(3s.) **v. 2025 (43)** : 1–6. ISSN-0037-8712 doi:10.5269/bspm.76012

On Semi-weakly D-compactness

Chuleshwar Patel*, Purushottam Jha and Manju Verma

ABSTRACT: In this paper, we introduce semi-weakly D-compactness, continuous mapping properties, and some characterization of semi-weakly D-compact space. First, we present a special type of cover called a semi-weakly-D open cover by using a difference set (D-set), and several semi-weakly-D mapping properties are studied. Then, we investigate the image of these spaces under semi-weakly-D mappings and study their relationship with other spaces. Furthermore, We derive some findings which connect some generalized D-compact spaces and we give some sufficient conditions which guarantee that any locally indiscrete weakly D-compact space is semi-weakly D-compact.

Key Words: D-sets, D-compact space, weakly D-open sets.

Contents

1	Introduction	1
2	Mathematical Background: Auxiliary Results	2
3	Semi-weakly D-compact Space	3
4	Conclusions	5

1. Introduction

In [12], Sundstrom explained the importance of compactness and studied the many relevant concepts of compactness. The open set plays an important role in defining a new type of set. The compactness properties have been generalized in many directions by using open sets, one of them is [11]. The urgent need for theories dealing with uncurtaining data which are not always crips. One of the recent mathematical tools to handle this problem is D-sets which was developed by Tong [8]. By connecting D-sets with an open set, we can obtain new results that will be a much more useful result than just open sets and it generalized into other topological spaces. Norman Levine [13] first developed the new concept of semi-open sets and then Adam Hassan [1] introduced semi-generalized open sets and semi-generalized closed sets in topological spaces. Sarsak [10] defined semi-compact spaces and investigated the mapping properties of semi-compact sets. Caldas [9] studied the novel concept of semi-D sets by using a semi-open set and investigated their properties. Al-shami [18] studied new types of supra semi-open sets and some applications on topological spaces. Wali and Mathad [15] defined semi-regular-weakly open sets and discussed their applications. Later other researchers worked in this direction by using different open sets and their studies were related to D-set. Qoqazeh et al. [5] started working on compactness and introduced pairwise meta D-compact space. On the other hand, the author [6] used the concept of D-sets to introduce the new concept of D-compact spaces and investigated the relationship between other topological spaces. Bani-Ahmad et al. [4] defined and discussed the new version of D-sets called D-perfect function, the author also explored some of the more advanced properties of the D-perfect functions. In recent years, the topological structure has been generalized to see the variety of applications [16,17]. In this study, we continue studying D-compact spaces by using the definition of semi-weakly-D open sets and formulating the notion of semi-weakly D-compact spaces. We also explore the concept of semi-weakly D-compact spaces and study the mapping properties of these novel concepts.

Submitted March 06, 2025. Published August 10, 2025 2010 Mathematics Subject Classification: 54A05, 54D10.

^{*} Corresponding author

2. Mathematical Background: Auxiliary Results

In this section, we provide the initial concepts and corollaries that are the significant relevance in the exploration of the semi-weakly D-compact spaces.

Definition 2.1 [2] Let (R, φ) be a topological space, and let K be a subset of R. Then K is called weakly D-open set if K - K' is φ -open, where K' is the set of all limit points of K.

The discrete topology on R and the subsets $\{a,b,c,d\}$ of R implies every subset of R is weakly D-open set. But if T_I is an indiscrete topology on R, then only φ is the weakly D-open set.

A collection $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ of weakly D-sets in a topological space (R, φ) is said to be a weakly D-cover of R if

$$R = \bigcup_{\alpha \in \Lambda} G_{\alpha}$$
, where Λ is any index set.

Definition 2.2 [3] A subset K of a topological space (R, φ) is said to be semi-weakly-D open sets if K - K' is semi-open, where K' is the set of all limit points of K.

```
 \begin{array}{l} Let \ K \subset R, \ R = \{p, \ q, \ r, \ s, \ t\}, \\ \varphi = \{\phi, \ R, \ \{p\}, \ \{p, \ q\}, \ \{p, \ r, \ s\}, \ \{p, \ q, \ t\}, \ \{p, \ q, \ r, \ s\}\}, \\ and \ K = \{p, \ r, \ s, \ t\}. \ So, \ K' = \{q, \ r, \ s, \ t\}. \\ Therefore, \ K - K' = \{p\}, \ which \ is \ semi-weakly-D \ open. \end{array}
```

Corollary 2.1 [3] Let (R, φ) be a topological spaces. Then

- 1. Every D-set is a semi-weakly-D sets in a topological space (R, φ) .
- 2. Every open set is a semi-weakly-D set.
- 3. Every weakly D-open set is semi-weakly-D open but not conversely.
- 4. Every semi-open set is semi-D set and so semi-weakly-D set but the converse need not be true.

