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Chaotic Asymptotic in Solutions of the Conformable Fractional Hyperbolic Heat Transfer
Equation

M. Charafi, E. Nafia, A. Taqbibt∗ and M. El omari

abstract: We study for the first time in the literature on the subject, the chaotic behavior of the β-
semigroup associated with the solution of the Cauchy problem for a hyperbolic conformal fractional heat
equation.
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1. Introduction

Chaos is commonly associated with nonlinear phenomena, but it can also manifest in linear dynamical
systems when the underlying space is infinite-dimensional. The study of chaos in finite-dimensional
dynamical systems, encompassing discrete maps and ordinary differential equations, has seen significant
development, resulting in crucial applications in physics, biology, chemistry, and engineering. Despite
this progress, there was a prolonged absence of a chaos theory for fractional partial differential equation,
which are fundamental in describing many significant natural phenomena in many applications. Various
definitions of fractional derivatives have been introduced, including the Caputo and Riemann-Liouville
definitions. For more information, we refer readers to the books [3,4]. The complexity of these definitions
presents an unfortunate obstacle when it comes to real models. Nevertheless, a novel definition of the
fractional derivative, called the conformable fractional derivative, has been introduced in [2]. This new
derivative is simple and verifies all the properties of the usual derivative. Furthermore, it has a various
advantage over other fractional derivatives in several aspects.

The study of β-semigroups introduced in [1] has been largely identified with fractional partial dif-
ferential equations of parabolic and hyperbolic types involving conformable derivatives. It is now well-
established that solutions to these equations can be expressed in termes of β-semigroups. These semi-
groups enable the resolution of the abstract Cauchy problem corresponding to a broader framework.

In this paper, we provide a new perspective on the chaotic bihavior of any β-semigroup which is
the solution of a certain class of fractional partial differential equations with conformable derivatives,
considering both Devaney and distributional chaos. The investigation will be conducted on Herzog type
spaces, as detailed in [5]. Herzog’s findings were subsequently refined in [6]. These spaces comprise
analytic functions regulated by a parameter, facilitating control over their growth at infinity. Initially
introduced for exploring the universality of solution operators for the heat equation, these spaces were
the subject of examination by Chan and Shapiro in [8]. They explored the dynamics of the translation
operator within spaces of analytic functions exhibiting slow growth, providing characterizations for when
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the derivative operator is bounded in these settings. Given that the derivative operator serves as the
infinitesimal generator of the translation semigroup, it follows that the translation semigroup is uniformly
continuous, and all its operators can be derived using the exponential formula, as elucidated in [9, Th.
3.7]. Noteworthy constructions and counterexamples have been presented within specific subspaces of
analytic functions, as demonstrated in [10,11,12]. Godefroy and Shapiro also addressed the dynamics of
shift operators within Hardy and Bergman spaces, as discussed in [7].

Our findings reveal a compelling interplay between chaos and stability, delineated by a critical pa-
rameter contingent on the specific equation under consideration. We derive precise conditions, incorpo-
rating both the equation’s coefficients and the tuner, highlighting a noteworthy phenomenon seemingly
connected to the tuning parameter’s dependence within the underlying Herzog space. A comparable
examination of the dichotomy between chaos and stability can be observed in [14,13].

This article is organized as follows: In Section 2, we revisit the definitions and tools needed to state
the main result. More precisely, we present a useful spectral criterion for determining Devaney chaos in
β-semigroups. Section 3 presents our main results (Theorem 3 and Theorem 4), which assert that the
heat and wave equations admit chaos

2. Preliminairies

In this section, we give some notations, definitions and results on the conformable derivative and
β-semigroup.

Definition 2.1 [2] Given a function f : [0, ∞) → R. Then the conformable fracfional derivative of f
of order β is defined by

dβf(t) = lim
ϵ→0

f(t+ ϵt1−β)− f(t)

ϵ

for all t > 0, β ∈ (0, 1). If is β-differentiable in some (0, a), a > 0, and lim
t→0+

dβf(t) exists, then define

dβf(0) = lim
t→0

f (β)(t).

