and improving recovery rates to control hepatitis B. Understanding
these influences helps in designing better intervention strategies. Figure (2) shows the sensitivity index
for HBV infection.

7. Numerical Results

Numerical simulations play a crucial role in assessing how well mathematical models reflect real-world
situations. This study presents numerical simulations to support the theoretical findings, focusing on two
cases: a scenario in which Ry < 1, indicating disease eradication, and another where Ry > 1, suggesting
potential disease spread. Using MATLAB R2017b, we compare three numerical methods—FEuler, RK4 |
and NSFD—to discretize and solve the HBV model. The results highlight the NSFD scheme’s superior
accuracy and stability, demonstrating its advantages over traditional methods.

Table 2: Control parametric values

’ Variables \ Values \ Source ‘

Q 6 estimated
« 0.01 or 0.03 or 0.1 | estimated
n 0.8 [41]

r 0.7 estimated
I 0.6 [41]

K 0.4 estimated
T 0.1 estimated
T 0.01 estimated
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Case : 1 (Ry < 1) Table 2 lists the selected parameter value for this scenario. According to the
data in Table 2, it is evident that Ry = 0.017837 < 1 and Ey = (0.909090901, 0).

Figure 3 compares the Euler and RK4 methods for the HBV model with initial values S(0) = 1.0,
I(0) = 0.7, and time step h = 0.1. The top plot shows S(¢), and the bottom plot shows I(t), with RK4
(solid red) proving more accurate than Euler (dashed blue). Maximum errors are 1.9929 for S(¢) and
0.0806 for I(t), emphasizing RK4’s better precision in capturing population dynamics.

S(t) Comparision: Euler vs RK4 Method
I I I I I I

1%
=

S5k
k]
3
S
Q
2
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0] _-
3 0 1861 -~ ——S(RKY) |
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0 | | | | | | | | |
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I(t) Comparision: Euler vs RK4 Method
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Figure 3: Comparison of HBV Population Dynamics using Euler and RK4 Methods for S(0) = 1.0 and
I1(0) = 0.7, with a time-step size of h = 0.1

Figure 4 compares NSFD (solid red) and RK4 (dashed blue) for HBV dynamics, showing S(¢) (top)
and I(t) (bottom). NSFD achieves higher accuracy, with maximum errors of 0.11113 for S(¢) and 0.00588
for I(t) at & = 0.05. While both methods show similar trends, NSFD captures rapid initial changes better
and provides more consistent accuracy than RK4.
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S(t) Comparison: NSFD vs RK4
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Figure 4: Comparison of HBV Population Dynamics using NSFD and RK4 Methods S(0) = 1.0 and
I(0) = 0.7, with a time-step size of h = 0.1

Figure 5 shows that higher h values accelerate the decline of susceptible and infected populations,
indicating faster disease control. For h = 4, the infected population drops to near zero quickly. The NSFD
scheme accurately reflects this behavior, highlighting the impact of effective interventions like treatment
or vaccination.
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Figure 5: NSFD scheme numerical solutions for h =4, h=2.5, h=1and h =0.5

Case : 2 (Ry > 1) Unlike the previous scenario, here o« = 0.1, while all other values remain identical.
In this scenario, Ry = 1.090 > 1, and E* = (5.000458,0.863945). Figure 6 shows GAS of E* in the
phase plane using NSFD scheme (h = 0.1). Trajectories from various initial conditions converge a stable
endemic equilibrium, demonstrating the model’s robustness and NSFD scheme’s effectiveness in capturing
long-term HBV dynamics.

S - I Phase plane

25l 1c: 11,11
ceennenIC: [28, 25]
5, 1.

:[1.8,2.3]
—===IC:[0.5,2.3]
IC: [2.5,0.5]
- - c21]
—ic:[1,2]

Infected population

0.5

15 2 25 3 3.5 4
Susceptible population

Figure 6: Global stability of Endemic equilibrium point of NSFD scheme with A = 0.1

Fig. 7 illustrates the impact of vaccination rates (I') on HBV dynamics. Higher I" values increase the
susceptible population and significantly reduce the infected population, with I' = 0.2 showing the most
effective control. Vaccination proves crucial in reducing infections and managing HBV spread.
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Infected HBV Population
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Figure 7: Variation of vaccination rate (I') on the dynamics of susceptible and infectious HBV Populations
over time

Fig. 8 demonstrates how the reproduction number Ry changes with the transmission rate and recovery
rate Y. Higher values of o combined with lower values of Y result in a high Ry, as seen in the red/yellow
region on the right, indicating a greater likelihood of infection spread. Conversely, lower a and higher
T correspond to a low Ry, represented by the blue region on the left, suggesting potential disease
elimination. The transition zone, where Ry shifts from above to below 1, marks a critical threshold
between outbreak scenarios and disease control.
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Surface Plot of Ry
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Figure 8: Three-dimensional plot illustrating the influence of transmission rate o and recovery rate T on
the basic reproduction number Ry in the HBV model.

8. Conclusion

We analyzed the dynamics of HBV model that includes a Crowley-Martin perspective along with a
fixed vaccination rate. By employing this incidence rate, we have accounted for both preventive measures
by the susceptible HBV population and treatment concerning infectives, yielding more meaningful and
realistic results compared to traditional saturated and bilinear incidence rates. Our study has established
key properties of the hepatitis epidemic model, including the basic reproduction number, the bounded-
ness and positivity of solutions, as well as stability characteristics and bifurcation behavior. We have
demonstrated local asymptotic stability using the linear stability theorem and global asymptotic stability
of the endemic equilibrium point using Dulac’s criteria. The transcritical bifurcation has been confirmed
at Ry = 1. Furthermore, in simulations, we have discretized the model using the NSFD scheme, ensuring
dynamical consistency with the continuous model. Numerical simulations have validated our findings,
highlighting the significance of the vaccination rate and disease transmission parameters in controlling the
spread of HBV. Sensitivity analysis has further emphasized the importance of key parameters, revealing
that the disease transmission rate («) and recruitment rate (£2) have the most positive impact on the
basic reproduction number Ry, indicating that reducing transmission and limiting new infections are
crucial in controlling the disease. Conversely, vaccination (I'), preventive measures (n), and treatment
parameters (T, k, 7) contribute negatively to Ry, reinforcing their importance in mitigating HBV spread.
The model can be used to inform public health policies aimed at controlling HBV transmission. By sim-
ulating different intervention strategies (e.g., vaccination campaigns, treatment programs), policymakers
can evaluate the potential impact of these strategies on infection rates and overall public health. The
limitations primarily stem from the assumptions in our model, such as constant vaccination rates and
the use of the Crowley-Martin functional response, which may not fully capture real-world complexities.
Additionally, parameter values are based on estimations, and real-world validation is needed. Future
research could explore time-dependent vaccination strategies, incorporate more realistic transmission dy-
namics, and validate the model using epidemiological data. These extensions would enhance the model’s
applicability and predictive accuracy. Further, our next research will focus on the likelihood of reinfection
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in individuals who have recovered from the hepatitis virus, especially as a Impact of unbalanced diets
and negative lifestyle habits.
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