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Optimal Solutions of the Time-Fractional Fokker—Planck Equations

Muhammad Nawaz!, Mehreen Fizal, Hakeem Ullah!*, Syed Muhammad Ghufran!, Aasim Ullah Jan?

ABSTRACT: This article investigates the comparative analysis of the time-fractional Fokker-plank equation
(TFFPE), a mathematical model used in biological and physical sciences. In this work, we used two different
methods for analytical solution of the model time-fractional Fokker-plank equation (TFFPE), namely optimal
homotopy asymptotic method (OHAM) and optimal auxiliary fractional method (OAFM). The obtained
results analyzed analytically and graphically to demonstrate the efficiency and applicability of the applied
methods, as well as to investigate the effects of partial arrangement on the behavior of the solutions. Its results
indicate that the used methods are effective and accurate for solving fractional order differential equations.
These methods applied for the TFFPE model are simple and efficient, allowing us to fully recognize the
analytical solutions to both linear and nonlinear fractional differential equations.
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1. Introduction

Fokker and Planck used the Fokker-Planck equation extensively to explain the Brownian particle
motion. The Time-fractional Fokker-plank equation (TFFPE) is a mathematical model which can be
used in the physical and biological sciences [1]-[10]. The extent of its Markovian and continuous nature
causes some randomized, undesirable processes and procedures to approximate. For nonlinear boundary
value problems (BVPs), scientists and engineers have recently developed wide variety of approximation
techniques that can be used in the physical and biological sciences. Since excellent work on this subject
has been done by many scientists and mathematicians, when applied to nonlinear problems, homotopy
emerges as a prominent and effective mathematical tool. For nonlinear problems, Watson created a se-
ries of possibly one homotopy process in 1986. The software programs HOMPACK90 and POLSYSPLP
were introduced as a result of advancements in computer simulation, which made these challenges more
accessible [11]-[13]. In mathematical physics, engineering, and science, the precise and clear solution of
NPDEs is important. As each NPDE has an infinite number of solutions, it is difficult to identify the
proper answer. Such challenges either require an analytical and precise solution in the literature or can be
solved analytically and precisely by applying transformations established on the invariance group analysis
method [14], the Lie infinitesimal criteria [15], symbolic computation [16], and the Backlund transforma-
tion [17]. By using transformation, all of these methods transformed complicated problems into simple
ones. In literature, majority of techniques, such as the homotopy perturbation method (HPM) [21], the
Adomian decomposition method (ADM) [19], the differential transform method (DTM), and the varia-
tional iterative method (VIM) [18], have been used to solve weakly NPDEs. The perturbation method
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was introduced to address the strongly NPDEs [22]-[24]. These methods include a small parameter that
is difficult to identify. There have been several new analytical techniques introduced, including the artifi-
cial parameter method [25], the homotopy analysis method (HAM) [26], and the homotopy perturbation
method (HPM) [27]. These techniques combine perturbation techniques with homotopy theory. OHAM
[28]- [31] was recently presented by Vasile Marinca et al. for the resolution of nonlinear problems, trying
to remove the dependency of perturbation methods on the supposition of small parameters and intensive
computation. The concept and application have been expanded to include systems of equations by Ul-
lah et al. [32]-[42]. In order to solve nonlinear issues, Herisanu created the optimal auxiliary function
method (OAFM) [43] in 2018. This technique was presented to reduce the amount of computation and
obtain an accurate solution at the first iteration. Since excellent work on this subject has been done
by many scientists and engineers. This study aims to adapt the optimal homotopy asymptotic method
(OHAM) and optimal auxiliary fractional method (OAFM) for P.D.E.s solution with fractional orders
such as time-fractional Fokker-plank equation (TFFPE). Complex fractional partial differential equations
can be solved with less efforts and short time with easy approach of using (OHAM) and (OAFM), which
have been found to be reliable and efficient methods especially for complex type of PDEs with fractional
order. This paper is organized into sections for simplicity’s sake. In the first section, we introduced the
history and some background on the subject. The formulation is discussed in the second section. In the
third section, we solved a well-known model of the time-fractional Fokker-plank equation (TFFPE) for
testing the accuracy and efficiency of methods. Graphs and tables are also discussed in the third section,
and similarly, in the fourth and fifth sections, results and conclusions are obtained from the article.

