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Investigation of nonlinear Riemann-Liouville fractional differential equations with
fractional nonlocal multi-point and integral boundary conditions
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ABSTRACT: We investigate the existence of solutions for a Riemann-Liouville fractional differential equation
of order a € (2,3) equipped with fractional anti-periodic type nonlocal multi-point and Riemann-Liouville
integral boundary conditions in a weighted space. The existence and uniqueness results for the given problem
are respectively proved by applying Leray-Schauder’s alternative and Banach’s contraction mapping principle.
The Ulam-Hyers stability for the given problem is also studied. Examples illustrating the main results are
offered.
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1. Introduction

Riemann—Liouville fractional differential and integral operators are found to be of great utility in view
of their applications in a variety of physical and technical disciplines. Examples include bioengineering
[1], fractional dynamics and control [2], self-similar protein dynamics [3], backward diffusion problems
[4], viscoelasticity [5], etc. The extensive application of Riemann—Liouville fractional operators motivated
many researchers to develop the theoretical aspects of boundary value problems involving these operators,
for example, see [6]-[11]. For some interesting results on anti-periodic fractional boundary value problem,
we refer the reader to the papers [12]-[16].

In contrast to classical two-point boundary conditions, nonlocal boundary conditions provide a plat-
form to model a phenomenon experiencing changes at arbitrary interior points or sub-segments of its do-
main [17]. In case of curved boundary structures, integral boundary conditions describe non-uniformities
on segments of such structures. Examples include fluid flow problems [18], biomedical applications [19],
bacterial self-organization [20], engineering applications [21,22], etc. One can find some useful results on
multi-point and integral boundary value problems in the articles [23]-[27].

In 1940, Ulam [28] discussed the stability of a functional equation by presenting the conditions
ensuring an approximate solution of this equation to be close to its exact solution. Hyers [29] developed
the Ulam’s idea of stability more rigorously in the context of Banach spaces in 1941. The concept of
stability studied by Ulam and Hyers is known as the Ulam—Hyers stability. Afterward, Rassias [30]
applied the idea of Ulam—Hyers stability to a wide class of functional equations, which is now referred to
as Ulam—Hyers-Rassias stability [31]. The Ulam-Hyers stability for Black-Scholes equation was studied
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in [32]. For some recent results on Ulam—Hyers stability for fractional differential equations, for instance,
see [33]-[36].

In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability for solutions of a
nonlinear Riemann-Liouville fractional differential equation of order a € (2,3) equipped with fractional
anti-periodic type nonlocal multi-point and Riemann-Liouville integral boundary conditions in a weighted
space. In precise terms, we consider a nonlinear Riemann—Liouville fractional integro-differential equation
of the form

Dx(t) = g(t, z(t), (1) (t), (nex)(t)), 2<a<3, teJ=1[01T], T>0, (1.1)

subject to fractional anti-periodic type nonlocal multi-point and Riemann-Liouville integral boundary
conditions
D> 32(07) + a1 D*3x(T7) = ¢(x),

D 22(0%) + agD*22(T7) = v  I*2x(m) + Zwiw(&),

i_1 (1.2)
D72 (0%) + as D (1) = vl a(n) + Y 052 (¢),
j=1
where 0 < mp < 1 < & < & < .. <& < G < (@ < ... < (¢ < T, D% denotes the Rie-

mann-Liouville fractional derivative operator of order o, I~ and I*~?2 respectively, represent the Rie-
mann-Liouville fractional integral operators of order (o — 1) and (o — 2), v1,v2, a1, a2,a3,w;, &, 05, G
eRi=12,....mji=12....n,¢g: ITXRXRXR = Rand ¢ : C(J,R) — R are appropriate
continuous functions and

(ma)®) = [ @it o) ds. Qo)) = [ @aft.)a(s)ds (1.3)

with ®; and ®5 being continuous functions on 7 x J.

Here, one can notice that the nonlinearity in the equation (1.1) contains integral terms in addition to
the unknown function, while boundary conditions (1.2) can be regarded as a combination of Riemann-
Liouville fractional derivative and integral operators of different orders and nonlocal multi-point values
of the unknown function. The objective of the present work is to enrich the literature on boundary value
problems for Riemann-Liouville fractional differential equations.

We arrange the rest of the paper as follows. Section 2 contains background material and a subsidiary
result for the linear variant of the problem (1.1)-(1.2). We establish the existence and uniqueness results
for the given problem with the aid of Leray-Schauder’s alternative and Banach’s contraction mapping
principle respectively in Section 3. We also discuss the case when the integral terms in the nonlinearity of
(1.1) are of the Riemann—Liouville fractional integral type. Illustrative examples are presented in Section
4. We discuss the Ulam—Hyers stability for the problem (1.1)-(1.2) in Section 5. The paper concludes
with some interesting remarks.