Definition 2.3 [8] Let (R, φ) be a topological space and let H be a subset of R called D-set, if there are two open sets F_1 and F_2 such that $F_1 \neq R$ and $H = F_1 - F_2$.

Definition 2.4 [13] Let (R, φ) be a topological space and $K \subset R$. Then K is said to be semi-open if, \exists an open set $H \in \varphi$ such that $H \subset K \subset Cl(H)$. The family of all semi-open sets is denoted by $S_H(R, \tau)$.

Definition 2.5 [10] A topological space (R, φ) is said to be semi-compact if each semi-open cover of R has a finite subcover.

Definition 2.6 [6] A topological space (R, φ) is said to be weakly D-compact if each weakly D-cover of R has a finite subcover.

Definition 2.7 [7] A point p is a limit point of a subset K of a topological space (R, φ) if every neighbourhood of p contains a point of K other than p.

Definition 2.8 [13] A function $\gamma: R \to S$ is said to be semi-continuous if the inverse image of an open set is semi-open.

Definition 2.9 [2] A topological space (R, φ) is weakly- D_2 space, if for any pair p, q of members of R, $p \neq q$, \exists two disjoint weakly D-open sets G_w and H_w of R such that $p \in G_w$ and $q \in H_w$.

3. Semi-weakly D-compact Space

Definition 3.1 A collection $\{G_{\alpha}\}_{{\alpha}\in\Lambda}$ of semi-weakly-D open sets in a topological space (R, φ) is said to be a semi-weakly D-cover of R if $R = \bigcup_{{\alpha}\in\Lambda} G_{\alpha}$, where Λ is any index set.

Definition 3.2 A topological space (R, φ) is said to be semi-weakly D-compact if each semi-weakly-D open cover of X has a finite subcover.

Definition 3.3 A function $\gamma: R \to S$ is said to be semi-weakly-D continuous if the inverse image of weakly D-open sets is semi-weakly-D open.

Theorem 3.1 For a semi-weakly-D continuous image of a semi-weakly D-compact space is weakly D-compact.

Proof. Let (R, φ) be a semi-weakly D-compact space and $\gamma: R \to S$ be a semi-weakly-D continuous function. Let $C = \{C_{\rho} : \rho \in \Delta\}$ be D-cover of S, then C is weakly D-open cover and so it is also semi-weakly-D open cover of S [see corollary 2.1 & et al.]. Let $\widetilde{C} = \{\gamma^{-1}(C_{\rho}) : \rho \in \Delta\}$ be semi-weakly-D open cover of R. Since R is semi-weakly D-compact implies that \widetilde{C} has a finite sub-cover such that $\{\gamma^{-1}(C_1), \ \gamma^{-1}(C_2), \ \gamma^{-1}(C_3), \ \ldots, \ \gamma^{-1}(C_n)\}$. Thus $\{C_1, C_2, C_3, \ldots, C_n\}$ is cover of S. Hence the result.

Lemma 3.2 If J is an open subset of Z and $\gamma:(Z,\varphi)\to (W,\widetilde{\varphi})$ be a semi-weakly-D continuous, then the continuous functions $\gamma:(J,\varphi_J)\to (W,\widetilde{\varphi})$ is also semi-weakly-D continuous.

Proof. Let $\gamma:(Z,\varphi)\to (W,\widetilde{\varphi})$ be a semi-weakly-D continuous. Then $\gamma^{-1}(H)$ is semi-weakly-D open in (Z,φ) , where $H\in\widetilde{\varphi}$. Since J is open in Z this imply that $J\cap\gamma^{-1}(H)=\gamma_J^{-1}(H)$. Then it is open in (Z,φ) so it is also in (J,φ_J) . Hence $\gamma:(J,\varphi_J)\to (W,\widetilde{\varphi})$ is semi-weakly-D continuous.

Theorem 3.3 If $\gamma:(Z, \varphi) \to (W, \widetilde{\varphi})$ is a semi-weakly-D continuous surjection from (Z, φ) into $(W, \widetilde{\varphi})$, if (Z, φ) and semi-weakly D-compact then $(W, \widetilde{\varphi})$ is so.

