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Investigation of nonlinear Riemann-Liouville fractional differential equations with
fractional nonlocal multi-point and integral boundary conditions
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abstract: We investigate the existence of solutions for a Riemann–Liouville fractional differential equation
of order α ∈ (2, 3) equipped with fractional anti-periodic type nonlocal multi-point and Riemann–Liouville
integral boundary conditions in a weighted space. The existence and uniqueness results for the given problem
are respectively proved by applying Leray-Schauder’s alternative and Banach’s contraction mapping principle.
The Ulam–Hyers stability for the given problem is also studied. Examples illustrating the main results are
offered.
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1. Introduction

Riemann–Liouville fractional differential and integral operators are found to be of great utility in view
of their applications in a variety of physical and technical disciplines. Examples include bioengineering
[1], fractional dynamics and control [2], self-similar protein dynamics [3], backward diffusion problems
[4], viscoelasticity [5], etc. The extensive application of Riemann–Liouville fractional operators motivated
many researchers to develop the theoretical aspects of boundary value problems involving these operators,
for example, see [6]- [11]. For some interesting results on anti-periodic fractional boundary value problem,
we refer the reader to the papers [12]- [16].

In contrast to classical two-point boundary conditions, nonlocal boundary conditions provide a plat-
form to model a phenomenon experiencing changes at arbitrary interior points or sub-segments of its do-
main [17]. In case of curved boundary structures, integral boundary conditions describe non-uniformities
on segments of such structures. Examples include fluid flow problems [18], biomedical applications [19],
bacterial self-organization [20], engineering applications [21,22], etc. One can find some useful results on
multi-point and integral boundary value problems in the articles [23]- [27].

In 1940, Ulam [28] discussed the stability of a functional equation by presenting the conditions
ensuring an approximate solution of this equation to be close to its exact solution. Hyers [29] developed
the Ulam’s idea of stability more rigorously in the context of Banach spaces in 1941. The concept of
stability studied by Ulam and Hyers is known as the Ulam–Hyers stability. Afterward, Rassias [30]
applied the idea of Ulam–Hyers stability to a wide class of functional equations, which is now referred to
as Ulam–Hyers-Rassias stability [31]. The Ulam-Hyers stability for Black-Scholes equation was studied
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in [32]. For some recent results on Ulam–Hyers stability for fractional differential equations, for instance,
see [33]- [36].

In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability for solutions of a
nonlinear Riemann–Liouville fractional differential equation of order α ∈ (2, 3) equipped with fractional
anti-periodic type nonlocal multi-point and Riemann–Liouville integral boundary conditions in a weighted
space. In precise terms, we consider a nonlinear Riemann–Liouville fractional integro-differential equation
of the form

Dαx(t) = g(t, x(t), (µ1x)(t), (µ2x)(t)), 2 < α < 3, t ∈ J = [0, T ], T > 0, (1.1)

subject to fractional anti-periodic type nonlocal multi-point and Riemann–Liouville integral boundary
conditions 

Dα−3x(0+) + a1D
α−3x(T−) = ϕ(x),

Dα−2x(0+) + a2D
α−2x(T−) = v1I

α−2x(η1) +

m∑
i=1

ωix(ξi),

Dα−1x(0+) + a3D
α−1x(T−) = v2I

α−1x(η2) +

n∑
j=1

σjx(ζj),

(1.2)

where 0 < η1 < η2 < ξ1 < ξ2 < . . . < ξm < ζ1 < ζ2 < . . . < ζn < T , Dα denotes the Rie-
mann–Liouville fractional derivative operator of order α, Iα−1 and Iα−2 respectively, represent the Rie-
mann–Liouville fractional integral operators of order (α − 1) and (α − 2), v1, v2, a1, a2, a3, ωi, ξi, σj , ζj
∈ R, i = 1, 2, . . . ,m, j = 1, 2, . . . , n, g : J × R × R × R → R and ϕ : C (J ,R) → R are appropriate
continuous functions and

(µ1x)(t) =

∫ t

0

Φ1(t, s)x(s) ds, (µ2x)(t) =

∫ t

0

Φ2(t, s)x(s) ds, (1.3)

with Φ1 and Φ2 being continuous functions on J × J .

Here, one can notice that the nonlinearity in the equation (1.1) contains integral terms in addition to
the unknown function, while boundary conditions (1.2) can be regarded as a combination of Riemann-
Liouville fractional derivative and integral operators of different orders and nonlocal multi-point values
of the unknown function. The objective of the present work is to enrich the literature on boundary value
problems for Riemann-Liouville fractional differential equations.

We arrange the rest of the paper as follows. Section 2 contains background material and a subsidiary
result for the linear variant of the problem (1.1)-(1.2). We establish the existence and uniqueness results
for the given problem with the aid of Leray-Schauder’s alternative and Banach’s contraction mapping
principle respectively in Section 3. We also discuss the case when the integral terms in the nonlinearity of
(1.1) are of the Riemann–Liouville fractional integral type. Illustrative examples are presented in Section
4. We discuss the Ulam–Hyers stability for the problem (1.1)-(1.2) in Section 5. The paper concludes
with some interesting remarks.

2. A subsidiary result

Let us first recall some basic concepts of fractional calculus from the text [37].

Definition 2.1 For φ ∈ L1[a, b], the (left) Riemann–Liouville fractional integral of order α ∈ R+ of φ,
denoted by Iαa+φ, is defined as

Iαa+φ (t) =
1

Γ (α)

t∫
a

(t− s)
α−1

φ (s)ds,

where Γ denotes the Euler gamma function.
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Definition 2.2 Let φ,φ(m) ∈ L1[a, b], a, b ∈ R and α ∈ (m − 1,m], m ∈ N. The Riemann–Liouville
fractional derivative of order α of φ, denoted by Dα

a+φ, is given by

Dα
a+φ (t) =

dm

dtm
I1−α
a+ φ (t) =

1

Γ (m− α)

dm

dtm

t∫
a

(t− s)
m−1−α

φ (s)ds.

In the current work, we write the Riemann–Liouville fractional integral and derivative operators Iqa+ and
Dq

a+ as Iq and Dq when a = 0, respectively.