2. A subsidiary result
Let us first recall some basic concepts of fractional calculus from the text [37].

Definition 2.1 For ¢ € Li[a,b], the (left) Riemann—Liouville fractional integral of order o € R™ of ¢,
denoted by I, v, is defined as

a

t

%o (1) = ﬁ / (t - )" o (s)ds,

a

where I' denotes the FEuler gamma function.
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Definition 2.2 Let ¢, ™) € Li[a,b],a,b € R and o € (m — 1,m], m € N. The Riemann-Liouville
fractional derivative of order a of ¢, denoted by D¢, ¢, is given by

t

[ o

a

. o 1 dm
Dgip(t) = dtimfé e (t) = T(m—a) dem

In the current work, we write the Riemann—Liouville fractional integral and derivative operators Ig + and
D!, as I? and D? when a = 0, respectively.
Lemma 2.1 Let p and q be positive real numbers. If ¢ is a continuous function, then
(i) IPI%p(t) = IPTp(t),
(i) DPIp(t) = I Pp(t) for ¢ > p > 0.
Note that DP#P~% =0, i=1,2,...,[p] + 1, where [p] is the largest integer less than p and

FA+1) .,

DPtr = —— 2 ¢} P
'(A—p+1)

A>—-1, A#p—1p—2,...,p—n.

In the following lemma, we solve the linear version of the equation (1.1) complemented with the
boundary data (1.2).

Lemma 2.2 For h € C(J,R), k € R and A # 0, the unique solution of the linear equation

D%z(t) =h(t), 2<a<3, teJ, (2.1)
subject to fractional anti-periodic type nonlocal multi-point and Riemann—Liouville integral boundary con-
ditions

D 32(0%) + ay D*3a(T™) =k,

m
D> 22(07) 4+ ag D 2x(T™) = vy I ?2(m1) + Zwix(&),
i=1

(2.2)
D 1(0) + 4y D" a(T) = 0p1%a() + Z 7j2().
is given by :
2(t) = M)k + /0 ' [Mg(t)@ + Ma()(T — s) + M4(t)] h(s)ds
+M5(t)ng /0 & - (Z))a_lh(s)ds—l—M(;(t) /0 " (’l’j(;as)_z;gh(s)ds
+M7(t)jiloj /0 B - (Z))a_lh(s)ds—&-Mg(t) /0 " (7}2(2_;)_2:2h(8)d3
+ /O t(tr(sa);lh(s)ds, (2:3)

where

1
Mi(t) = X |(BaEs + BoBy) °7' — (BiBy — ByEy) t°72 + (BiEy + By Ey) 277,

—a

Ma(t) = =2 [(BgEg § ByEy) t°71 — (B1Bs — ByEy) 492 + (B1Es + Bo ) ta*ﬂ,
—a

M;(t) = TQ [(Ag,Eg — AgEs3) 71 4 (A1 Es + A3Ey) t*72 — (A Eo + A3 E) t“ﬂ,
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M4(t) = T A2B3 + Ang) t*~ 1 (A133 + AgBl) ta_2 — (A1B2 — AzBl) ta_3:|,

Nl
(AgB — A2Fg) 157" + (A1 Bg + AsFr) 172 = (A1 By + Az By) 127,
(A

l>\@l>\

-5l
-5l
-5l

3By — AsE3) t°7 ' + (A1 B + AsEy) t°7% — (A1 By + Ao Eq) t*7 3]

(AaB3 + A3Bo) t*7 1 — (A1 B3 + A3By) t*72 — (A1 By — AsBy) t*73

s > \

Mg(t) = . [(AQB3 + A3By) t*7t — (A1 B3 + A3By) t*7? — (A1 By — AyBy) t°~ 3]
A=ABsE3+ A1B3Es — AsB1E3 + A3yBsEy + AsB1Ey + AsBoEy,

r
Al = (Oé) a1T2, A2 = a1F<O[ - 1)T, A3 = (a1 + 1)F(O{ - 2)7

2
B1 :(IQF(O[)T—F(;OEO[) 204 3 szfa !
Ba= (1 o= 1) - G e = Y
_ (a=2) 2a 5 - a=3,
Bd_F(T g ’Lg
E1(1+a)F()F(OE) Y Zajgf“
F(O{-l a— a— F(Oé a— a—
EQ:F(Qoz ) 3+ZUJC ’, E?’:F(Qa ) 4+ZUJ< °.

Proof: Operating the integral operator I% to (2.1), we obtain
z(t) = 1t + ot % 4 c3t® 3 + IA(t),

where cq, c3, c3 € R are unknown arbitrary constants.
From (2.5), we have

D> tg(t) = e T() + I'h(t),
D 2x(t) = el (@)t + coT' (o — 1) + I?h(2),
DY 3x(t) = a O‘)tQ + ol (o — 1)t + e3T'(a — 2) + I3h(t).

Using (2.6) in the boundary conditions (2.2) together with notation (2.4), we obtain

A101 + AQCQ + A303 = J1,
Bici + Bacy — Bsez = Jy,
Eici — Eycy — Ezes = Js,

where

m
Jl = /43 — allgh(T), J2 = ’01]20472]1(771) + szjah(&) — a212h(T),
i=1
Js = 0% h(n2) + > o I7h((;) — asI'h(T).
j=1
Solving the system (2.7) for ¢1,co and c3, we find that

Cl1 = —

A [(B2Es + BsEy)Jy — (A Es — A3Ey)Jy + (A3 Bs + A3Bs) J3],
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1

2= X [(BsEy — B1E3)J1 + (A1E3 + A3Eqy)Jy — (A1Bs + A3B1)Js),
1

€= X [(B1E2 + ByFEh)Jy — (A1E2 + AsEq)Jos — (A1 Ba — A2B1)J3]-

Inserting the above values of ¢1, ¢z and ¢z in (2.5) and using (2.4), we get the solution (2.3). The converse
of the lemma follows by direct computation. O

3. Main Results

Let C(J,R) be the Banach space of all continuous real-valued functions from J — R endowed with
the supremum norm ||z| = sup,c; |z(t)|. For t € J, we define z;(t) = t’z(t), p > 0, and let C; (J,R) be
the space of all functions z; such that € C'(J,R) which turns out to be a Banach space when endowed
with the norm ||z = sup,c 7 {t”|=(t)|}.