2. Mathematical Implementation

In this section, we used two different techniques namely, OHAM and OAFM to find out the approxi-
mate solution of the well-known time-fractional Fokker-plank equation (TFFPE) with fractional order.
2.1 OHAM'’s Basic Mathematical Theory
Consider a partial differential equation

A(f(s,t) + W(s,t) =0, sefd (1)
of .
B(f,%) =0, sel’ (2)

Here, A is called differential operators, where f(s,t) is unidentified function, s and ¢ represent spatial
and temporal independent variables, individually, T" is the boundary of Q and W (s,t) are identified as
analytic functions. We can divided ‘A into two portions as;

A=L+N (3)

L, contains the linear part of the while N contains the non-linear part of partial differential equation.
Construct an optimal Homotopy, According to OHAM;

a(s,t,q) : Q2 x[0,1] - R

Satisfying, equation

ha(s,t,q),q) = (1 = @) L(a(s, t,9)) + W(z,t) — h(q)A(a(s, t,q)) + W(s, 1) = 0, (4)

h(q) , Which is the auxiliary functions are non-zero for ¢ # 0 and h(0) = 0.
Eq. (4) is known as optimal Homotopy equation.
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Obviously, we have
q=0= h(a(s,t,0),0) = L(a(s,t,0)) + W(s,t) =0, (5)
g =1 = h(a(s,,1),1) = h(1)A(als,t,q)) + W(s,t) = 0, (6)
Clearly, when ¢ = 0 and ¢ = 1, we get;

a(s,t,0) = fo(s,t),a(s,t,1) = f(s,1), (7)

Correspondingly. When ¢ differs from 0 to 1, then solution «(s,t,q), approaches from fy(s,t), to f(s,t),
where fo(s,t), is attained from Eq.(4) for ¢ = 0.

0
L(fols, )+ Ws,) =0, Blfo, ) =0, 0
Auxiliary functions h(q),are selected in the form;
h(q) = qc1 + ¢*ca + ¢cs + ... + " e, (9)

To acquire the approximate solutions, we develop «(s,t, ¢, c;) by Taylor's series about P in the following
way,

a(s7taQaci) = f0(57t) +ka(87t7ci)qka (10)
E>1
While
k=1=n=i=1,234,..

Similarly putting Eq. (9)-(10) into Eq. (4) and by equating the coefficient of similar powers of ¢, we can
find Zeroth order solution, which is given by Eq. (8), similarly the first and second order solution given
by Eq. (11)- (12) correspondingly and the general governing equation for ug(s,t) are given by Eq.(13):

L(fl(s’t)) - L(fO(Sat)) = ClL(fO(S’t)) + N(fo(s,t), (11)

B(flv%

L(fa(s,t)) — L(f1(s,t)) = c1(L(f1(s,t)) + N(f1(s,%)) + ca(L(fo(s,t)) + N(fo(s,t))), (12)
B(f?a %) = Oa

L(fs(s,t)) — L(f2(s,1)) = cr(L(fa(s,t)) + N(f2(s,1)) + c2(L(f1(s, 1))+

N(fl(svt») + Cg(L(fo(S,t)) =+ N(fO(Sat)))a

) =0,

L(fr(s,t)) = L(fr-1((s,1)) = ‘ ci(L(fr—i(s,t)) + N(fr—i(s,1) (14)

afi
ds
It can be seen that the convergence of the series Eq. (10) depends upon the auxiliary constants
c1,C2,C3,...., If it convergent at ¢ = 1, one has

k:2737"'7 B(fk? ):07

a’(s,t,¢;) = fo(s,t) + ka(s,uci), (15)

k>1

i=1,2,...,m
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Replacing Eq. (15) into Eq. (1), it outcomes the following expression for residuals
R(Sa t, ci) = L(O‘T(’S, i, Cl)) + W(37 t) + N(ar(sv L, Ci))> (16)

If R(s,t,¢;) = 0, then alpha”r(s,t,c;), will be the precise solution to the problem. In nonlinear problems,
specifically, it happens very rarely.