Proof. Let $\{M_{\rho}: \rho \in \Delta\}$ be a D-cover of $(W, \widetilde{\varphi})$, then it is also semi-weakly D-cover [using corollary 2.1]. Since $\gamma: (Z, \varphi) \to (W, \widetilde{\varphi})$ is semi-weakly-D continuous map therefore $\gamma^{-1}(M_{\rho}: \rho \in \Delta)$ is a semi-weakly-D open in (Z, φ) . Hence $\{\gamma^{-1}(M_{\rho}): \rho \in \Delta\}$ is φ -semi-weakly-D open cover of (Z, φ) . By hypothesis, (Z, φ) is semi-weakly D-compact and so there exists a φ -semi-weakly-D finite subcover $\{\gamma^{-1}(M_{\rho}): \rho = 1, 2, 3, \ldots k\}$ such that $Z = \bigcup_{k=1}^{n} \gamma^{-1}(M_{n})$. So, $\{M_{1}, M_{2}, M_{3}, \ldots, M_{n}\}$ is finite sub-cover of $(W, \widetilde{\varphi})$. It's the result.

Corollary 3.1 Every D-cover is a semi-weakly-D open cover.

Proof. It follows from corollary 2.1 et al.

Theorem 3.4 If J_1 is semi-weakly D-compact relative to topological space (R, φ) , then J_1 is semi-weakly D-compact relative to J_2 , where $J_1, J_2 \subseteq R$ and $J_1 \subseteq J_2$.

Proof. Assume that $P = \{P_{\rho} : \rho \in \Delta\}$ is a D-cover of J_1 . Since every D-cover is a semi-weakly-D open cover. So, $\{P_{\rho} : \rho \in \Delta\}$ semi-weakly-D open cover [using corollary 2.1] concerning semi-open sets in J_2 . Then $P_{\rho} = \{D_{\rho} \cap J_2 : \rho \in \Delta\}$, where D_{ρ} is semi-weakly-D open in R for each $\rho \in \Delta$. Thus $D = \{D_{\rho} : \rho \in \Delta\}$ is a cover of J_1 concerning semi-weakly-D open sets contained in R. By hypothesis J_1 is semi-weakly D-compact space of R, so there exists a finite sub-cover such that $\cup \{D_{\rho} : \rho = 1, 2, 3, \ldots k\}$. Thus

$$J_1 \subseteq \bigcup \{D_\rho \cap J_2 : \rho = 1, 2, 3, \ldots k\} = \bigcup \{P_\rho : \rho = 1, 2, 3, \ldots k\},\$$

where k is any finite integer. Hence J_1 is semi-weakly D-compact for J_2 .

Theorem 3.5 A semi-open subset S of topological space (R, φ) is semi-weakly D-compact if and only if semi-open subspace (S, φ) is semi-weakly D-compact.

Proof. Let $H = \{V_{\alpha} : \alpha \in \Delta\}$ be a semi-open cover of S. Since S is semi-open set containing H. Therefore, the cover H of S is a semi-weakly-D open subset of R [using theorem 3.4 et al.]. By hypothesis,

$$S \subseteq \bigcup \{V_{\alpha} : \alpha = 1, 2, \ldots, k\} = \bigcup \{V_{\alpha} \cap S : \alpha = 1, 2, \ldots, k\},\$$

where k is finite positive integer. So, (S, φ) is semi-weakly D-compact.

Conversely, suppose that $\{E_{\alpha} : \alpha \in \Delta\}$ be a semi-open cover of S in (R, φ) . Therefore $G = \{E_{\alpha} : \alpha \in \Delta\} \cap S$ is a semi-weakly-D open subset of (R, φ) . It follows that G is a semi-weakly-D open subset of (S, φ) . Hence proof is completed.