Lemma 2.1 Let p and q be positive real numbers. If φ is a continuous function, then

(i) IpIqφ(t) = Ip+qφ(t),

(ii) DpIqφ(t) = Iq−pφ(t) for q > p > 0.

Note that Dptp−i = 0, i = 1, 2, . . . , [p] + 1, where [p] is the largest integer less than p and

Dptλ =
Γ(λ+ 1)

Γ(λ− p+ 1)
tλ−p, λ > −1, λ ̸= p− 1, p− 2, . . . , p− n.

In the following lemma, we solve the linear version of the equation (1.1) complemented with the
boundary data (1.2).

Lemma 2.2 For h ∈ C(J ,R), k ∈ R and ∆ ̸= 0, the unique solution of the linear equation

Dαx(t) = h(t), 2 < α < 3, t ∈ J , (2.1)

subject to fractional anti-periodic type nonlocal multi-point and Riemann–Liouville integral boundary con-
ditions 

Dα−3x(0+) + a1D
α−3x(T−) = k,

Dα−2x(0+) + a2D
α−2x(T−) = v1I

α−2x(η1) +

m∑
i=1

ωix(ξi),

Dα−1x(0+) + a3D
α−1x(T−) = v2I

α−1x(η2) +

n∑
j=1

σjx(ζj),

(2.2)

is given by

x(t) = M1(t)k +

∫ T

0

[
M2(t)

(T − s)2

2
+M3(t)(T − s) +M4(t)

]
h(s)ds

+M5(t)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
h(s)ds+M6(t)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
h(s)ds

+M7(t)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
h(s)ds+M8(t)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
h(s)ds

+

∫ t

0

(t− s)α−1

Γ(α)
h(s)ds, (2.3)

where

M1(t) =
1

∆

[
(B2E3 +B3E2) t

α−1 − (B1E3 −B3E1) t
α−2 + (B1E2 +B2E1) t

α−3
]
,

M2(t) =
−a1
∆

[
(B2E3 +B3E2) t

α−1 − (B1E3 −B3E1) t
α−2 + (B1E2 +B2E1) t

α−3
]
,

M3(t) =
−a2
∆

[
(A3E2 −A2E3) t

α−1 + (A1E3 +A3E1) t
α−2 − (A1E2 +A2E1) t

α−3
]
,
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M4(t) =
−a3
∆

[
(A2B3 +A3B2) t

α−1 − (A1B3 +A3B1) t
α−2 − (A1B2 −A2B1) t

α−3
]
,

M5(t) =
1

∆

[
(A3E2 −A2E3) t

α−1 + (A1E3 +A3E1) t
α−2 − (A1E2 +A2E1) t

α−3
]
,

M6(t) =
v1
∆

[
(A3E2 −A2E3) t

α−1 + (A1E3 +A3E1) t
α−2 − (A1E2 +A2E1) t

α−3
]
,

M7(t) =
1

∆

[
(A2B3 +A3B2) t

α−1 − (A1B3 +A3B1) t
α−2 − (A1B2 −A2B1) t

α−3
]
,

M8(t) =
v2
∆

[
(A2B3 +A3B2) t

α−1 − (A1B3 +A3B1) t
α−2 − (A1B2 −A2B1) t

α−3
]
,

∆ = A1B2E3 +A1B3E2 −A2B1E3 +A2B3E1 +A3B1E2 +A3B2E1,

A1 =
Γ(α)

2
a1T

2, A2 = a1Γ(α− 1)T, A3 = (a1 + 1)Γ(α− 2),

B1 = a2Γ(α)T − Γ(α)

Γ(2α− 2)
v1η

2α−3
1 −

m∑
i=1

ωiξ
α−1
i ,

B2 = (1 + a2)Γ(α− 1)− Γ(α− 1)

Γ(2α− 3)
v1η

2α−4
1 −

m∑
i=1

ωiξ
α−2
i ,

B3 =
Γ(α− 2)

Γ(2α− 4)
v1η

2α−5
1 +

m∑
i=1

ωiξ
α−3
i ,

E1 = (1 + a3)Γ(α)−
Γ(α)

Γ(2α− 1)
v2η

2α−2
2 −

n∑
j=1

σjζ
α−1
j ,

E2 =
Γ(α− 1)

Γ(2α− 2)
v2η

2α−3
2 +

n∑
j=1

σjζ
α−2
j , E3 =

Γ(α− 2)

Γ(2α− 3)
v2η

2α−4
2 +

n∑
j=1

σjζ
α−3
j . (2.4)

Proof: Operating the integral operator Iα to (2.1), we obtain

x(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 + Iαh(t), (2.5)

where c1, c2, c3 ∈ R are unknown arbitrary constants.
From (2.5), we have

Dα−1x(t) = c1Γ(α) + I1h(t),

Dα−2x(t) = c1Γ(α)t+ c2Γ(α− 1) + I2h(t),

Dα−3x(t) = c1
Γ(α)

2
t2 + c2Γ(α− 1)t+ c3Γ(α− 2) + I3h(t).

(2.6)

Using (2.6) in the boundary conditions (2.2) together with notation (2.4), we obtain
A1c1 +A2c2 +A3c3 = J1,

B1c1 +B2c2 −B3c3 = J2,

E1c1 − E2c2 − E3c3 = J3,

(2.7)

where

J1 = k − a1I
3h(T ), J2 = v1I

2α−2h(η1) +

m∑
i=1

ωiI
αh(ξi)− a2I

2h(T ),

J3 = v2I
2α−1h(η2) +

n∑
j=1

σjI
αh(ζj)− a3I

1h(T ).

Solving the system (2.7) for c1, c2 and c3, we find that

c1 =
1

∆

[
(B2E3 +B3E2)J1 − (A2E3 −A3E2)J2 + (A2B3 +A3B2)J3

]
,
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c2 =
1

∆

[
(B3E1 −B1E3)J1 + (A1E3 +A3E1)J2 − (A1B3 +A3B1)J3

]
,

c3 =
1

∆

[
(B1E2 +B2E1)J1 − (A1E2 +A2E1)J2 − (A1B2 −A2B1)J3

]
.