For the computation of auxiliary constant, ¢;,i = 1,2, ...,m there are diverse approaches like Galerkin’s
Method, Ritz Method, Least Squares Method and Collocation Method. We will apply the Method of
Least Squares which is described as under;

J(cﬁz/j/ﬂRf(sJ,cﬂdsdt, (17)

and

oJ oJ oJ

dcy Oca T Ocm
These constants will be used to obtain the approximate m!* order solution.The more general auxiliary
functions,h(q) can be optimally known by Eq. (18) and are helpful in error reduction, which depend on
constants,cy, co, ...,are useful for convergence.
2.2 OAFM analysis for P.D.E.s with fractional orders
Now let understand the formulation of OAFM to nonlinear ODE;

0W(s,t)
ot

Where mathematical expression,%is called the Caputo/ Riemann-Liouville fractional derivative oper-
ator, where A = L 4+ N is said to be differential operator. Similarly the linear part is L,nonlinear part
is N, where W is called source function, at this stage ¥(s)is an unidentified function, the temporial
independent variable is ¢ while « is the parameter donating the fractional derivatives.

Here the initial conditions are

0. (18)

= A(¥(s,t)) + W(s), a>0 (19)

D" (5,0) = go(s), r=0,1,2,...,w—1
D§™"(s,0) =0, w = [a]
Dy (s,0) = hy(s), while r=0,1,2,...,w—1
Dy(s5,0)=0, w=]a]

Now selecting,
U(s,t,Gg) = Vo(s,t) + U1(s,t, Gi), k=12, w (20)

Using Eq. (21) in Eq. (19), we find the zeroth approximation, which is defined as;
0% (Wo(s,t))

ote
Uo(s,0) = gr(s), r=0,1,2,...,w—1

—W(s) =0, (21)

The first aproximation is found as,
0% (V1(s,t,Gr))
ot
Uy (s,0) = h(s), r=0,1,2,..,w—1

+ N(Wo(s,t) + Uy (s,t,Gr)) = 0, (22)

Since Eqgs. (22)- (21), comprise the time fractional derivatives,
Hence by applying I“ operator, we get

Wo(s,t) = I*[W(s)] =0, (23)
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and
\Ifl(S,t7 Gk) = Ia[N(‘l/o(S,t) + \111(87?5, Gk)” =0,

where the nonlinear term is expressed as;
N(Wo(s, 1) + Wi (s,t,Gr)) = N(Wo(s, 1) + > _ Wi (t, Gx)N' (Vo (s, 1)).
=1
Eq. (26) can be written as,
L(Uy(s,t,Gg)) + D1((Po(s,t)), G )V (N (Tg(s,1))) + Do (¥g(s,t),Gn) =0,

d\Ijl(Svta Gk)

B(\Ill(sataGk)a df

)

where, n =1,2,...q, andm=q+1,q+2,..w
Convergence of the Method
As we know the, Method of Least Squares is used to conclude the ideal constants; so,

K(Gy) :/IRQ(S,Gw)ds,

Where [ is called equation domain.
To find unidentified constants, we establish as

01 K =0,062K =0,....06s K =0, ...
For finding the approximated solution, we used the values of equations as;

(s, t) = Wo(s,t) + Wi(s,1)

(26)

(29)

2.3 Application of OHAM to time-fractional Fokker-Planck equation. Consider the following
example of the model, the time-fractional Fokker-Planck equation, for the demonstration of the efficiency

of the extended formulation of OHAM.