By Lemma 2.2, the problem (1.1)-(1.2) can be transformed into a fixed point problem as

=Gz,

where G : C3_4(J,R) = C3_,(J,R) is an operator defined by

2

T — S
Ga)(t) = dnoolo)+ [ [T

xg(s,z(s), (z)(s), (Mzw)(S))

m

& (g — s)a-
(0D / G (), () (5), (o) (5))ds

[(a)

+ M (1)(T = ) + Ma(t)]

_ 8)2(173

My (1) / gy 0(5,2(5), (1.0)5). ) () s

a—1

n SG(¢:—s
10 Y 05 [ (o9, () 0. () ) s

_ 8)2(1—2

#0as(0) [ B (), (1)), () 5)) s

t _ s a—1
+/o @Fw)z)g(s,x(S), (112)(5), (p2)(s))ds. (3.1)

Observe that the fixed points of the operator G are solution to the problem (1.1)-(1.2).

Lemma 3.1 Let g: J xRXR xR — R be a continuous function and ¢ € C (J,R). Then, the operator
G:C5_o(T,R) = C5_4(T,R) is completely continuous.

Proof: The operator G is continuous, since g is continuous. Let £ be a bounded set in C3_, (7, R). The
we can find positive constants N, and N, such that |g(s, z(s), (t12)(s), (t22)(s))| < Ng, |¢(x)] < N,
Vr e &, te J. In consequence, we have

o) + [ [0 T3 4w -9+ w0
(22)(s), (a)(5))ds

4/51(5‘5”1( (), (11)(s), (1) (5))d

w; ; o) g(s,x(s), (u12)(8), (H2x s

)2(173

[Gzlls—a = sup{t“
teJ

~—

xg(s,z(s
+M5(t)

- s

+Ms(®) I(2a —2)

9(s,2(s), (mz)(s), (n2x)(s))ds
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)0471

n SGo(¢:— g
414000 Yy [ s, ) 01, () (9

I'(a)

200—2

+bax(0) [ ORI (), (1)), () 5)) s

}

t (t — s)o‘—l
+/0 a9 ), (m)(s), (1a2)(5))ds

T 2
< sup{tB_a[|M1(t)N¢+Ng/ [|M2(t)|(T_23) M5 (8)|(T — ) + | Ma(t)|] ds
teJ
—5)o— 1 2a—3
N, | Ms(t |Z|wl\/ 03) ds + N, | Ms(t \/ %ds
s)e— 1 o 2a—2
LN, Mo (1) |Z|aj|/ a)) ds + N, | Ms(t) |/ %ds+
t—s -
+Ng/0 7F(oz) ds]}
<

T3 T
Ny sup |3~ M, ()| + N, [sup |t3*aM2(t)|— + sup [t37 M3 (t)| —
teg teg 2

+sup |63 Myt )|T} +N, sup|t3 o My (t) Z|wz|

teJ
3 77%& § 3 - Ca
+ N, sup [t°7 Mg (t)| =—=—— + Ny sup |t°~“ M (t 0| =2 —
gt€J| 6( )|F(20z 1) gt€J| 7( )|;| J| (Ol+1)
2a—1 t a—1
—a 2 3—« (t—s)
+N, sup [t37* Mg + N, sup {t / ———ds
pup [ MO gy + oS\ @)
T3 T m ga n20¢—2
— Ny§ [57 3= 1+ 6, +6 o= SN
01 02T 0Ty 0 +5;'“‘F(a+1)+6r(2a 1)
n Cq ,'7204 1 T3
5 |2 2 ]N,
+ 7;‘Uj|r(a+1) 0050 T Tlagr ) Ve
where
§; =sup [t M;(t)], j=1,2,...,8. (3.2)

teJ

Thus, it follows that G(£) < oo. Hence G(€) is uniformly bounded. To show that G(€) is equicontin-
uous, we take v1,v5 € J with v1 < vy and x € £. Then, we obtain

() ) — 1 (G) )

T
[Ml(Vzw(x) [ e TS a1 - )+ M)
el) ). G

m

() Do / 9(s.2(s), (ma)(s), (u2)(s))ds

(m — s)
+M6(V2)/O T@a-2)

2a—3

9(s,2(s), (mz)(s), (n2)(s))ds
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n Gi(¢; — g)a—1l
#bar() >3 [ 5009, ()9, () 51

IN(e

200—2

ity [ O

a1y 95 26) (ma)(s), (o) (5))ds

V2 (1/2 — S)a_l
+/0 Wg(svx(w (11@)(s), (n2z)(s))ds
_ 8)2

;7 lM1(V1)¢(x) + /0 {MQ(W) & + Ms(11)(T — ) + Ma(11)

xg(s,2(s), (z)(s), (p2x)(s))ds
)a—l

m fz‘
+Ms(vy Zw / 7)9(8796(8)7(ulw)(S)»(uzw)(S))ds

NG
#bta() [ g6, (1) (o), (s (9

R (T
I'«)