Inserting the above values of c1, c2 and c3 in (2.5) and using (2.4), we get the solution (2.3). The converse
of the lemma follows by direct computation. 2

3. Main Results

Let C(J ,R) be the Banach space of all continuous real-valued functions from J → R endowed with
the supremum norm ∥x∥ = supt∈J |x(t)|. For t ∈ J , we define xρ̃(t) = tρ̃x(t), ρ̃ > 0, and let Cρ̃ (J ,R) be
the space of all functions xρ̃ such that x ∈ C(J ,R) which turns out to be a Banach space when endowed
with the norm ∥x∥ρ̃ = supt∈J {tρ̃|x(t)|}.

By Lemma 2.2, the problem (1.1)-(1.2) can be transformed into a fixed point problem as

x = Gx,

where G : C3−α(J ,R) → C3−α(J ,R) is an operator defined by

(Gx)(t) = M1(t)ϕ(x) +

∫ T

0

[
M2(t)

(T − s)2

2
+M3(t)(T − s) +M4(t)

]
×g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M5(t)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M6(t)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M7(t)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M8(t)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds. (3.1)

Observe that the fixed points of the operator G are solution to the problem (1.1)-(1.2).

Lemma 3.1 Let g : J ×R×R×R → R be a continuous function and ϕ ∈ C (J ,R) . Then, the operator
G : C3−α(J ,R) → C3−α(J ,R) is completely continuous.

Proof: The operator G is continuous, since g is continuous. Let E be a bounded set in C3−α(J ,R). Then,
we can find positive constants Ng and Nϕ such that |g(s, x(s), (µ1x)(s), (µ2x)(s))| ≤ Ng, |ϕ(x)| ≤ Nϕ,
∀x ∈ E , t ∈ J . In consequence, we have

∥Gx∥3−α = sup
t∈J

{
t3−α

∣∣∣∣∣M1(t)ϕ(x) +

∫ T

0

[
M2(t)

(T − s)2

2
+M3(t)(T − s) +M4(t)

]
×g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M5(t)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M6(t)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds
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+M7(t)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M8(t)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

∣∣∣∣∣
}

≤ sup
t∈J

{
t3−α

[
|M1(t)|Nϕ +Ng

∫ T

0

[
|M2(t)|

(T − s)2

2
+ |M3(t)|(T − s) + |M4(t)|

]
ds

+Ng|M5(t)|
m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)
ds+Ng|M6(t)|

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
ds

+Ng|M7(t)|
n∑

j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)
ds+Ng|M8(t)|

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
ds+

+Ng

∫ t

0

(t− s)α−1

Γ(α)
ds

]}

≤ Nϕ sup
t∈J

|t3−αM1(t)|+Ng

[
sup
t∈J

|t3−αM2(t)|
T 3

6
+ sup

t∈J
|t3−αM3(t)|

T 2

2

+ sup
t∈J

|t3−αM4(t)|T
]
+Ng sup

t∈J
|t3−αM5(t)|)

m∑
i=1

|ωi|
ξαi

Γ(α+ 1)

+Ng sup
t∈J

|t3−αM6(t)|
η2α−2
1

Γ(2α− 1)
+Ng sup

t∈J
|t3−αM7(t)|

n∑
j=1

|σj |
ζαj

Γ(α+ 1)

+Ng sup
t∈J

|t3−αM8(t)|
η2α−1
2

Γ(2α)
+Ng sup

t∈J

{
t3−α

∫ t

0

(t− s)α−1

Γ(α)
ds

}
= Nϕδ1 +

[
δ2
T 3

6
+ δ3

T 2

2
+ δ4T + δ5

m∑
i=1

|ωi|
ξαi

Γ(α+ 1)
+ δ6

η2α−2
1

Γ(2α− 1)

+δ7

n∑
j=1

|σj |
ζαj

Γ(α+ 1)
+ δ8

η2α−1
2

Γ(2α)
+

T 3

Γ(α+ 1)

]
Ng,

where

δj = sup
t∈J

|t3−αMj(t)|, j = 1, 2, . . . , 8. (3.2)

Thus, it follows that G(E) <∞. Hence G(E) is uniformly bounded. To show that G(E) is equicontin-
uous, we take ν1, ν2 ∈ J with ν1 < ν2 and x ∈ E . Then, we obtain

|ν3−α
2 (Gx)(ν2)− ν3−α

1 (Gx)(ν1)|

=

∣∣∣∣∣ν3−α
2

[
M1(ν2)ϕ(x) +

∫ T

0

[
M2(ν2)

(T − s)2

2
+M3(ν2)(T − s) +M4(ν2)

]
×g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M5(ν2)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M6(ν2)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds
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+M7(ν2)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M8(ν2)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+

∫ ν2

0

(ν2 − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

]

−ν3−α
1

[
M1(ν1)ϕ(x) +

∫ T

0

[
M2(ν1)

(T − s)2

2
+M3(ν1)(T − s) +M4(ν1)

]
×g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M5(ν1)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M6(ν1)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M7(ν1)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M8(ν1)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+

∫ ν1

0

(ν1 − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

]∣∣∣∣∣
≤ Nϕ|ν3−α

2 M1(ν2)− ν3−α
1 M1(ν1)|+

[
|ν3−α

2 M2(ν2)− ν3−α
1 M2(ν1)|

T 3

6

+|ν3−α
2 M3(ν2)− ν3−α

1 M3(ν1)|
T 2

2
+ |ν3−α

2 M4(ν2)− ν3−α
1 M4(ν1)|T

+|ν3−α
2 M5(ν2)− ν3−α

1 M5(ν1)|
m∑
i=1

|ωi|
ξαi

Γ(α+ 1)
+ |ν3−α

2 M6(ν2)− ν3−α
1 M6(ν1)|

η2α−2
1

Γ(2α− 1)

+|ν3−α
2 M7(ν2)− ν3−α

1 M7(ν1)|
n∑

j=1

|σj |
ζαj

Γ(α+ 1)
+ |ν3−α

2 M8(ν2)− ν3−α
1 M8(ν1)|

η2α−1
2

Γ(2α)

+
1

Γ(α+ 1)
|ν32 − ν31 |+

2

Γ(α+ 1)
ν3−α
2 (ν2 − ν1)