3. Numerical examples

To explain the efficiency and accuracy of the OHAM, we found an approximate solution to the time-

fractional Fokker-Plank equation and compared it with the exact solution to the problem.

Example: 01 Consider time-fractional Fokker-Plank equation with initial equation and exact solution

[44].
0u ou ¢ 0 0%u
U Fe)gs ~(@s)5e =0

The exact solution for the no fractional case at v = 1 becomes

u(s,t) = (s +1)e

with intial condition;
u(s,0)=1+s

To solve the given test example, firstly take initial condition as follow;

up(s,) = (s +1)
To find the value of, uy

1

ui(s,t) = m/o (t— 7")“*1(01 + scp)dr

(30)

(31)

(32)

(33)
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From which we get,

Hence,
t*(1+ s)cq
)= —
U1<57 ) CLF(]. _ a)
1 ¢ 1
)= | —(t—r)""
U2(53 ) F(l _ a) /0 ( 7’) [Cl +sa
tIFa(1 4 8)e, (1 + 5)c?
d
T a) T —a) + ca + sep]dr
E L+ ) (#? +I0(L — a))er + 1%t +HT(1 — a)ep
us(s,t) = —
al'(1 — a)?
Now,

u(s,t) = up(s,t) +ui(s,t) + ua(s,t)

t4(1+s)e; N1+ 8)(t* +t0(1 —a))ey + %3 +tI(1 — a)ea
t)=1 —
u(s,?) et al'(1 — a) al'(1 —a)?

—1+4a
Byu(s, t) = (A4 s)er

I'(l—a)
t L1+ s)(at™ 1T+ T(1 —a))e; +at® 12 +T(1 — a)co
al'(1 — a)? a
(@ —1)t22(1 + 8)(t* +tI'(1 — a)cy +t%c? +tT(1 — a)ca)
al'(1 — a)?
R= ﬁ /0 —(t =) (Opu(s, t))dr — (14 s)u(s, t)0su(s, t) — (e's?)Dssu(s,t)
R 1727201 4+ 5) (=1 + 2a)t%; (1 + ¢1) + atT'(1 — a)co
B a?l(1 —a)3 B
% 142 +4T(1 — a))ey + %2 +tT(1 — a)cy
(L+8)[1+ al(1—a)’ al'(1 — a)? ]
t*(1 4 s)ey =114 5)((t* +tT(1 — a))ey +t2c2 + T (1 — a)co
RURNYTESe S LIRS TR R Y1 TR

Used Least Square Method for finding values of C},

1 1
J = / / R2dsdt
0 0

(34)

(35)
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J = 4.124570508056081 x 10~ 7(1.503186813727686 x 107 — 2228835.224727802¢1 —
2228540.16288397¢2 — 4128.369733556316¢5 — 13805.712537475934¢] —
13936.656734249094¢; — 4390.258127102639¢5 + 218.82352941176467¢]

+54.70588235294117¢5 — 9769362.178724483 ¢, — 3387.189533785546¢2 ¢,
—5825.604700424672¢3 co — 540.8664323462881c}co + 2846.3231014392577¢5 ¢,
1+948.7743671464192c5 ¢y 4 2571732.951609002¢5 4 6189.643190159692¢2 ¢34+
12379.286380319383¢5 c5 + 6189.643190159692¢c5—
1028.1745026455726(3.4000000000000004¢;
(36.00000000000001 — 347.2000000000001c5) +
3.4000000000000004¢2 (36.00000000000001 — 347.2000000000001¢5) — (43)
2.8000000000000007 (85. — 124¢5) ¢3) + 12.018162448859616(23998.464000000004¢3
+11999.232000000002¢] + 302.40000000000003¢; (28.000000000000007 — 68.2¢3) co
+302.40000000000003¢; (39.68000000000001 + 28.000000000000007¢5 — 68.2¢3) +
c3 (752.6400000000002 — 2079.0000000000005¢; + 1636.8000000000002¢3) )+
4.031496459544175¢; (115.20000000000002¢2 (45.000000000000014 — 248.¢5) +
57.60000000000001¢5 (45.000000000000014 — 248.c5) +
¢2 (806.4000000000005 — 3960.000000000002¢; + 4464.000000000003¢3) +
¢1 (2592.0000000000014 — 13478.400000000003¢2 — 3960.000000000002¢5+
4464.00000000003¢3)))