The conformable derivative satisfies all the classical properties of derivative. Further, according to this
derivative, the following statements are true, see

Proposition 2.1 [2] Let β ∈ (0, 1). Then

1. dβ(tp) = ptp−β for all p ∈ R,

2. dβ(sin
1

β
tβ) = cos

1

β
tβ ,

3. dβ(cos
1

β
tβ) = − sin

1

β
tβ ,

4. dβ(e
1
β tβ ) = e

1
β tβ

The β-fractional integral of a function f starting from a ≥ 0, see

Iaβ(f)(t) = Ia1 (t
β−1f) =

∫ t

a

f(x)

x1−β
dx,

where the integral is the usual Riemann improper integral, and β ∈ (0, 1). For more about higher
conformable fractional integrals and derivatives in left and right senses and other basic concepts we refer
to [2].

In [1], the authors gave a definition of fractional semigroups of operators associated with the con-
formable fractional derivative,
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Definition 2.2 [1] Let β ∈ (0, a] for any a > 0. For a Banach space X. A family {Tβ(t)}t≥0 ⊆ L(X,X)
is called a fractional β-semigroup or β-semigroup of operators if:

(i) Tβ(0) = I,

(ii) Tβ(s+ t)
1
β = Tβ(s

1
β )Tβ(t

1
β ) for all s, t ∈ [0,∞).

Definition 2.3 [1] An β-semigroup Tβ(t) is called a c0-semigroup if, for each fixed x ∈ X,Tβ(t)x → x
as t→ 0+.

The conformable β-derivative of Tβ(t) at t = 0 is called the β-infinitesimal generator of the fractional
β-semigroup Tβ(t), with domain equals{

x ∈ X : lim
t→0+

dβTβ(t)x exists

}
.

We will write A for such generator.

Theorem 2.1 [15] Let X be an infinite-dimensional separable Banach space. Suppose that the sets

X0 = Span

{
x ∈ X, ∃λ > 0, Tβ(t)x = eλ

tβ

β x, ∀t ≥ 0

}

X1 = Span

{
x ∈ X, ∃λ < 0, Tβ(t)x = eλ

tβ

β x, ∀t ≥ 0

}
Xp = Span

{
x ∈ X, ∃λ ∈ Q, Tβ(t)x = eπλi

tβ

β x, ∀t ≥ 0

}
.

are dense in X, then (Tβ(t))t≥0 is chaotic.

3. Mains results

3.1. The hyperbolic heat transfer equation with conformable derivatives

In this section, we will study the chaotic behavior of fractional partial heat transfer equations of
hyperbolic types involving conformable derivatives (FPHEHC) with respect to both time and space, such
as the following 

τd2βt u(t, x) + dβt u(t, x) = δd2βx u(t, x)

u(0, x) = ϕ1(x)

dβt u(0, x) = ϕ2(x).

(3.1)

Here, d2βu = dβ(dβu), where dβ is the conformable fracfional derivative of order β, δ, τ two real numbers.
Let ρ > 0. Consider the space

Fρ,β =

{
ϕ : R+ → R, x→

∞∑
n=0

an
βnn!

(xρ)nβ , (an) ∈ c0(N)

}
.

endowed with the norm
∥ϕ∥β = sup

n∈N
sup
x≥0

ρ−nβ e−ρα |x|α
α |∂nβϕ(x)|.

Lemma 3.1 (Fρ,β , ∥.∥β) is a Banach space.

Proof: Observe that
∣∣∣ an

βnn! (xρ)
nβ

∣∣∣ = On→∞( (xρ)
nβ

βnn! ), which implies the result. 2

Theorem 3.1 The spaces (Fρ,β , ∥.∥β) and (c0(N), ∥.∥∞) are isometrically isomorphic.
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Proof: For each (an) ∈ c0(N), we have

∥an∥∞ = sup
n
ρ−nβ∂nβϕ(0) ≤ sup

n
sup
x
ρ−nβe−ρα |x|α

α ∂nβϕ(x)| ≤ ∥an∥∞.

2

Corollary 3.1 The topological dual of Fρ,β is isometrically isomorphic to ℓ1.

Proof: We know that the space Fρ,β is isometrically isomorphic to c0(N). Therefore, the topological
dual of Fρ,β is isometrically isomorphic to the dual of c0(N), which is ℓ1. Hence, the topological dual of
Fρ,β is isometrically isomorphic to ℓ1. 2

This space is a Banach space of analytic functions, densely embedded in C(R) with the topology of
uniform convergence on compact sets of R, as it encompasses all polynomials. Essentially, Fρ,β represents
a space of analytic functions with controlled growth extending to infinity. In fact, the pair (Fρ,β , ∥.∥β) is
isometrically isomorphic to (c0(N), ∥.∥∞).