)2a 3

+Mq(11) Z % | 9(s,2(s), (m1w)(s), (n2)(s))ds

_ S)Za—Q

#ats() [ O a0, (10) (o), () (9

0

121 (l/ _s>a—1
+/O IFTQ(&%(S% (mz)(s), (W)(S))dsl

TS

6

IN

N3 M () — v M1<m>|+[| My (1) — 1 My ()|

vy Ms(va) — 7~ MB(V1)|* + (V3 My(va) — v~ My (11)|T

o o £ o ne?
+|V§ M5(V2) — Vi)) M5<V1)| Z |wz F( ) + |V MG(I/Q) — 1/? M6(y1)‘r(21 — 1)
7720471
v~ M (v2) = v} M) IZ 03 gy 1A M) — i Ms ()l s
d—|vs — VY| + Lug’_a(yg — 1) N,
F( +1)"72 Y r(a+1)? g

= |A| [B2E3+BBE2|V2 V%|+|B1E3—B;3E1||V2—V1|:|

Nglva — 1] |a1|T |a2|T

+
A

|A1E5 + AsFE4 |

|B1E3 — B3 En| +

+las|T|A1Bs + A3 B1| + |A1 E3 + AsE | Z lwil T §+ )

,'72(172 Ca
(2 —1)

+|A1E3 + AsEq||v1 ﬁ

+ |A; 33+A331|Z|oj|

ngafl
A1Bs + AsB
+|A1Bs + As 1||U2|F(2a)
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No|v3 — vi]
A

|ay | T3
6

|ag|T?
2

+ |BoEs + B3 Es| +

|AsEy — AsEs|

&
INa+1)

2a0—2 n Cq

+ |A233 + A3B2| Z |U]|F(T]«|»1)
j=1

+las|T|A2Bs + A3 Bs| + [A2E3 — A3 Es| Z |wil
i=1

+|A2E3 — Aﬂ%”m\%
J:

2a—1

2N,

I3y — 1), (3.3)

12 g 3 3 ¢
| 203 3 2||U2|F(2 )‘| F( 1)|V2 Vl‘ F( 1)

which tends to zero as vo — 17 independent of x € £. Thus, G(€) is equicontinuous. In view of the
forgoing arguments, it follows that G is completely continuous. This completes the proof. O

Now, we present our first existence result, which is based on the Leray-Schauder’s alternative [38,
Theorem 2.4, p.4].

Theorem 3.1 Let g: JXRXxR xR — R be a continuous function, ¢ € C (J,R) and there exist positive
constants Ny, Ny such that |g(t, z(t), (12)(t), (pex)(t))] < Ny, |¢(x)] < Ny, Vo € R, t € J. Then, the
problem (1.1) — (1.2) has at least one solution on J.

By Lemma 3.1, we know that G is completely continuous. So, the conclusion of the Leray-Schauder
alternative will be applicable once it is shown that the set W = {t37 %2z € R : 37 %2 = 137 °Gx, 0 < 7 < 1}
is bounded. For z € W, we have [t3~%x(t)| = |tt37*Gz(t)| < t37%|Gz(t)|. Using the arguments employed
in the proof of Lemma 3.1, we obtain

[l < Nyé +{5T3+5T2+6T 16 i| | SN ni*?
I|l3— - B iy
3—a 001 2 6 3 2 4 5i:1 i F(Oz-i—l) 6F(2a—1)
n é—g 7]204—1 T3
0 e S N, 3.4
+ 7;|03|F(a+1)+ 8F(2a)+I‘(a+1)} g < 00, (3.4)

which implies that the set W is bounded. Thus, by Leray-Schauder’s alternative, we deduce that the
operator G has at least one fixed point, which is indeed a solution to the problem (1.1)-(1.2).

Theorem 3.2 Let g: J XRXR X R — R be a continuous functions and ¢ € C (J,R). In addition, the
following conditions hold:

(H1) There exist positive functions L (t), La(t), L3(t) such that

lg(t, z(t), (1z)(t), (p22) (1)) — g(t, y(t), (n1y(t), (H2y) (1))l
< Li()|r =yl + La(t) |z — payl + La(t)|per — poy|,VE € T, x,y € R;

(Hs2) ¢(0) =0 and there exists a positive constant L such that
6(x) = ()| < Lz = ylls—a, Yo,y €R.

Then, the problem (1.1)-(1.2) has a unique solution on J, provided that

A = Lo+ (1+ N 22 dae1 + 0zeg + dse3 + 05 Z |wi|ea; + dees
a—2 a-—2 e
+67 Z |Uj‘€6j + dger + T3_a€8> <1, (3.5)
i=1

where 0y, m = 1,2, ..., 8, are given in (3.2) and
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1 =sup; sz [P1(t, 8)], 2 =supy ez |Pa(t, s)],

e1 = max{|I3Ly(T)T*3|,|I3Ly(T)T2|, |I3 Ls(T)T*2|},

ey = max{|I2Ly (T)T*3|, |I2Ly(T)T*~2|, |I2Ls(T)T*2|},

e3 = max{|[I Ly (T)T |, [ILo(T)T* 2|, [ILs(T)T?[},

eai = max{ |1 Ly (§)&7 2|, |17 Lo ()€1 72, 11 La(&)€7 2},

e5 = max{|12*~2 Ly ()0 |, [12*~2 La(m)n? 2|, 112>~ 2 La(m)n? 2|},
ee; = max{| 1Ly ()¢5 2|, [T La(¢) ¢ 2, [T La(¢) ¢ 21},

er = max{[ 1>~ Ly (no)ns |, [ 127 La(no)ns 2|, 112%~ La (o) ns |},
es = supye 7 { |10 Ly (£)t=3|, [T Lo (£t~ 2|, [1* Ls (£)t2 2|},

1% denotes the Riemann-Liouville fractional integral operator of order a and

é(t) = 1)/O(t—s)”_1¢(s)ds, n=123.