By solving ”J”, we can get the values of constants;
c1 = —0.4999999999999838, o = 6.313616560095578

Now put values of these constant in equation (38), we get

~0.4999999999999838t*(1 +s)

=1 14
ust)=1+s al(1 - a) (44)
0.2499999999999838¢+
=1 (1 + 5) 6.313616560095578¢0(1 — a)—
0.4999999999999838 (t¢ + ¢T'(1 — a)) @)
al?(1 —a)

As we know that ¢ > 0, s € R, 0 < a < 1, so by comparing with exact solution, [44]
The exact and the OHAM solutions are compared to determine the convergence of the method.

4. Figures and Tables

From Table 01, we can see that OHAM is closed converging to the exact solution and that the error
is almost completely ignorable. Now for more comparison and finding accuracy and approximation, we
find out some graphical analysis of the subject model for a better understanding of the solution of the
method. So we draw the 3D and 2D graphs of the OHAM solution, i.e., u(s,t), and the 2D and 3D
graphs of the exact solution for comparison purposes with the help of Mathematica.

From the graphical analysis of both solutions of the model, it is very clear that OHAM has good
convergence power and valuable accuracy for the closed-form solution.

Now, for a more accurate study of the method, we draw some 2D and 3D graphs of solutions with
the help of Mathematica
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Table 1: Comparison of Solution.

’ S H Exact Solution H OHAM Solution H Abs error

0. 1.0010005001667084 || 0.9985409395082848 || 0.002459560658423565
0.1 || 1.1011005501833793 || 1.0983950334591133 || 0.0027055167242659994
0.2 || 1.20120060020005 1.1982491274099416 || 0.0029514727901083226
0.3 || 1.301300650216721 1.2981032213607704 || 0.003197428855950646
0.4 || 1.4014007002333917 || 1.3979573153115987 || 0.003443384921792969
0.5 || 1.5015007502500626 || 1.4978114092624273 || 0.0036893409876352923
0.6 || 1.6016008002667335 || 1.5976655032132558 || 0.0039352970534776155
0.7 || 1.7017008502834043 || 1.6975195971640844 || 0.004181253119319939
0.8 || 1.8018009003000752 || 1.7973736911149127 || 0.004427209185162484
0.9 || 1.9019009503167459 || 1.897227785065741 0.004673165251004807
1. 2.0020010003334168 || 1.9970818790165696 || 0.00491912131684713

a0

- —
— ¥

} A ey

) /7/7 /,:-uc_//////

Z1 i A T
///ffx

0.0

Figure 1: 3D plot of OHAM Sol.

From the study of the graphical analysis of both solutions, one point is very clear: the solution
obtained by the Optimal Auxiliary Fractional Method (OAFM) is much closer to the exact solution
of the problems. It is also noted from the graphical analysis that the solution found with the help of
OAFM very quickly converged to the exact solution of the model. Now to explore approximation of both
solutions obtained by OHAM and OAFM, we compare both solutions. Also, the absolute error found by
these methods is compared, so that it becomes clearer which method is more reliable and precise than
the other one.