Theorem 3.6 A subset E of topological space (R, φ) is semi-weakly D-compact if and only if for each collection $\{w_{\alpha} : \alpha \in \Delta\}$ of σ -closed sets of R such that

$$(\cap_{\alpha \in \Delta} w_{\alpha}) \cap (E \cap \vartheta_{\sigma}) = \phi,$$

where ϑ_{σ} is closed subsets of R and there is a finite sub-cover $\{w_1, w_2, w_3, \ldots, w_n\}$ such that

$$(\cap_{r=1}^n w_r) \cap (E \cap \vartheta_\sigma) = \phi.$$

Proof. Let $\{S_{\alpha} : \alpha \in \Delta\}$ be a family of D-cover in R therefore $\{S_{\alpha} : \alpha \in \Delta\}$ is semi-weakly-D open cover of R [corollary 3.1. et al.] such that

$$(E \cap \vartheta_{\sigma}) \subseteq \cup_{\alpha \in \Delta} S_{\alpha}.$$

It follows that

$$(R - \cup_{\alpha \in \Delta} S_{\alpha}) \cap (E \cap \vartheta_{\sigma}) = \phi$$

and clearly $(R - \cup_{\alpha \in \Delta} S_{\alpha})$ is σ -closed subset of R.

By hypothesis, there is a finite sub-cover $(R - \bigcup_{r=1}^{n} S_{\alpha})$ such that

$$\left(\bigcap_{r=1}^{n} \left(R - \bigcup_{r=1}^{n} S_r\right)\right) \cap \left(E \cap \vartheta_{\sigma}\right) = \phi.$$

So, $E \cap \vartheta_{\sigma} \subseteq R - \bigcap_{r=1}^{n} (R - S_r) = \bigcup_{r=1}^{n} S_r$.

Thus (R, φ) is semi-weakly D-compact.

Conversely, suppose the collection $\{w_{\alpha} : \alpha \in \Delta\}$ are σ -closed sets of R such that $(\cap_{\alpha \in \Delta} w_{\alpha}) \cap (E \cap \vartheta_{\sigma}) = \phi$. So,

$$(E \cap \vartheta_{\sigma}) \subseteq R - (\cap_{\alpha \in \Delta} w_{\alpha}) = \cup_{\alpha \in \Delta} (R - w_{\alpha}).$$

Clearly, $\{R - w_{\alpha}\}_{{\alpha} \in \Delta}$ forms a σ -open sets of R covering $(E \cap \vartheta_{\sigma})$.

By hypothesis, there is a finite sub-collection $\{w_1, w_2, w_3, \ldots, w_n\}$ such that

$$(E \cap \vartheta_{\sigma}) \subseteq \cup_{r=1}^{n} (R - w_r).$$

Thus $R - (\bigcup_{r=1}^{n} (R - w_r)) \cap (E \cap \vartheta_{\sigma}) = \phi \Rightarrow \bigcap_{r=1}^{n} w_r \cap (E \cap \vartheta_{\sigma}) = \phi$. Hence the result.

Definition 3.4 Let R and S be two topological spaces. A function $\gamma: R \to S$ is called semi-weakly-D irresolute function if the inverse image of any semi-weakly-D open set in S is a weakly D-open set in R.

Theorem 3.7 The semi-weakly-D irresolute image of a weakly D-compact space is semi-weakly-D compact. **Proof.** Let R be a weakly D-compact space and the function $\gamma: R \to S$ be semi-weakly-D irresolute function. Let the collection of the set $\{Q_{\alpha}: \alpha \in \Delta\}$ be a weakly D-cover of S then the collection $\{\gamma^{-1}(Q_{\alpha}): \alpha \in \Delta\}$ is an open cover of R. So, it must be semi-weakly-D open cover of R [corollary 3.1 & 2.1 et al.]. Since R is weakly D-compact, so there must exist a finite sub-covers such that $\{\gamma^{-1}(Q_1), \gamma^{-1}(Q_2), \gamma^{-1}(Q_3), \ldots, \gamma^{-1}(Q_n)\}$. Thus, the set $\{Q_1, Q_2, Q_3, \ldots, Q_n\}$ is a cover of S. This is the outcome.

Theorem 3.8 Let (R, φ) be a topological space. Then for any locally indiscrete weakly D-compact space is semi-weakly D-compact.

Proof. Let λ_{α} be a clopen set for every $\alpha \in \Delta$ and let $\mu = \{\lambda_{\alpha} : \alpha \in \Delta\}$ be weakly D-cover of (R, φ) then μ is weakly D-open cover of (R, φ) . So μ is semi-weakly-D open cover [corollary 3.1 et al.]. Since (R, φ) is weakly D-compact, so μ has a finite sub-cover. Hence the result.