α

]
Ng

=
Nϕ

|∆|

[
|B2E3 +B3E2||ν22 − ν21 |+ |B1E3 −B3E1||ν2 − ν1|

]
+
Ng|ν2 − ν1|

|∆|

[
|a1|T 3

6
|B1E3 −B3E1|+

|a2|T 2

2
|A1E3 +A3E1|

+|a3|T |A1B3 +A3B1|+ |A1E3 +A3E1|
m∑
i=1

|ωi|
ξαi

Γ(α+ 1)

+|A1E3 +A3E1||v1|
η2α−2
1

Γ(2α− 1)
+ |A1B3 +A3B1|

n∑
j=1

|σj |
ζαj

Γ(α+ 1)

+|A1B3 +A3B1||v2|
η2α−1
2

Γ(2α)

]
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+
Ng|ν22 − ν21 |

|∆|

[
|a1|T 3

6
|B2E3 +B3E2|+

|a2|T 2

2
|A3E2 −A2E3|

+|a3|T |A2B3 +A3B2|+ |A2E3 −A3E2|
m∑
i=1

|ωi|
ξαi

Γ(α+ 1)

+|A2E3 −A3E2||v1|
η2α−2
1

Γ(2α− 1)
+ |A2B3 +A3B2|

n∑
j=1

|σj |
ζαj

Γ(α+ 1)

+|A2B3 +A3B2||v2|
η2α−1
2

Γ(2α)

]
+

Ng

Γ(α+ 1)
|ν32 − ν31 |+

2Ng

Γ(α+ 1)
ν3−α
2 (ν2 − ν1)

α, (3.3)

which tends to zero as ν2 → ν1 independent of x ∈ E . Thus, G(E) is equicontinuous. In view of the
forgoing arguments, it follows that G is completely continuous. This completes the proof. 2

Now, we present our first existence result, which is based on the Leray-Schauder’s alternative [38,
Theorem 2.4, p.4].

Theorem 3.1 Let g : J ×R×R×R → R be a continuous function, ϕ ∈ C (J ,R) and there exist positive
constants Ng, Nϕ such that |g(t, x(t), (µ1x)(t), (µ2x)(t))| ≤ Ng, |ϕ(x)| ≤ Nϕ, ∀x ∈ R, t ∈ J . Then, the
problem (1.1)− (1.2) has at least one solution on J .

By Lemma 3.1, we know that G is completely continuous. So, the conclusion of the Leray-Schauder
alternative will be applicable once it is shown that the setW = {t3−αx ∈ R : t3−αx = τt3−αGx, 0 < τ < 1}
is bounded. For x ∈ W, we have |t3−αx(t)| = |τt3−αGx(t)| < t3−α|Gx(t)|. Using the arguments employed
in the proof of Lemma 3.1, we obtain

∥x∥3−α < Nϕδ1 +
[
δ2
T 3

6
+ δ3

T 2

2
+ δ4T + δ5

m∑
i=1

|ωi|
ξαi

Γ(α+ 1)
+ δ6

η2α−2
1

Γ(2α− 1)

+δ7

n∑
j=1

|σj |
ζαj

Γ(α+ 1)
+ δ8

η2α−1
2

Γ(2α)
+

T 3

Γ(α+ 1)

]
Ng <∞, (3.4)

which implies that the set W is bounded. Thus, by Leray-Schauder’s alternative, we deduce that the
operator G has at least one fixed point, which is indeed a solution to the problem (1.1)-(1.2).

Theorem 3.2 Let g : J ×R×R×R → R be a continuous functions and ϕ ∈ C (J ,R) . In addition, the
following conditions hold:

(H1) There exist positive functions L1(t), L2(t), L3(t) such that

|g(t, x(t), (µ1x)(t), (µ2x)(t))− g(t, y(t), (µ1y(t), (µ2y)(t))|
≤ L1(t)|x− y|+ L2(t)|µ1x− µ1y|+ L3(t)|µ2x− µ2y|, ∀t ∈ J , x, y ∈ R;

(H2) ϕ(0) = 0 and there exists a positive constant L such that

|ϕ(x)− ϕ(y)| ≤ L∥x− y∥3−α, ∀x, y ∈ R.

Then, the problem (1.1)-(1.2) has a unique solution on J , provided that

Λ = Lδ1 +

(
1 +

φ1

α− 2
+

φ2

α− 2

)(
δ2e1 + δ3e2 + δ4e3 + δ5

m∑
i=1

|ωi|e4i + δ6e5

+δ7

n∑
j=1

|σj |e6j + δ8e7 + T 3−αe8

)
< 1, (3.5)

where δm,m = 1, 2, ..., 8, are given in (3.2) and
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φ1 = supt,s∈J |Φ1(t, s)|, φ2 = supt,s∈J |Φ2(t, s)|,

e1 = max{|I3L1(T )T
α−3|, |I3L2(T )T

α−2|, |I3L3(T )T
α−2|},

e2 = max{|I2L1(T )T
α−3|, |I2L2(T )T

α−2|, |I2L3(T )T
α−2|},

e3 = max{|IL1(T )T
α−3|, |IL2(T )T

α−2|, |IL3(T )T
α−2|},

e4i = max{|IαL1(ξi)ξ
α−3
i |, |IαL2(ξi)ξ

α−2
i |, |IαL3(ξi)ξ

α−2
i |},

e5 = max{|I2α−2L1(η1)η
α−3
1 |, |I2α−2L2(η1)η

α−2
1 |, |I2α−2L3(η1)η

α−2
1 |},

e6j = max{|IαL1(ζj)ζ
α−3
j |, |IαL2(ζj)ζ

α−2
j |, |IαL3(ζj)ζ

α−2
j |},

e7 = max{|I2α−1L1(η2)η
α−3
2 |, |I2α−1L2(η2)η

α−2
2 |, |I2α−1L3(η2)η

α−2
2 |},

e8 = supt∈J {|IαL1(t)t
α−3|, |IαL2(t)t

α−2|, |IαL3(t)t
α−2|},

Iα denotes the Riemann-Liouville fractional integral operator of order α and

Inϕ(t) =
1

Γ(n)

∫ t

0

(t− s)n−1ϕ(s)ds, n = 1, 2, 3.

