(3s.) **v. 2025 (43)** : 1–5. ISSN-0037-8712 doi:10.5269/bspm.75933

Bound Inequalities on Minimum Covering Energy of Graphs

Smitha M , Honnegowda C K, Ashawini M P, Shivakumar Swamy C S*

ABSTRACT: The sum of the absolute values of all Minimum Covering eigenvalues $E_{mc}\mathfrak{G}$, of graph \mathfrak{G} represents the Minimum Covering energy of that graph. A few upper and lower constraints on the minimum Covering energy are obtained in this study.

Key Words: Minimum covering matrix, minimum covering eigenvalues, minimum covering energy of a graph.

Contents

- 1 Introduction 1
 2 Upper Bounds for Minimum Covering Energy of Graphs 2
 - 1. Introduction

3 Lower Bounds for Minimum Covering Energy of Graphs

 $E(\mathfrak{G}) = \sum_{k=1}^{n} |\Gamma_k|$, where Γ_k , k = 1, 2, 3, ..., n are the eigenvalues of the adjacency matrix (AM), of

the graph \mathfrak{G} , was defined in 1978 for graph energy. Ivan Gutman [5] conducted this research on \mathfrak{G} for the first time. German researcher Erich Huckle, employed the energy of graphs technique in the early 1930s to develop approximations for solutions for a family of organic molecules known as conjugated hydro carbons [3], commonly known as Huckle molecular orbital (HMO) theory. Thousands of studies have been published since the beginning of graph energy. Numerous matrix types, including Incidence [8], Distance [7], Lapalcian [6], Maximum degree matrix [2], and others, are established and researched for graphs, with inspiration drawn from the AM of graph \mathfrak{G} .

Given n vertices $V = v_1, v_2, \ldots, v_n$ and edge set $E = e_1, e_2, \ldots, e_m$ of order m. Let $\mathfrak{G}(V, E)$ be a simple graph. If every edge in \mathfrak{G} is incident to at least one vertex in C, then the subset C of V is referred to as a Covering set of \mathfrak{G} . Minimum Covering Set (MCS) is the Covering set with minimum cardinality. Let C be the graph $\mathfrak{G}'s$ MCS for any graph.

The following kind of matrix, known as the Minimum Covering Matrix (MCM) of a graph, was introduced by C. Adiga et al.in [1] and its eigenvalues and energy were examined.

The $n \times n$ matrix $M_c(\mathfrak{G}) = c_{kj}$, is the MCM of \mathfrak{G} ,

$$c_{kj} = \begin{cases} 1 & \text{if } v_k \text{ and } v_j \text{ are adjacent,} \\ 1 & \text{if } k=j \text{ and } v_i \text{ in } C \\ 0 & \text{otherwise.} \end{cases}$$

 $\chi(\mathfrak{G}:\eta)=det(\eta I-M_c(\mathfrak{G})),$ defines the characteristic polynomial of the MCM, $M_c(\mathfrak{G}).$

The minimum covering eigenvalues (McE) of the graph \mathfrak{G} are represented by the eigenvalues $\eta_1, \eta_2, \ldots, \eta_n$ of $M_c(\mathfrak{G})$. The matrix $M_c(\mathfrak{G})$ is symmetric and real. The real numbers that make up the eigenvalues of $M_c(\mathfrak{G})$ are organized as follows: $\eta_1 \geq \eta_2 \geq \ldots \geq \eta_n$.

3

^{*} Corresponding author. 2010 Mathematics Subject Classification: 05C30, 05C50. Submitted February 28, 2025. Published September 18, 2025

$$E_{mc}(\mathfrak{G}) = \sum_{k=1}^{n} |\eta_k|,$$

is the formula for a graph $\mathfrak{G}'s$ minimum covering energy (MCE)

Given that $M_c(\mathfrak{G})$ has trace = |C|, and $\sum_{k=1}^{\infty} \eta_k^2 = 2|E| + |C| = 2m + |C|$ and it is a real and symmetric matrix. We derive some upper and lower constraints for the MCE, $E_{mc}(\mathfrak{G})$, in this study.

2. Upper Bounds for Minimum Covering Energy of Graphs

In this section we study upper bounds for MCE of graphs.

Theorem 2.1 Let \mathfrak{G} be non-empty graph with n vertices and m edges then

$$E_{mc}(\mathfrak{G}) \le \sqrt{\frac{1}{2}(n^2 + |C|^2) + 2m(m + |C|)}.$$

Proof. Let e_k, f_k, g_k and h_k are sequences of real number and p_k and q_k are non negative for k = 1, 2, ..., n then the following inequality is valid (see [4])

$$\sum_{k=1}^{n} p_k e_k^2 \sum_{k=1}^{n} q_k f_k^2 + \sum_{k=1}^{n} p_k g_k^2 \sum_{k=1}^{n} q_k h_k^2 \ge 2 \sum_{k=1}^{n} p_k e_k g_k \sum_{k=1}^{n} q_k f_k h_k$$
(2.1)