From Table 3, we can see that the values obtained by both solutions are much closer to the closed
form solution given in the problem. It can be seen that the absolute error of both methods is negligible.
Now let the same model be solved by another method, i.e., the Optimal Auxiliary Fractional Method
(OAFM);
The Model is,

0%u

ou ¢ 9 B
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Figure 2: 3D plot of exact solution

I
10
= Exacl 3al
5
=
= [i] i
—=
-10
—10 -5 a 5 10

Figure 3: 2D plot of OHAM solution

The initial condition is,
u(s,0) = (1+s)

. First we take initial condition,
ug(s,t) =1+s

which gives us,
up=14+s

Now let consider,
NL = — (1 + s) Osuo(s, t) — (€'s?) Dss (uo(s,t))

NL=-1-s
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= Exacl 50l
5
B -
-
-10
—10 -3 a E 10

Figure 4: 2D plot of exact solution

Let consider,

From the given technique,
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Figure 6: Plot 3D, [exact, x,-10, 10, y, 0, 1]

10 me Erad Sokfkn f.f
ws  OHAM  SORSN -""

-5 “‘,4

=10

Figure 7: 2D Plot of comparison of Solutions.

(1 +5) (e + (14 ) (—ea + (1+9) (es + a1 +5)%) )

= al'(a) (53)
Now take,
u(s,t) = uo(s,t) +uy (54)
Put the values of, ug and u; in (52), we can get;
11+ 8)° (—er + (1 +8)* (—co+ (14 5) (c3 + ca(l +5)°
o) = (1494 OE) (~er+(1+s) (a;(a)< ) (s +es(1+9)))) )
o) — t=1te(1 4 ) (—01 +(1+5)? (—02 +(1+5) (Cg +ea(l+ 3)2))) )

I'(a)
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10 Zeromn  Onder
=sne First Order
| [meea Sacond  Order

mmEm Eyad Sl

Ve

I,::‘x.t.

Figure 8: «,Variation while, O<a < 1,

Table 2: Comparison of Solution.

E

H Exact Solution

| OAFM Solution

H Abs error

0. 1.0001000050001667 || 1.0002534563121752 | 0.00015345131200850126
0.1 || 1.1001100055001836 || 1.1002903967997657 || 0.00018039129958213884
0.2 || 1.2001200060002 1.2003224484684567 || 0.00020244246825673606
0.3 || 1.3001300065002168 || 1.3003497517565028 || 0.00021974525628598585
0.4 || 1.4001400070002332 || 1.4003736670194276 | 0.0002336600191943372
0.5 || 1.50015000750025 1.5003965218506534 || 0.00024651435040334846
0.6 || 1.600160008000267 1.6004209817901156 || 0.00026097378984868413
0.7 || 1.7001700085002835 || 1.7004489487114267 || 0.0002789402111431638
0.8 || 1.8001800090003002 || 1.800479884088545 0.00029987508824480535
0.9 || 1.9001900095003166 || 1.9005084472533313 | 0.0003184377530147664
1. 2.0002000100003334 || 2.0005213316657753 || 0.0003213216654418538
R= i / (t— 1)~ (Dpuls, £)) dr — (14 5) Dyuo(s, t) — (€'5?) Bys (uo(s, 1)) (57)
0
(1+s)° (—01 +(1+4s) (—62 +(1+s) <C3 +cq(1 + 5)2)»
R=(-1- 58
(=1=s)+ (I —a)T(l —a)(a) (58)
where,0 < a <1,
To find the values of C; ,we used Least Square Method.
11
J = / / R2dsdt (59)
0 0
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Figure 10: 3D plot of, exact solution.

J = 2.3333333333333335 + 17.553780511133574¢1 2 + 180.04876230782605¢5>
—62.706517246570954c5 + 609.6190873209363¢5%+

¢ (35.69177676331434 — 660.3400503302414c3 — 2264.4376859362314¢,)

+ep (12.197032374234977 + 109.86854398657006¢, — 197.95688541768115¢3
—660.3400503302414c,4) — 201.25103417487713c, + 4227.0793512422015¢3¢4
+7459.722537111404¢4°
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20}
— OAFM Sal
1.5
Z 10
0.5t
0ot
-1.0 -0.5 0.0 0.5 1.0
X
Figure 11: 2D plot of OAFM Sol.
20
— Exact Saol
1.5
Z 10
0.5t
RIS
-1.0 -0.5 0.0 0.5 1.0

Figure 12: 2D plot of Exact Sol.