Proof: For verifying the hypothesis of Banach’s fixed point theorem, we consider a closed ball Sr̂ = {x ∈
C3−α(J ,R) : ∥x∥3−α ≤ r̂} with

r̂ ≥ (g δ)(1− Λ)−1, (3.6)

where supt∈J |g(t, 0, 0, 0)| = g,

δ = δ2
T 3

6
+ δ3

T 2

2
+ δ4T + δ5

m∑
i=1

|ωi|
ξαi

Γ(α+ 1)
+ δ6

η2α−2
1

Γ(2α− 1)
+ δ7

n∑
j=1

|σj |
ζαj

Γ(α+ 1)

+δ8
η2α−1
2

Γ(2α)
+

T 3

Γ(α+ 1)
, (3.7)

δm,m = 1, 2, . . . , 8, are given in (3.2). Now, we establish that GSr̂ ⊂ Sr̂, where G : Sr̂ −→ C3−α(J ,R) is
given by (3.1). By (H1) and (H2), we have

|g(t, x(t), (µ1x)(t), (µ2x)(t))| ≤ |g(t, x(t), (µ1x)(s), (µ2x)(t))− g(t, 0, 0, 0)|+ |g(t, 0, 0, 0)|
≤ L1(t)|x|+ L2(t)|µ1x|+ L3(t)|µ2x|+ g,

|ϕ(x)| ≤ |ϕ(x)− ϕ(0)|+ |ϕ(0)| ≤ L∥x∥3−α. (3.8)

For x ∈ Sr̂, it follows by using (3.8) that

∥Gx∥3−α = sup
t∈J

{
t3−α

∣∣∣∣∣M1(t)ϕ(x) +

∫ T

0

[
M2(t)(

(T − s)2

2
+M3(t)(T − s) +M4(t)

]
×g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M5(t)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M6(t)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M7(t)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

+M8(t)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds
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+

∫ t

0

(t− s)α−1

Γ(α)
g(s, x(s), (µ1x)(s), (µ2x)(s))ds

∣∣∣∣∣
}

≤ sup
t∈J

{
t3−α

[
|M1(t)|L∥x∥3−α +

∫ T

0

[
|M2(t)|

(T − s)2

2
+ |M3(t)|(T − s)

+|M4(t)|
](
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+|M5(t)|
m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+|M6(t)|
∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+|M7(t)|
n∑

j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+|M8(t)|
∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+

∫ t

0

(t− s)α−1

Γ(α)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

]}

≤ sup
t∈J

|t3−αM1(t)|L∥x∥3−α +

∫ T

0

[
sup
t∈J

|t3−αM2(t)|
(T − s)2

2
+ sup

t∈J
|t3−αM3(t)|(T − s)

+ sup
t∈J

|t3−αM4(t)|
](
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+sup
t∈J

|t3−αM5(t)|
m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)

×
(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+sup
t∈J

|t3−αM6(t)|
∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+sup
t∈J

|t3−αM7(t)|
n∑

j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)

×
(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+sup
t∈J

|t3−αM8(t)|
∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

+sup
t∈J

{
t3−α

∫ t

0

(t− s)α−1

Γ(α)

(
L1(s)|x|+ L2(s)|µ1x|+ L3(s)|µ2x|+ g

)
ds

}

≤ δ1L∥x∥3−α +

∫ T

0

[
δ2

(T − s)2

2
+ δ3(T − s) + δ4

]
×

((
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x∥3−α + g

)
ds

+δ5

m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)

×

((
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x∥3−α + g

)
ds



Investigation of nonlinear Riemann-Liouville fractional differential equations ... 11

+|M6(t)|
∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

×

((
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x∥3−α + g

)
ds

+|M7(t)|
n∑

j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)

×

((
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x∥3−α + g

)
ds

+|M8(t)|
∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

×

((
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x∥3−α + g

)
ds

+sup
t∈J

{
t3−α

∫ t

0

(t− s)α−1

Γ(α)

×

((
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x∥3−α + g

)
ds

}

≤

[
Lδ1 +

(
1 +

φ1

α− 2
+

φ2

α− 2

)(
δ2e1 + δ3e2 + δ4e3 + δ5

m∑
i=1

|ωi|e4i + δ6e5

+δ7

n∑
j=1

|σj |e6j + δ8e7 + T 3−αe8

)]
r̂ + g

[
δ2
T 3

6
+ δ3

T 2

2
+ δ4T

+δ5

m∑
i=1

|ωi|
ξαi

Γ(α+ 1)
+ δ6

η2α−2
1

Γ(2α− 1)
+ δ7

n∑
j=1

|σj |
ζαj

Γ(α+ 1)

+δ8
η2α−1
2

Γ(2α)
+

T 3

Γ(α+ 1)

]
≤ Λr̂ + gδ. (3.9)

Combining (3.9) with (3.6), we obtain

∥Gx∥3−α ≤ Λr̂ + g δ ≤ r̂,

which shows that Gx ∈ Sr̂. Hence, GSr̂ ⊂ Sr̂ since x ∈ Sr̂ is an arbitrary element.
Next, we verify that the operator G is a contraction. For that, let x, y ∈ C3−α(J ,R). Then, for any

t ∈ J , using (H1) and the relation

L1(t)|x− y|+ L2(t)|(λ1x− λ1y|+ L3(t)|(λ2x− λ2y|

≤
(
L1(t)t

α−3 + L2(t)
φ1t

α−2

(α− 2)
+ L3(s)

φ2t
α−2

(α− 2)

)
∥x− y∥3−α, (3.10)

we obtain

∥Gx− Gy∥3−α

≤ sup
t∈J

{
t3−α

[
|M1(t)||ϕ(x)− ϕ(y)|+

∫ T

0

[
|M2(t)|(

(T − s)2

2

+|M3(t)|(T − s) + |M4(t)|
]
|g(s, x(s), (µ1x)(s), (µ2x)(s))− g(s, y(s), (µ1y)(s), (µ2y)(s))|ds
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+|M5(t)|
m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)

×|g(s, x(s), (µ1x)(s), (µ2x)(s))− g(s, y(s), (µ1y)(s), (µ2y)(s))|ds

+|M6(t)|
∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

×|g(s, x(s), (µ1x)(s), (µ2x)(s))− g(s, y(s), (µ1y)(s), (µ2y)(s))|ds

+|M7(t)|
n∑

j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)