for $e_k = f_k = p_k = q_k = 1$ and $g_k = h_k = |\eta_k|, k = 1, 2, ..., n$, inequality (2.1) becomes

$$\sum_{k=1}^{n} 1 \sum_{k=1}^{n} 1 + \sum_{k=1}^{n} |\eta_k|^2 \sum_{k=1}^{n} |\eta_k|^2 \ge 2 \sum_{k=1}^{n} |\eta_k| \sum_{k=1}^{n} |\eta_k|$$

using, $\sum_{k=1}^{n} |\eta_k|^2 = \sum_{k=1}^{n} \eta_k^2 = 2m + |C|$ in above inequality we deduce that,

$$n \cdot n + (2m + |C|)(2m + |C|) \ge 2E_{mc}(\mathfrak{G}) \cdot E_{mc}(\mathfrak{G})$$
$$2E_{mc}(\mathfrak{G})^2 \le n^2 + (2m + |C|)^2$$

Hence.

$$E_{mc}(\mathfrak{G}) \le \sqrt{\frac{1}{2}(n^2 + |C|^2) + 2m(m + |C|)}.$$

Theorem 2.2 Let \mathfrak{G} be non-empty graph with n vertices and m edges then

$$E_{mc}(\mathfrak{G}) \le \frac{1}{2}(n+|C|) + m.$$

Proof. Let e_k, f_k, g_k and h_k are sequences of real number and p_k and q_k are non negative for k = 1, 2, ..., n then the following inequality is valid (see [4])

$$\sum_{k=1}^{n} p_k e_k^2 \sum_{k=1}^{n} q_k f_k^2 + \sum_{k=1}^{n} p_k g_k^2 \sum_{k=1}^{n} q_k h_k^2 \ge 2 \sum_{k=1}^{n} p_k e_k g_k \sum_{k=1}^{n} q_k f_k h_k$$
(2.2)

for $e_k = f_k = h_k = p_k = q_k = 1$ and $g_k = |\eta_k|, k = 1, 2, ..., n$, inequality (2.2) becomes

$$\sum_{k=1}^{n} 1 \sum_{k=1}^{n} 1 + \sum_{k=1}^{n} |\eta_k|^2 \sum_{k=1}^{n} 1 \ge 2 \sum_{k=1}^{n} |\eta_k| \sum_{k=1}^{n} 1$$
$$n^2 + \left(\sum_{k=1}^{n} |\eta_k|^2\right) n \ge 2 \left(\sum_{k=1}^{n} |\eta_k|\right) n$$
$$n + 2m + |C| \ge 2E_{mc}(\mathfrak{G})$$

Hence,

$$E_{mc}(\mathfrak{G}) \le \frac{1}{2}(n+|C|) + m$$

3. Lower Bounds for Minimum Covering Energy of Graphs

In this section we study lower bounds for MCE of graphs.

Theorem 3.1 Let \mathfrak{G} be non-empty bipartite graph of order at least 2 with m edges and having spectral radius η_1 , then

$$E_{mc}(\mathfrak{G}) \ge \frac{2m + |C|}{\eta_1}.$$

Proof. Let e_k, f_k are decreasing non-negative sequences with $e_k, f_k \neq 0$ and j_k a non-negative sequence for k = 1, 2, ..., n. Then the following inequality is valid (see [4])

$$\sum_{k=1}^{n} j_k e_k^2 \sum_{k=1}^{n} j_k f_k^2 \le \max \left\{ f_1 \sum_{k=1}^{n} j_k e_k^2, e_1 \sum_{k=1}^{n} j_k f_k^2 \right\} \sum_{k=1}^{n} j_k e_k f_k$$
(3.1)

for $e_k = f_k = |\eta_k|$ and $j_k = 1, k = 1, 2, \dots, n$, the inequality (3.1) becomes,

$$\sum_{k=1}^{n} 1 \cdot |\eta_k|^2 \sum_{k=1}^{n} 1 \cdot |\eta_k|^2 \le \max \left\{ \eta_1 \sum_{k=1}^{n} |\eta_k|, \eta_1 \sum_{k=1}^{n} |\eta_k| \right\} \sum_{k=1}^{n} |\eta_k|^2$$

$$\sum_{k=1}^{n} |\eta_k|^2 \le \eta_1 \sum_{k=1}^{n} |\eta_k|$$

$$k=1 \qquad k=1$$

$$\eta_1 E_{mc}(\mathfrak{G}) \ge \sum_{k=1}^{n} |\eta_k|^2$$

Hence,

$$E_{mc}(\mathfrak{G}) \ge \frac{2m + |C|}{\eta_1}$$

Lemma 1 [9] Let $n \ge 1$ be an integer and $l_1, l_2, ..., l_n$ be some non-negative real numbers such that $l_1 \ge l_2 \ge ... \ge l_n$. then

$$(l_1 + l_2 + \dots + l_n)(l_1 + l_n) \ge l_1^2 + \dots + l_n^2 + nl_1l_n$$

Moreover, the inequality holds if and only if for some $r \in \{1, ..., n\}$, $l_1 = \cdots = l_r$ and $l_{r+1} = \cdots = l_n$ **Theorem 3.2** Let \mathfrak{G} be a graph with $n \geq 2$ vertices and $m \geq 1$ edges. Assume that $\eta_1, ..., \eta_n$ are all minimum covering eigenvalues of \mathfrak{G} such that $|\eta_n| \geq ... \geq |\eta_1| \geq 0$, then

$$E_{mc}(\mathfrak{G}) \ge \frac{2\sqrt{|\eta_1\eta_n|}}{|\eta_1| + |\eta_n|} \sqrt{2|\mathfrak{C}_2|n}.$$