Put values of, C; in (58),

c1 = —2.1723055094044685
c2 = 2.326960050050942
c3 = 1.1924269486431436

cq = —0.0673239917243382

we get,
u(s,t) = (1+8)+

(1 + 5)3(2.1723055094044685 + (1 + 5)2(—2.326960050050942 + (1 + s)(1.1251029569188)(1 + s)2
ol (@) (61)

As we know that, 0 < o < 1, so for a =1,
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Figure 13: Plot 3D[OAFM,x, —1,1,y,0,1]
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Figure 14: Plot 3D[Exact,z,—1,1,y,0,1]

We obtained the closed form solution of the given problem [44]
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Figure 16: «,Variation while, 0<a < 1,

5. Results Analysis

solutions to the problems given in Tables [1]-[2]

The mathematical theories of OHAM and FOAFM offer a very precise solution to the time-fraction
used Mathematica software. The consequences found by the two methods are matched with the exact

Fokker-Planck equation with the initial condition presented in Section 3.For the computational work, we

other analytical methods described in the literature. The absolute errors of the techniques for dissimilar
numeral values are shown in Tables [1]-[2] and Figs.

The techniques are effective and more correct than

[7]-[15]. The solution is once again tested by
absolute errors found by OHAM and OAFM are matched with other approaches in the literature, and it

comparing it with the exact solutions presented in 3D form in Figs. [1],[2], [9], and [10]. Similarly, the
is determined that these methods’ consequences are more precise than the other technique.
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Table 3: Comparison of Solutions of OHAM and OAFM.

’ S H Exact Sol H OHAM Sol H OAFM Sol H Abs error of OHAM H Abs error of OAFM ‘

=)

0. 1.00001 0.999948 1.00003 0.0000619947 0.0000219082
0.1 1.10001 1.09994 1.10004 0.0000681941 0.0000255587
0.2 1.20001 1.19994 1.20004 0.0000743936 0.0000285938
0.3 1.30001 1.29993 1.30004 0.0000805931 0.0000310311
0.4 1.40001 1.39993 1.40005 0.0000867926 0.0000330418
0.5 1.50002 1.49992 1.50005 0.000092992 0.0000349191
0.6 1.60002 1.59992 1.60005 0.0000991915 0.0000369984
0.7 1.70002 1.69991 1.70006 0.000105391 0.0000395192
0.8 1.80002 1.79991 1.80006 0.00011159 0.0000424137
0.9 1.90002 1.8999 1.90006 0.00011779 0.0000450096
1. 2.00002 1.9999 2.00007 0.000123989 0.0000456317

“|mm  OHAM Sol

. OAFM Sal

= Exsct sa

= /

Figure 17: Comparison of OHAM, OAFM and Exact Solution.

6. Conclusion

17

The optimal homotopy asymptotic method and optimal auxiliary fractional method are used to solve
the TFFPE. OHAM is applied to the TFFPE, and an approximate solution is obtained. Then, OAFM
was applied to the same model, and a series solution for the first iteration was obtained. The accuracy
of two methods is shown by comparing their results with those available in the literature, showing that
these techniques are simple to apply and can provide accurate results with less computational effort not
only for linear PDEs but also for nonlinear PDEs. The convergence of the methods is controlled by
means of auxiliary functions. FOAFM does not have any constraints, which allows us to implement it in
complex physical problems. Both methods are reliable and very easy for fractional-type problems. From
the comparison of these techniques, we conclude that, these methods are simple in calculation and need
less computational work. The accuracy and convergence is very strong. All the computational work has
been done by Mathematica.
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