×|g(s, x(s), (µ1x)(s), (µ2x)(s))− g(s, y(s), (µ1y)(s), (µ2y)(s))|ds

+|M8(t)|
∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

×|g(s, x(s), (µ1x)(s), (µ2x)(s))− g(s, y(s), (µ1y)(s), (µ2y)(s))|ds

+

∫ t

0

(t− s)α−1

Γ(α)
|g(s, x(s), (µ1x)(s), (µ2x)(s))− g(s, y(s), (µ1y)(s), (µ2y)(s))|ds

]}

≤ sup
t∈J

{
t3−α

[
|M1(t)|L∥x− y∥3−α +

∫ T

0

[
|M2(t)|

(T − s)2

2
+ |M3(t)|(T − s) + |M4(t)|

]
×
(
L1(s)|x− y|+ L2(s)|µ1x− µ1y|+ L3(s)|µ2x− µ2y|

)
ds

+|M5(t)|
m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)

(
L1(s)|x− y|+ L2(s)|µ1x− µ1y|+ L3(s)|µ2x− µ2y|

)
ds

+|M6(t)|
∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

(
L1(s)|x− y|+ L2(s)|µ1x− µ1y|+ L3(s)|µ2x− µ2y|

)
ds

+|M7(t)|
n∑

j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)

(
L1(s)|x− y|+ L2(s)|µ1x− µ1y|+ L3(s)|µ2x− µ2y|

)
ds

+|M8(t)|
∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

(
L1(s)|x− y|+ L2(s)|µ1x− µ1y|+ L3(s)|µ2x− µ2y|

)
ds

+

∫ t

0

(t− s)α−1

Γ(α)

(
L1(s)|x− y|+ L2(s)|µ1x− µ1y|+ L3(s)|µ2x− µ2y|

)
ds

]}

≤ δ1L∥x− y∥3−α +

∫ T

0

[
δ2

(T − s)2

2
+ δ3(T − s) + δ4

]
×

(
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x− y∥3−αds

+δ5

m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)

(
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x− y∥3−αds

+δ6

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

(
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x− y∥3−αds

+δ7

n∑
j=1

|σj |
∫ ζj

0

(ζj − s)α−1

Γ(α)

(
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x− y∥3−αds

+δ8

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

(
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x− y∥3−αds
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+ sup
t∈J

{
t3−α

∫ t

0

(t− s)α−1

Γ(α)

(
L1(s)s

α−3 + L2(s)
φ1s

α−2

(α− 2)
+ L3(s)

φ2s
α−2

(α− 2)

)
∥x− y∥3−αds

}
≤ Λ∥x− y∥3−α,

which, by the condition (3.5) (that is, Λ < 1), shows that the operator G is a contraction. Thus, the
hypothesis of Banach’s fixed point theorem is verified and hence its conclusion implies that the operator
G has a unique fixed point. Therefore, there exists a unique solution to the problem (1.1)-(1.2) on J .
The proof is finished. 2

As a special case of Theorem 3.2, by taking Φ1(t, s) =
(t− s)p−1

Γ(p)
, Φ2(t, s) =

(t− s)q−1

Γ(q)
, p, q > 0, in

(1.1), we get a nonlinear fractional differential equation involving both Riemann-Liouville derivative and
integral operators of the form

Dαx(t) = g(t, x(t), Ipx(t), Iqx(t)). (3.11)

Now we present a uniqueness result for fractional differential equation (3.11) subject to the boundary
conditions (1.2).

Theorem 3.3 Let g : J × R × R × R → R be a continuous functions and ϕ ∈ C (J ,R). In addition,
(H2) and the following condition hold:

(H3) There exist positive functions ŵ1(t), ŵ2(t) and ŵ3(t)

|g(t, x(t), (Ipx)(t), (Iqx)(t))− g(t, y(t), (Ipy)(t), (Iqy)(t))|
≤ ŵ1(t)|x− y|+ ŵ2(t)I

p|x− y|+ ŵ3(t)I
q|x− y|, ∀ t ∈ J , x, y ∈ R. (3.12)

Then, the Riemann-Liuoville fractional differential equation (3.11) subject to the boundary conditions
(1.2) has a unique solution on J , provided that

Λ1 = Lδ1 +

(
1 +

Γ(α− 2)

Γ(p+ α− 2)
+

Γ(α− 2)

Γ(q + α− 2)

)(
δ2k1 + δ3k2 + δ4k3 + δ5

m∑
i=1

|ωi|k4i

+δ6k5 + δ7

n∑
j=1

|σj |k6j + δ8k7 + T 3−αk8

)
< 1, (3.13)

where δm,m = 1, 2, ..., 8, are given in (3.2),

k1 = max{|I3ŵ1(T )T
α−3|, |I3ŵ2(T )T

p+α−3|, |I3ŵ3(T )T
q+α−3},

k2 = max{|I2ŵ1(T )T
α−3|, |I2ŵ2(T )T

p+α−3|, |I2ŵ3(T )T
q+α−3|},

k3 = max{|Iŵ1(T )T
α−3|, |Iŵ2(T )T

p+α−3|, |Iŵ3(T )T
q+α−3|},

k4,i = max{|Iαŵ1(ξi)ξ
α−3
i |, |Iαŵ2(ξi)ξ

p+α−3
i |, |Iαŵ3(ξi)ξ

q+α−3
i |},

k5 = max{|I2α−2ŵ1(η1)η
α−3
1 |, |I2α−2ŵ2(η1)η

p+α−3
1 |, |I2α−2ŵ3(η1)η

p+α−3
1 |},

k6,j = max{|Iαŵ1(ζj)ζ
α−3
j |, |Iαŵ2(ζj)ζ

p+α−3
j |, |Iαŵ3(ζj)ζ

q+α−3
j |},

k7 = max{|I2α−1ŵ1(η2)η
α−3
2 |, |I2α−1ŵ2(η2)η

p+α−3
2 |, |I2α−1ŵ3(η2)η

q+α−3
2 |},

k8 = supt∈J {|Iαŵ1(t)t
α−3|, |Iαŵ2(t)t

p+α−3|, |Iαŵ3(t)t
q+α−3|},

Proof: We omit the proof as it is similar to that of Theorem 3.2. 2
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4. Examples

In this section, we present examples illustrating the results obtained in the last section.