()

Proof: For verifying the hypothesis of Banach’s fixed point theorem, we consider a closed ball S = {z €
Cs_o(T,R) i ||z]|3-0 < T} with

P2 (@)a-n (36)
where sup,¢ 7 [9(,0,0,0)| =7,
3 5T3+5 T i|w| s o2 +62":| | i
— _— - K3 YT+ 1)
> 3 4 P2 T 1) T TR - 1) 7j:1 "T(a+1)
2a—1 T3
+58 73 N (3.7)

I'2a) T(a+1)’
Om,m =1,2,...,8, are given in (3.2). Now, we establish that GS» C Sp, where G : Sz — C3_o(J,R) is
given by (3.1). By (H1) and (Hz), we have
|g(ta ‘T(t)v (le) (t)v (,U'Qx)(t)” < |g(t7 SL'(t), (:ulx)(s)v (MQx)(t)) - g(t7 0, 07 0)‘ + |g(ta 0’ 07 0)‘
< Li()|z| 4+ La(t)|pax| + La(t)|p2z| + 7,
o) < [é(z) — ¢(0)] + |9(0)| < L|z[|3-q- (3.8)

For x € Sz, it follows by using (3.8) that

IGalls—a = sup {t3 oM, (t /0 [Ma()( 3 +M3(t)(T—s)+M4(t)]

xg(s, x(S),(ulx) s), (u2x)(s))ds
(& — 9! 1

51 '—S
(1 sz | a9, () 0). ) o))

)204 3

501 / o gy 0(sa(s), (1)), () (5))ds

s a—1

n (¢ —
001030y [ I 060, () o), (ra0) )

72 (772 — 5
+M8(t)/0 (20— 1)

)20(72

9(s,2(s), (miz)(s), (n2)(s))ds
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}

(T —5)?
2

t (t _ 5)0471
+/o () 9(s,2(s), (1w)(s), (p2)(s))ds

sup{ 37
teJ

+0a(8)]] (L1 ()l + La(s) mal + Lo(s)|pzw] +7) ds

T
MOl + [ 0000 + My ()|(T — 5)

— (T (@)lal + La(s) il + Ly(s) o] + 7) ds

m _ 200—3
HMa(0) / (’”Cf)_z)(u(sm + La(s)lpaz] + La(s)l el + ) ds

+[M7(t) |‘7J

(5)|o] + La(s)|mal + Lo(s) usal +)ds

2 2 _ 5 20( 2
HMs(t) / (s)al + La(s)lpra] + La(s)lpas| +7)ds

()

T
sup My ()| el + [ [sup £ Ma(t)
teJ 0 teJ

+/0 (t—s)" 1(Ll(s)|sc|+L2(s)|msc|+L3(s)|u29c+g)ds”

(T - 5)?
2 teg

+sup [~ Ma(8)]] (La ()] + La(s) |l + L (s)uaw| + ) ds
teJ

m 5 (€ _
+sup [t37* M;(t)| Z |w;
teg P 0

< (La(s)lal + La(s) | + La(s)luza] +3)ds

)20473

m (,,71 s
37 Mg (t —_
+sup e agy(o)] [ o

ted 2) (L1(3)\x| + Lao(s)|pax| + L3(s)|pex] +§)ds

n
+sup |27 Mz (1) |o;
teJ 1

x(La(s)lel + La(s) |l + La(s )Iu2x|+§) s
4 72 2_82(1 2
+sup -] [0 ()] + Lo(s) || + L(s) paa| +7) ds

t _ s a—1
+sup{t3a / ) (Ll(S)IfU+L2(8)Iu1w|+L3(8)qux|+g)d8}

teg [(a)

T T _ )2
sitlelsa+ [ [255E 4ar -9 +8)
0

a—2

x((L1<s>sa—3+L2<s>fj 55 + L) 2 el a+g>d

m ¢ _
+J5 Z |wi (E
i=1 0
a—2

S 28 —2
x <(L1(5)5a3 + L2(S)<(pot —9) + Ls(s) c(pa )>H$||3 ot g)d

+ sup [t Mz (t)|(T — s)
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2043
771_5
Mt ‘/ (2a —2)

X ((L1(s)sa_3 +L2(8)<p15 = + Ls(s) L 2)|\x||3 « +g>d

@2 "B
n ¢
) oyl [

x((h(s)sa—um(s)ff 57 + La(s) E2 5 ) el a+g>d
_ S 2a 2
+IMs(t ‘/ 772 I'2a —1)

a—2

s* 28 -2
X <(L1(5)5a3 + L2(S)(<p; —9) + Ls(s) c(pa )>H$||3 ot g)d

t a—1
so [M(E=3)

-+ sup 3 a/ -_
teJ{ 0 [(a)