4. Conclusions

This study aims to generalize semi-weakly-D open sets in the sense of D-compact and weakly D-compact spaces and we obtained new results that will be a much more useful result than just a compact set and it generalized into other topological spaces. We have formulated a new class of semi-weakly D-compact spaces. We have investigated the relationship between these concepts and other spaces. Further, the new results of semi-weakly-D mappings are established by using these new ideas of compactness. In future works, we shall study these concepts concerning another generalization of weakly D-sets such as regular-weakly-D sets and semi-regular-weakly-D sets, and apply these ideas in biological science and engineering science.

Acknowledgments

The authors would like to express their gratitude to the Editor-in-Chief and the esteemed referees for their informative and constructive suggestions.

Conflict of Interest

The author declares that there is no conflict of interest.

References

- A. Adam Hassan, Semi Generalized Open Sets and Generalized Semi Closed Sets in Topological Spaces, Journal of Analysis and Applications, 18 (2020), 1029-1036.
- C. Patel, P. Jha and M. Verma, Weakly-D separation axioms in topological spaces, Proceedings of 4th Prof. P. C. Vaidya International Conference on Mathematical Sciences, (2023), 269–273.
- 3. C. Patel, P. Jha and M. Verma, On \widetilde{sw} -D Sets and its Associated Properties, Advances in Nonlinear Variational Inequalities, 28 (5s) (2025), 493–500.
- F. Bani-Ahmad, O. Alsayyed and A. A. Atoom, Some new results of difference perfect functions in a topological spaces, AIMS Mathematics, 7 (11) (2022), 20058–20065.
- H. Qoqazeh, H. Hdeib and E. A. Osba, On D-meta-Compactness in bio topological spaces, Jordan Journal of Mathematics and Statistics, 11 (4) (2018), 345–361.
- H. Qoqazeh, Y. Al-Qudah, M. Almousa and A. Jaradat, On D-Compact Topological Spaces, Journal of Applied Mathematics and Informatics, 39 (5-6) (2021), 883–894.
- 7. J. L. Kelley, General topology, Courier Dover Publications, (2017).
- 8. J. Tong, A separation axiom between T₀ and T₁, Ann. Soc. Sci. Bruxelles, **96** (1982), 85–90.
- 9. M. Caldas, A separation axiom between semi-T₀ and semi-T₁, Pro Mathematica, 11 (1997), 21–22.
- 10. M. S. Sarsak, On semi-compact sets and associated properties, International Journal of Mathematics and Mathematical Sciences, 8 (2009).
- 11. M. E. Abd El-Monsef and A. M. Kozae, Some generalized forms of compactness and closedness, Delta Journal of Science, 9 (2) (1985), 257–259.
- M. Raman-Sundstrom, A Pedagogical history of compactness, The American Mathematical Monthly, 122 (4) (2015), 619–635.
- 13. N. Levine, Semi-open sets and semi-continuity in topological spaces, American Mathematical Monthly, 70 (1963), 36-41.
- 14. P. Jha, C. Patel and M. Verma, Weakly D-compact Topological Space, Proceeding in International Conference, Roll of Applied Science in Social Implications (IC-RASSI-2023), D (2023), 30–32.
- 15. R. S. Wali and B. B. Mathad, Semi-regular-weakly-open sets in topological spaces, International Journal of Innovative Technology and Exploring Engineering (IJITEE), 37 (1) (2016), 36–43.
- 16. S. Mishra and M. Aaliya, Applications of Topology in Science and Technology, International Journal of Research and Analytical Reviews, 5 (4) (2018), 101–104.
- 17. T. M. Al-shami, H. Isik, A. S. Nawar and R. A. Hosny, Some topological approaches for generalized rough sets via ideals, Math. Prob. Eng., (2011), 1–11.
- T. M. Al-Shami, Supra semi-open sets and some applications on topological spaces, Journal of Advanced Studies in Topology, 8 (2017), 144–153.

Chuleshwar Patel,

Department of Mathematics,

 $Govt.\ J.\ Y.\ Chhattisgarh\ College\ Raipur\ (C.G.) \hbox{-} 492001,\ India.$

 $E ext{-}mail\ address: } {\it chuleshwarpatel1010@gmail.com}$

and

Purushottam Jha,

Govt. Naveen College Komakhan, Dist.-Mahasamund (C.G.)-493449, India.

 $E\text{-}mail\ address: \verb"purush.jha@gmail.com"$

and

Manju Verma,

Department of Mathematics,

Govt. J. Y. Chhattisgarh College Raipur (C.G.)-492001, India.

 $E ext{-}mail\ address: mvmanjuverma28@gmail.com}$