Example 4.1 Let us consider the nonlinear fractional differential equation

Dαx(t) = g(t, x(t), (µ1x)(t), (µ2x)(t)), t ∈ [0, 1], (4.1)

subject to the boundary conditions

Dα−3x(0+) + a1D
α−3x(T−) = ϕ(x),

Dα−2x(0+) + a2D
α−2x(T−) = v1I

α−2x(η1) +

m∑
i=1

ωix(ξi),

Dα−1x(0+) + a3D
α−1x(T−) = v2I

α−1x(η2) +

n∑
j=1

σjx(ζj).

(4.2)

Here, α =
8

3
, a1 =

1

4
, a2 =

−3

4
, a3 =

1

2
, v1 = −2, v2 = −2,m = 3, n = 3, ωi = −3, i = 1, 2, 3, σj =

−3, j = 1, 2, 3, η1 =
1

4
, η2 =

1

2
, ξ1 =

2

3
, ξ2 =

3

4
, ξ3 =

4

5
, ζ1 =

5

6
, ζ2 =

6

7
, ζ3 =

7

8
,J = [0, 1], T = 1, ϕ(x) =

1

30
sinx, and

g(t, x(t), (µ1x)(t), (µ2x)(t)) =
ex√
t3 + 64

+

∫ t

0

5(s−t)

300
x(s)ds+

∫ t

0

cos (t− s)

(t2 + 120)
x(s)ds.

Using the given data, we find that δ1 ≈ 0.22937050, δ2 ≈ 0.05734262, δ3 ≈ 0.02303515, δ4 ≈ 0.04927213,
δ5 ≈ 0.03071354, δ6 ≈ 0.06142707, δ7 ≈ 0.09854425, δ8 ≈ 0.19708851, ψ1 ≈ 0.01666667, ψ2 ≈ 0.00833333,
e1 ≈ 0.06136364, e2 ≈ 0.22500000, e3 ≈ 0.60000000, e4,1 ≈ 0.02523240, e4,2 ≈ 0.03736517,
e4,3 ≈ 0.04633361, e5 ≈ 0.00044079, e6,1 ≈ 0.05308746, e6,2 ≈ 0.05831409, e6,3 ≈ 0.06246302, e7 ≈
0.00044079, e8 ≈ 0.09748313.
It is easy to check that (H1) is satisfied with L1(t) =

1√
t3+64

, L2(t) = L3(t) = 1, the assumption (H2)

holds true with L = 1/30, and the condition (3.5) is satisfied as Λ ≈ 0.21234347 < 1. As the hypotheses
of Theorem 3.2 holds true, so its conclusion implies that the boundary value problem (4.1)-(4.2) has a
unique solution on [0, 1].

Example 4.2 Consider the nonlinear fractional integro-differential equation

Dαx(t) = g(t, x(t), (µ1x)(t), (µ2x)(t)), t ∈ [0, 1], (4.3)

subject to the boundary conditions in (4.2), where α = 8/3, ϕ(x) = 1
20 sinx, and

g(t, x(t), (µ1x)(t), (µ2x)(t)) =
tan−1 x(t)

t+ 25
+

1

8

∫ t

0

(t− s)p−1

Γ(p)
x(s)ds+

1

40

∫ t

0

(t− s)q−1

Γ(q)
x(s)ds,

with p = 4/5, q = 3/5.

Using the given data, it is found δ1 ≈ 0.22937050, δ2 ≈ 0.05734262, δ3 ≈ 0.02303515, δ4 ≈ 0.04927213, δ5 ≈
0.03071354, δ6 ≈ 0.06142707, δ7 ≈ 0.09854425, δ8 ≈ 0.19708851, k1 ≈ 0.01340320, k2 ≈ 0.03564640, k3 ≈
0.08522727, k4,1 ≈ 0.00752976, k4,2 ≈ 0.00990494, k43 ≈ 0.01151017, k5 ≈ 0.00014082, k6,1 ≈ 0.01265712,
k6,2 ≈ 0.01351453, k6,3 ≈ 0.01417864, k7 ≈ 0.00014068, k8 ≈ 0.01934301. Clearly, the condition (H2) is
satisfied with L = 1/20, and the assumption (H3) holds true with ϖ1 = 1

(t+25) , ϖ2 = 1
8 , ϖ3 = 1

40 and

Λ1 ≈ 0.17165453 < 1. Thus, by the conclusion of Theorem 3.3, the equation (4.3) with the boundary
conditions (4.2) has a unique solution on [0, 1].
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5. Stability Analysis

Let us first build the arguments for the Ulam–Hyers stability [39] of the problem (1.1)-(1.2).
For ϵ > 0 and t ∈ J , it is assumed that there exists u ∈ C3−α (J ,R) satisfying the following inequality

with the boundary conditions (1.2)∣∣∣Dαu(t)− g(t, u(t), (µ1u)(t)(µ2u)(t))
∣∣∣ ≤ ϵ. (5.1)

Furthermore, u ∈ C3−α (J ,R) is a solution of the system of inequality (5.1) with the boundary conditions
(1.2) if and only if there exists a function κ ∈ C(J ,R) such that |κ(t)| ≤ ϵ, t ∈ J and

Dαu(t) = g(t, u(t), (µ1u)(t)(µ2u)(t)) + κ(t).

Next, we consider a boundary value problem associated with (5.1) and the boundary conditions (1.2)
as 

Dαu(t) = g(t, u(t), (µ1u)(t)(µ2u)(t)) + κ(t), t ∈ J ,

Dα−3u(0+) + a1D
α−3u(T−) = ϕ(u),

Dα−2u(0+) + a2D
α−2u(T−) = v1I

α−2u(η1) +

m∑
i=1

ωiu(ξi),

Dα−1u(0+) + a3D
α−1u(T−) = v2I

α−1u(η2) +

n∑
j=1

σju(ζj).

(5.2)

Definition 5.1 The system (1.1) -(1.2) is called Ulam–Hyers stable if we can find cg > 0, such that,
for each solution u ∈ C3−α (J ,R) of (5.2), there exists a unique solution x ∈ C3−α (J ,R) of the
system (1.1) satisfying

∥u− x∥3−α ≤ cϵ, t ∈ J .