><<(L1(s>sa3+m<s>‘("jf 5 + Ll 225 ))Hxlls a+g>ds}

1 P2 U
< Loy + (1 0_2 a_2>(62el+63e2+64e3+65;|wi|64i+56€5
n T3 T2
+d7 Z lojles; + dser + T3_O‘eg> 527 + 537 +0,T
j=1
i e n%a 2 n @
o i : ) 5 N A
’ 5; It e 7j§::1|aj|r(a+ 1)
2a—1 3
P T
d
@) T
< AT +76. (3.9)

Combining (3.9) with (3.6), we obtain
Gz ]|3-0 < AT+G 8 <T.

which shows that Gx € Sz. Hence, GS7 C Sr since = € Sy is an arbitrary element.
Next, we verify that the operator G is a contraction. For that, let x,y € C5_,(J,R). Then, for any
t € J, using (H;) and the relation

Li(t)|z =yl + L2 () [(Ax — Aay| + Ls(t)|(A2z — Ay
a—2 a—2

a— Splt 902t
< (Ll(t)t 3 4 Lo(t) R ey ) Iz = yll3—a, (3.10)
we obtain
||Qx - ngS—a
T Y
< s {t3 “[n0llo - s+ [ b5

+IM3 ()T — s) + | Ma(t)

} l9(s, 2(s), (pa)(s), (2)(5)) — 9(s,y(5), (11y)(5), (n2y)(s))|ds
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HM&M}jwi

x|g(s, z(s) uwX)(m@(» 9(5,9(), (119)(5), (12y)(s)) | ds
771_82@3

HMat |/

2a—2
Lo, 2(6). (112)(6). (2)(5) = 95 9(5), (19)(5), () 5)) s
HMe|j1mu/ R
la(s.2(s). (2)(9). (122)(5)) = 9(5.9(5). (119)(5). () 5)) I

2 2042
(n2 — s)*2
M(
+| |/0 I'(2a - 1)

x|g(s,z(s), (mz)(s), (pa)(s)) = 9(s,y(5), (1) (5); (12y)(s))|ds

v [ wﬁx()Wﬂ%$%@@@”—QGWSLWWXﬂwa@»W%}

teJ

sw{ﬁabenuu—w3a+/ (250125 4 o - )+ )]
0
X(()M—M+Lﬂﬂmx—mm+Lﬂ$Mﬂ—uwD%

+|Ms(t)

(Li()ke =yl + La(s) iz — py| + La(s)|pow — payl ) ds

2a—3

— S
HMeI/ lﬂ——;;( ﬁw—m+Lﬂﬂmw—mm+Lﬂﬂmw—MMWs
-HM7|§ZMA/
2

_S2oz
+{Ms (1 y/ ﬁi——ﬂ*(dﬁm—m+Lﬂﬂmx—mm+Ld@Mﬂ—uwD®

~(Las)le = g1+ La(s) e — syl + La(s) sz — ) ds

+K;&r&) @M@xy+Lﬂﬂmxmy+LﬂﬂW$mmw%}

T T—82
Sl —ls-at [ 05
0

+ 63(T — S) + 54}

a—2 a—2
x(h@ww%+Lx$ifﬁD+LAQﬁf:D>u—yh(ﬂs
m & 5 —1 B Sa—2 ") sa—2
+55Z\wi|/o ( )) (Ll(s)so‘ 3+L2(s)8j+L3(8) (5_2) [l — ylls—ads
i=1
71 _ 2a—3 a—2 a—2
+56/ M (Ll(s)so‘3 + LQ(S)& + L3(5)<'028 > |z — ylls—ads
0

I'2a —2) (a—2) (v —2)
- <L1(3)s°‘3 + La(s) @;S_a L Ly(s) ‘”5&2) |z — ylls—_ads

3 @<<—
+&§jwﬂ/ —

n2 )22 ae o2
"72 a—3 P18 Y28
L L —ylla_
*5/} 2a—1 ( o) Lals) 0 gy o Esl9) _m>wE ylla-ads

(a (a
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W t (t _ 5)(171 o S0130172 @250472
+f§§ {tS /0 T <L1(s)s 34 Lg(s)m + L3(S)(a—2)> |z — y|3_ads}

< Allr = ylz3-a;

which, by the condition (3.5) (that is;, A < 1), shows that the operator G is a contraction. Thus, the
hypothesis of Banach’s fixed point theorem is verified and hence its conclusion implies that the operator
G has a unique fixed point. Therefore, there exists a unique solution to the problem (1.1)-(1.2) on J.
The proof is finished. O

(t—s)P! (t—s)!
I'(p) L'(q)
(1.1), we get a nonlinear fractional differential equation involving both Riemann-Liouville derivative and

integral operators of the form

As a special case of Theorem 3.2, by taking ®4(¢,s) = , Do(t,s) = , p,q >0, in

Dex(t) = g(t, x(t), IPx(t), I1z(t)). (3.11)

Now we present a uniqueness result for fractional differential equation (3.11) subject to the boundary
conditions (1.2).