Theorem 3.2 The solution β-semigroup
{
e

tβ

β A
}
t≥0

of is chaotic on Fρ,β ⊕Fρ,β for each ρ >

√
λ(1+τλ)

βδ1/2
.

Proof:
The solution β-semigroup to the FPHEHC of the form given in (3.1) can be expressed in terms

of its β-infinitesimal generator A. To do this, by setting u1 := u, and u2 := ut we arrive at the
associated conformable derivative equation: The FPHEHC’s solution semigroup, as outlined in (3.1),

can be represented using its β-infinitesimal generator A. This involves defining u1 as u and u2 as dβt u,

leading to the corresponding fractional equation. Puting V =

(
u

dβt u

)
. Then, we get

dβt V = AV. (3.2)

With A =

(
0 I

δ
τ d

2β
x

−1
τ I

)
.

To apply the eigenvalue criterion, let’s look for the eigenvectors of A. For this, let

X =

(
ψ1

ψ2

)
be a eigenvector associated to the eigenvalue λ ∈ R. We get

AX = λX ⇔

{
φ2 = λφ1

δ
τ d

2β
x ψ1 − 1

τ ψ2 = λψ2

.

Implies that

δ

τ
d2βx ψ1 −

(
λ

τ
+ λ2

)
ψ1 = 0.

Now write ψ1 =
∑

n∈N
an

βnn!x
nβ , we obtaind

δ

τ
an+2 −

(
λ

τ
+ λ2

)
an = 0.
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Then,

a2n+1 = a1R
n
λ and an = a0R

n
λ,

where Rλ = λ( 1+τλ
δ ). We define

φ1,λ,a0,a1
(x) = a0

∑
n≤0

(Rλ)
nx2n

β2n(2n)!
+ a1

∑
n≤0

(Rλ)
nx2n+1

β2n+1(2n+ 1)!
,

Clearly, this function is in Fρ,β for all λ in, say, certain open disc of radius r centered at zero. If we set

fλ,a0,a1
=

(
φ1,λ,a0,a1

, λφ1,λ,a0,a1

)⊺
.

Then, we have

e
tβ

β Gφ1 = eλ
tβ

β φ1,

for all t ≥ 0. So that, if we prove that the sets

F0 := span
{
fλ,a0,a1 : 0 < λ < r, a0, a1 ∈ R

}
F1 := span

{
fλ,a0,a1 : −r < λ < 0, a0, a1 ∈ R

}
Fp := span

{
fλ,a0,a1 : λ ∈ πiQ, |λ| < r, a0, a1 ∈ R

}
are dense in Fρ,β ⊕ Fρ,β , then the eigenvalue criterion asserts that the C0-semigroup generated by A is
chaotic on Fρ,β ⊕Fρ,β .

Since F0,F1,Fp are linear subspaces of Fρ,β , it suffices to prove that they are weakly dense, that is:
given f ∈ F∗

ρ,β ⊕F∗
ρ,β , if ⟨y, f⟩ = 0 for all y ∈ F (where F is either F0,F1 or Fp ) then necessarily f = 0.

In other words, given g = ((ρn)n , (ζn)n) ∈ ℓ1 ⊕ ℓ1, if

a0
∑
n≥0

Rn
λρ2n + a1

∑
n≥0

Rn
λρ2n+1 + λa0

∑
n≥0

Rn
λζ2n + λa1

∑
n≥0

Rn
λζ2n+1 = 0, (3.3)

for all a0, a1 ∈ R and for all 0 < λ < r (respectively −r < λ < 0, µ = πiq with q ∈ Q and |λ| < r), then
ρn = ζn = 0 for all n ≥ 0. Indeed, set h(λ) as the left part of (3.3). Then h(λ) is an entire function that
vanishes on a subset of C with an accumulation point. Therefore, all coefficients of its power series should
be 0 . The independent coefficient is a0ρ0 + a1ρ1, and this should be zero for any choice of a0, a1 ∈ R,
therefore

ρ0 = ρ1 = 0.

Now, if λ = −1
τ , then Rλ = 0 and we have

a0ζ0 + a1ζ1 = 0,

for all a0, a1 ∈ R. This yields
ζ0 = ζ1 = σ0 = σ1 = 0.