Proof. we know that, since \mathfrak{G} has at least one edge, \mathfrak{G} has at least one non zero eigenvalue. Using Lemma1 we get,

$$(|\eta_1| + \dots + |\eta_n|)(|\eta_1| + |\eta_n|) \ge |\eta_1|^2 + \dots + |\eta_n|^2 + n|\eta_1||\eta_n|$$
(3.2)

and the equality holds if and only if $|\eta_1| = \cdots = |\eta_r|$ and $|\eta_{r+1}| = \cdots = |\eta_n|$ for some $r \in \{1, \ldots, n\}$, since, $|\eta_1|^2 + \cdots + |\eta_n|^2 = 2m + |C|$. By equation (3.2) we get,

$$E_{mc}(\mathfrak{G})(|\eta_1| + |\eta_n|) \ge 2m + |C| + n|\eta_1||\eta_n|$$

$$E_{mc}(\mathfrak{G}) \ge \frac{2m + |C| + n|\eta_1||\eta_n|}{|\eta_1| + |\eta_n|}$$
(3.3)

and the equality holds if and only if $|\eta_1| = \cdots = |\eta_r|$ and $|\eta_{r+1}| = \cdots = |\eta_n|$ for some $r \in \{1, \ldots, n\}$. We all know that for every real number $a \ge 0$ and $b \ge 0$ we have $a + b \ge 2\sqrt{ab}$ and equality holds if and only if a = b, using this equation (3.3) becomes

$$E_{mc}(\mathfrak{G}) \ge \frac{(2m+|C|)+n|\eta_1||\eta_n|}{|\eta_1|+|\eta_n|} \ge \frac{2\sqrt{(2m+|C|)n|\eta_1||\eta_n|}}{|\eta_1|+|\eta_n|} = \frac{2\sqrt{(2m+|C|)n}\sqrt{|\eta_1\eta_n|}}{|\eta_1|+|\eta_n|}$$

Hence.

$$E_{mc}(\mathfrak{G}) \ge \frac{2\sqrt{(2m+|C|)n}\sqrt{|\eta_1\eta_n|}}{|\eta_1|+|\eta_n|}.$$

Acknowledgments

The authors are thankful to Prof. Chandrashekara Adiga for his encouragement and suggestions and we also thank the referees for their valuable suggestions.

References

- 1. C. Adiga, Abdelmejid Bayad, Ivan Gutman and Shrikanth A S, The Minimum Covering Energy of a Graph, *Kragujevac J. Sci.*Vol. **4**, (8),(2009) 385 396.
- 2. C. Adiga and Smitha M, On Maximum degree energy of a Graph, Int. J. Contemp. Math. Sciences, Vol. 4, 34, (2012).
- 3. E.Hükel, Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Vebindungen. Z.phys.70 (1931) 204-286
- 4. S.S.Dragomir, A survey on cauchy-Bunyakovsky-Schwarz type discreate inequalities, *J.Inequal.Pure Appl.Math.*4 (2003), no. 3,1-142.
- 5. I. Gutman, The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103(1978), 1-22.
- I. Gutman and B.Jhou, Laplacian energy of a Graph, Lin. Algebra Appl,414 (2006), 29-37. The energy of a graph, Ber. Math. Stat. Sekt. Forschungsz. Graz, 103(1978), 1-22.
 bibitemhu
- G.Indulal, I.Gutman, A. Vijaykumar, On distance energy of Graphs, MATCH Commun. Math. Comput. Chem. 60 (2008) 355-372.
- 8. M R Jooyandeh, D.Kiani, M.Mirzakhah, Incidence energy of Graph, MATCH Commun. Math. Comput. Chem. bf60(2008) 561-572.
- 9. Mohammad Reza Oboudi, A new lower bound for the energy of graphs, Lin. Algebra Appl, 580 (2019), 381-395.

 $^{^{1}\} Department\ of\ Mathematics,\ JSS\ Science\ and\ Technology\ University, SJCE,\ Mysuru-570006,\ INDIA,$

^{2,4}Department of Mathematics, Government First Grade College, Krishnarajapete, Mandya - 571426, INDIA,

³Department of Mathematics, Vidya Vikas Institute of Engineering and Technology, Mysuru-570028, INDIA E-mail address: ¹smitham@jssstuniv.in, ²honnegowdack@gmail.com, ³ashvviet22@gmail.com, ⁴cskswamy@gmail.com