Theorem 3.3 Let g : J X R X R xR — R be a continuous functions and ¢ € C (J,R). In addition,
(H2) and the following condition hold:

(Hs) There ezist positive functions w1 (t), wa(t) and ws(t)

lg(t, (), (IP2)(t), (172)(t)) — g(t,y(t), ([Py)(t), (1Y) (1))
< W (t)|e —y| + W) Pz — y| + w3 (t) [z —y|, Vite T, x,yeR. (3.12)

Then, the Riemann-Livoville fractional differential equation (3.11) subject to the boundary conditions
(1.2) has a unique solution on J, provided that

INa—2) INa-2) -
A — 1 - . .
1 L(51+< +F(p+a—2)+F(q+a—2) (52]61+(53k2+54k3+(50i:21|w1|]€41
+d¢ks + 07 Z |O’j|k6j + 0gk7 + Tsak8> <1, (313)

j=1
where §ym,m = 1,2, ..., 8, are given in (3.2),
k1 = max{|I3@ (T)T*3, | I3@y(T)TPTo=3|, | I3ws(T) T3},
ko = max{|I2@, (T)T*3, |I2@y(T)TPT=3|, | I2ws(T) T+ 3|},
ks = ma{ | (T)YT* ], |15 (T) TP+ |15 (T) T4},
ki = max{[ 1201 (&) °], (1@ (&)€] T, [1°@s(&)€! ),
ks = max{ | 1202y (1 )ng >, |12~ 2@ () ™~ (120 2@ ()7},
kg j = max{|[1*@1((;) ¢, |10 (gj)gf+a—3|7|]a@3(<j)§~]q+a—3|}7
ke = max{ |12 @y (na)gs 2|, | 1207 Do (ma ) ™7, | 120~ g (ma)m T},

ks = supye 7 {|[ 1wy (£)t* 3|, [T*Wa ()P T3] [T*W3 ()t 3},

Proof: We omit the proof as it is similar to that of Theorem 3.2. O
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4. Examples
In this section, we present examples illustrating the results obtained in the last section.
Example 4.1 Let us consider the nonlinear fractional differential equation
Dx(t) = g(t, x(t), (mz)(t), (p2)(t), ¢t €[0,1], (4.1)
subject to the boundary conditions
D> 3x(07) + ay D*3x(T™) = é(x),

D7 22(07) + ag D 2x(T™) = v I %x(ny) + Z wiz (&),

(4.2)
D 12(07) + ag D a(T7) = voI* ta(n) + Zajx(gj).
8 1 -3 1
Here, a = =3 a; = Z,ag = T,ag = 5,1)1 = -2, = -2,m=3,n=3w =-3,1=123,0; =
1 1 2 3 4 5 6 7
3,7 =12,3, = === === (a==.T=100.1.T=1 _
] m 45772 2551 3752 4753 57<1 67(2 7a<3 87\7 [ ) ]7 ad)(x)
—sinx, and

30

o100, )0, ) ) = =t [ Sty [ Sy

Using the given data, we find that §; =~ 0.22937050, do ~ 0.05734262, §3 ~ 0.02303515, 64 ~ 0.04927213,
05 =~ 0.03071354, 06 ~ 0.06142707, 67 ~ 0.09854425, g ~ 0.19708851, ¢; ~ 0.01666667, 12 ~ 0.00833333,
er =~ 0.06136364,e2 ~ 0.22500000,e3 =~ 0.60000000,e41 =~ 0.02523240,e4o ~ 0.03736517,
es3 ~ 0.04633361, es ~ 0.00044079, es,1 ~ 0.05308746, eg2 ~ 0.05831409, es3 ~ 0.06246302, e; ~
0.00044079, es ~ 0.09748313.

It is easy to check that (H;) is satisfied with L;(t) = \/ﬁ’ Lo(t) = L3(t) = 1, the assumption (Hs)
holds true with L = 1/30, and the condition (3.5) is satisfied as A ~ 0.21234347 < 1. As the hypotheses
of Theorem 3.2 holds true, so its conclusion implies that the boundary value problem (4.1)-(4.2) has a
unique solution on [0, 1].

Example 4.2 Consider the nonlinear fractional integro-differential equation

D%x(t) = g(t, 2(t), () (t), (n2)(t)), ¢ € 0,1, (4.3)

subject to the boundary conditions in (4.2), where a = 8/3,¢(x) = 5 sinz, and

an~lzx t(t— g)P1 t(t—g)t
gt ), ()0, (e ) = 52§ I [T a(s)as

with p=4/5, ¢ =3/5.

Using the given data, it is found §; ~ 0.22937050, 05 =~ 0.05734262, d3 ~ 0.02303515, 64 ~ 0.04927213, 05 ~
0.03071354, g ~ 0.06142707, 67 ~ 0.09854425, &g ~ 0.19708851, k1 ~ 0.01340320, ko ~ 0.03564640, k3 ~
0.08522727, k41 ~ 0.00752976, k4 2 ~ 0.00990494, k43 ~ 0.01151017, ks ~ 0.00014082, k¢ ~ 0.01265712,
koo = 0.01351453, k¢ 3 ~ 0.01417864, k7 ~ 0.00014068, ks ~ 0.01934301. Clearly, the condition (Hz) is
satisfied with L = 1/20, and the assumption (Hs) holds true with w; = m,wQ = é,W3 = 4—10 and
Ay &~ 0.17165453 < 1. Thus, by the conclusion of Theorem 3.3, the equation (4.3) with the boundary
conditions (4.2) has a unique solution on [0, 1].
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5. Stability Analysis
Let us first build the arguments for the Ulam—Hyers stability [39] of the problem (1.1)-(1.2).