Suppose that all ρ0 = · · · = ρ2n−1 = 0, ζ0 = · · · = ζ2n−1 = 0. If we divide h(λ) by Rn
λ then we obtain

an entire function that vanishes on a set with an accumulation point. Therefore, all its coefficients should
be 0. The independent coefficient is a0ρ2n+a1ρ2n+1 with a0, a1 ∈ R. A similar argument as before yields

ρ2n = ρ2n+1 = 0.

Finally, taking λ = −1
τ we get

a0ζ2n + a1ζ2n+1 = 0,
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for any choice of a0, a1, and then

ζ2n = ζ2n+1 = 0.

If we consider Fρ,β just as the corresponding space containing only the real sequences, the hyper-

cyclicity of

{
e

tβ

β A

}
t≥0

can be deduced on Fρ,β ⊕Fρ,β . with a similar proof, avoiding the part of proving

the density of Fρ,β . According to Thoerem 2.1, then

{
e

tβ

β A

}
t≥0

is chaotic.

2

3.2. Conformable fractional wave equation

The conformable fractional wave equation can be expressed mathematically as follows:
d2βt u(t, x) = δd2βx u(t, x)

u(0, x) = ϕ1(x)

dβt u(0, x) = ϕ2(x).

(3.4)

Here, δ represents the square of the wave propagation speed. The system can be represented by

dβt V = AV. (3.5)

With V =

(
u

dβt u

)
and

A =

(
0 I

δd2βx 0

)
.

Theorem 3.3 The solution β-semigroup
{
e

tβ

β A
}
t≥0

associated to A is chaotic on Fρ,β ⊕Fρ,β.

.

Proof: The proof follows the same steps as Theorem 3.2, but in this case, Rλ = λ2

α . For λ = 0, we have
a0ρ0 + a1ρ1 = 0 for any choice of a0, a1 ∈ R, implying

ρ0 = ρ1 = 0.

Dividing by λ results in a0ζ0 + a1ζ1 = 0 for all a0, a1 ∈ R, leading to

ζ0 = ζ1 = 0.

Inductively, assuming ρ0 = · · · = ρ2n?1 = ζ0 = · · · = ζ2n?1 = 0, dividing h(λ) by λ2n gives a0ρ2n +
a1ρ2n+1 = 0 for every a0, a1 ∈ R, resulting in

ρ2n = ρ2n+1 = 0.

Similarly, we obtain

ζ2n = ζ2n+1 = 0.

2



Chaotic Asymptotic in Solutions of the Conformable Fractional heat Equation 7

4. Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Author Contributions All authors contributed aqually to consctruct this work.

Data availability The data used to support the findings of this study are included in the references
within the article.

Acknowledgement The authors would like to express their sincere apreciation to the referees for
their very helpful suggestions and many kind comments.

Funding Not applicable.

References

1. A. Thabet, M. Al Horani, K. Roshdi, Conformable fractional semigroups of operators. J. Semigroup Theory Appl.,
2015(7), 2015

2. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. Journal of computational
and applied mathematics, 264, 65-70, 2014

3. I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, San Diego: Academic Press,
Inc.,198, 1999

4. A.A. Kilbas, H.M. Srivastava, J.T. Trujillo, Theory and applications of fractional differential equations, North-Holland
Mathematics Studies , Amsterdam: Elsevier, 204, 2006

5. G. Herzog, On a universality of the heat equation, Math. Nachr., 188, 169-171, 1997

6. R. Laubenfels, H. Emamirad, K.G. Grosse-Erdmann, Chaos for semigroups of unbounded operators, Math. Nachr.,
261/262, 47-59, 2003

7. G. Godefroy, J.H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal., 98(2), 229-269,
1991

8. K.C. Chan, J.H. Shapiro, The cyclic behavior of translation operators on Hilbert spaces of entire functions, Indiana
Univ. Math. J., 40(4), 1421-1449, 1991

9. K.J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., SpringerVerlag,
New York, 194, 2000

10. F. Bayart, Dynamics of holomorphic groups, Semigroup Forum, 82(2), 229-241, 2011

11. S. Shkarin, A hypercyclic finite rank perturbation of a unitary operator, Math. Ann., 348(2), 379-393, 2010
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