Definition 5.2 If there exists Ψ ∈ C(R+,R+), with Ψ(0) = 0, such that, for each solution u ∈
C3−α (J ,R) of (5.2), there exists a unique solution x ∈ C3−α (J ,R) of the problem (1.1)–(1.2)
satisfying

∥u− x∥3−α ≤ Ψ(ϵ), t ∈ J .

Then, the problem (1.1)–(1.2) is generalized Ulam–Hyers stable.

Theorem 5.1 If the assumption (H1)-(H2) and the condition (3.5) are satisfied, then the problem (1.1)-
(1.2) is Ulam–Hyers stable and hence generalized Ulam–Hyers stable in C3−α (J ,R).

Proof: By Lemma 2.2, the solution of (5.2) can be written as

u(t) = M1(t)ϕ(u)

+

∫ T

0

[
M2(t)(

(T − s)2

2
+M3(t)(T − s) +M4(t)

](
g(s, u(s), (µ1u)(s), (µ2u)(s)) + κ(s)

)
ds

+M5(t)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)

(
g(s, u(s), (µ1u)(s), (µ2u)(s)) + κ(s)

)
ds

+M6(t)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)

(
g(s, u(s), (µ1u)(s), (µ2u)(s)) + κ(s)

)
ds

+M7(t)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)

(
g(s, u(s), (µ1u)(s), (µ2u)(s)) + κ(s)

)
)ds

+M8(t)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)

(
g(s, u(s), (µ1u)(s), (µ2u)(s)) + κ(s)

)
ds
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+

∫ t

0

(t− s)α−1

Γ(α)

(
g(s, u(s), (µ1u)(s), (µ2u)(s)) + κ(s)

)
ds.

Using |κ| < ϵ and (3.7), we get

sup
t∈J

{
t3−α

∣∣∣∣∣u(t)−M1(t)ϕ(u)

−
∫ T

0

[
M2(t)

(T − s)2

2
+M3(t)(T − s) +M4(t)

]
g(s, u(s), (µ1u)(s), (µ2u)(s))ds

−M5(t)

m∑
i=1

ωi

∫ ξi

0

(ξi − s)α−1

Γ(α)
g(s, u(s), (µ1u)(s), (µ2u)(s))ds

−M6(t)

∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
g(s, u(s), (µ1u)(s), (µ2u)(s))ds

−M7(t)

n∑
j=1

σj

∫ ζj

0

(ζj − s)α−1

Γ(α)
g(s, u(s), (µ1u)(s), (µ2u)(s))ds

−M8(t)

∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
g(s, u(s), (µ1u)(s), (µ2u)(s))ds

−
∫ t

0

(t− s)α−1

Γ(α)
g(s, u(s), (µ1u)(s), (µ2u)(s))ds

∣∣∣∣∣
}

≤ δϵ.

In view of (H1), (H2), (3.5) and (3.10), we find that

∥u− x∥3−α = sup
t∈J

{t3−α|u(t)− x(t)|}

≤ δϵ+ sup
t∈J

{
t3−α

[
|M1(t)||ϕ(u)− ϕ(x)|

+

∫ T

0

[
|M2(t)|

(T − s)2

2
+ |M3(t)|(T − s) + |M4(t)|

]
×|g(s, u(s), (µ1u)(s), (µ2u)(s))− g(s, x(s), (µ1x)(s), (µ2x)(s))|ds

+|M5(t)|
m∑
i=1

|ωi|
∫ ξi

0

(ξi − s)α−1

Γ(α)
|g(s, u(s), (µ1u)(s), (µ2u)(s))− g(s, x(s), (µ1x)(s), (µ2x)(s))|ds

+|M6(t)|
∫ η1

0

(η1 − s)2α−3

Γ(2α− 2)
|g(s, u(s), (µ1u)(s), (µ2u)(s))− g(s, x(s), (µ1x)(s), (µ2x)(s))|ds

+|M7(t)|
n∑

j=1

||σj
∫ ζj

0

(ζj − s)α−1

Γ(α)
|g(s, u(s), (µ1u)(s), (µ2u)(s))− g(s, x(s), (µ1x)(s), (µ2x)(s))|ds

+M8(t)|
∫ η2

0

(η2 − s)2α−2

Γ(2α− 1)
|g(s, u(s), (µ1u)(s), (µ2u)(s))− g(s, x(s), (µ1x)(s), (µ2x)(s))|ds

+

∫ t

0

(t− s)α−1

Γ(α)
|g(s, u(s), (µ1u)(s), (µ2u)(s))− g(s, x(s), (µ1x)(s), (µ2x)(s))|ds

]}
≤ δϵ+ Λ∥u− x∥3−α,

which implies that

∥u− x∥3−α ≤ δϵ

1− Λ
.
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Letting c = cg =
δ

1− Λ
, we get ∥u − x∥3−α ≤ cϵ. Hence, the problem (1.1)–(1.2) is Ulam–Hyers stable.

Moreover, it is generalized Ulam– Hyers stable as ∥u − x∥3−α ≤ Ψ(ϵ), with Ψ(ϵ) = cϵ, Ψ(0) = 0. This
completes the proof. 2

Example 5.1 The problem (4.1) and (4.3) with the boundary conditions (4.2) are Ulam–Hyers stable,
and generalized Ulam–Hyers stable since Λ ≈ 0.21234347 < 1, and Λ1 ≈ 0.17165453 < 1, respectively.

6. Conclusion

We have obtained the existence and uniqueness criteria for solutions of a nonlinear nonlocal Rie-
mann–Liouville integral and multi-point boundary value problem. The nonlinearity in Eq. (1.1) involves
classical integrals, while Eq. (3.11) involves Riemann–Liouville fractional integrals. Our results are useful
in the given setting and yield several new results as special cases. For instance, our results correspond to
the ones with nonlocal multi-point boundary conditions for v1 = v2 = 0, whereas the choice ωi = σj = 0
for all i = 1, . . . ,m and j = 1, . . . , n produces the results for nonlocal Riemann–Liouville integral bound-
ary conditions.
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