15

Fore > 0and t € J, it is assumed that there exists u € C5_, (J,R) satisfying the following inequality

with the boundary conditions (1.2)

D%u(t) — g(t, u(t), (paw) () (p2u)(t))| < € (5.

D

Furthermore, u € C3_,, (J,R) is a solution of the system of inequality (5.1) with the boundary conditions

(1.2) if and only if there exists a function x € C(J,R) such that |k(t)| <€, t € J and

D%u(t) = g(t, u(t), (pru)(8)(pau) () + £(1).

Next, we consider a boundary value problem associated with (5.1) and the boundary conditions (1.

as

D%u(t) = g(t, u(t), (mu) () (p2u)(t)) + £(t), te T,

D 3u(0%) + ay D*3u(T™) = ¢(u),

Definition 5.1 The system (1.1) -(1.2) is called Ulam-Hyers stable if we can find ¢4 > 0, such that,
for each solution u € C3_, (J,R) of (5.2), there exists a unique solution x € C3_, (J,R) of the
system (1.1) satisfying

lo — x||3—0 < ce teT.

Definition 5.2 If there exists ¥ € C(R*,RT), with ¥(0) = 0, such that, for each solution u €
Cs_o (J,R) of (5.2), there exists a unique solution x € Cs_, (J,R) of the problem (1.1)—(1.2)
satisfying

= llsa < W(e), teT.

Then, the problem (1.1)—(1.2) is generalized Ulam-Hyers stable.

D24 (0%) + ag D 2u(T™) = v I 2u(n) + Zwiu(@), (5.
i=1

D> u(07) + ag D> tu(T™) = vo I tu(ne) + Zoju((j).
=1

2)

2)

Theorem 5.1 If the assumption (Hy)-(H2) and the condition (3.5) are satisfied, then the problem (1.1)-

(1.2) is Ulam—Hyers stable and hence generalized Ulam—Hyers stable in C5_, (J,R).

Proof: By Lemma 2.2, the solution of (5.2) can be written as
u(t) = M(t)¢(u)

T AV
[ @S 0 - 9+ M(0)] (065,105, (u10)6) () (9) + 1(5)) ds

e e [ OO 1(g(s (). (1) (5). () 5)) + (s)) s

(o)
_ 8 2a 3
+M(1) / O (905 u(e) ) (o), ) (9) + ) s
C; . ks 1
M ZUJ [ a)) (g(s u(s). (1)), (20)(5)) + () )

)2(1 2

(1) / O (a5, () 90, ) (9) + () ) s
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+ /ot (t;(SO);_l (9(8, u(s), (p1u)(s), (n2u)(s)) + K(S))ds'

Using || < € and (3.7), we get

sup {t?’_”‘ u(t) — My (t)p(u)
teJ

m 51 _
—Ms(t) Z w; /0 (€

m — s 2a—3
(o) | (”;(2@’_2)g<s, u(s). (1) (). (i) (3))ds

n g a—1
SYI0) S W R SR

a)

a0 [ O (o) () (), () (5

}Sde.

- [ gt uls) (), Gz ()

In view of (Hy), (H2), (3.5) and (3.10), we find that

lu = @|l3-a = sup{t*~*[u(t) — z(t)|}
teJ

<de+ ?gg {t?’_o‘ l|M1(t)|¢(U) —¢(z)|

T _ 62
+ [ [0 TS+ i - o) + o)
0
el ) ) )t )0 N
M5 (1) Z o [ T ), a9 ) 9) — g5 ), ), ) o)l

771 _ 8 2a 3
Mo 1) / Fa 1905, 0(6), (110)(5), (120) () = gL 2(5), (u27)(5), (12) () s

+ag (o) ZHJ [ CJF(O}) 95, u(s). () (). (120) () — (5. 2(5). (12)(5). (o) () s

n2 _ s)2a 2
+Ms(t)] /0 ﬁlg(s, u(s), (n1u)(s), (pau)(s)) — g(s, 2(s), (m1w)(s), (u2)(s))|ds

2c
+ / “}(‘2;”|g<s, u(s), (ua1)(s), (u2u)(s)) — g(s, 2(s), (m)(s), <u2x><s>>|ds] }
< e+ Alju—2|3-a,

which implies that

lu —2ll3-a <

1—A°
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0
Letting ¢ = ¢4 = T v get ||lu — x||3—a < ce. Hence, the problem (1.1)—(1.2) is Ulam—Hyers stable.
Moreover, it is generalized Ulam— Hyers stable as ||u — z||s—o < U(e€), with ¥(e) = ce, ¥(0) = 0. This
completes the proof. O

Example 5.1 The problem (4.1) and (4.3) with the boundary conditions (4.2) are Ulam—Hyers stable,
and generalized Ulam—Hyers stable since A =~ 0.21234347 < 1, and Ay ~ 0.17165453 < 1, respectively.

6. Conclusion

We have obtained the existence and uniqueness criteria for solutions of a nonlinear nonlocal Rie-
mann—Liouville integral and multi-point boundary value problem. The nonlinearity in Eq. (1.1) involves
classical integrals, while Eq. (3.11) involves Riemann—Liouville fractional integrals. Our results are useful
in the given setting and yield several new results as special cases. For instance, our results correspond to
the ones with nonlocal multi-point boundary conditions for v; = vo = 0, whereas the choice w; = 0; =0
foralli=1,...,mand j =1,...,n produces the results for nonlocal Riemann-Liouville integral bound-
ary conditions.
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