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On Cangul Stress Energy of Graphs

P. Somashekar, Howida Adel AlFran, P. Siva Kota Reddy*, M. Kirankumar and M. Pavithra

ABSTRACT: In this article, we introduce the Cangul stress matrix CSM(G) for a connected graph G, which
is associated with the Cangul stress index. We investigate the properties of this matrix, establish bounds
on its eigenvalues, and define the Cangul stress energy Fcgsn(G) as the sum of the absolute values of the
eigenvalues. Furthermore, we examine its potential relevance in chemistry by comparing Ecsas(G) with the
m-electron energy of benzene derivatives.
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1. Introduction

In this article, we will be focusing on finite, unweighted, simple, and undirected graphs. Let G = (V, E)
denote a graph. The degree of a vertex v in G is denoted by d(v). The distance between two vertices u
and v in G, denoted d(u,v), is the number of edges in the shortest path (or geodesic) connecting them. A
geodesic path P is said to pass through a vertex v if v is an internal vertex of P, meaning v lies on P but
is not an endpoint of P. For standard terminology and notion in graph theory, we follow the text-book
of Harary [8].

Gutman [6] defined the energy of a graph G as the sum of the absolute values of its eigenvalues, denoted
by £(G). Eigenvalues are crucial in understanding graphs because they relate closely to almost every
major graph invariant and extreme property. Consequently, graph energy, a specific type of matrix norm,
has attracted attention from both pure and applied mathematicians. Spectral graph theory focuses on
matrices associated with graphs, including their eigenvalues and energies, and is vital for analyzing graph
matrices through matrix theory and linear algebra. Graph energy provides valuable insights into various
structural and dynamic properties of graphs. It is a measure that captures the collective influence of
a graph’s eigenvalues, linking to diverse applications from chemical graph theory to network analysis.
Different graph energies associated with topological indices have been introduced and extensively studied
in the literature, highlighting their significance in understanding complex systems. There are several
matrices that can be associated with a graph, and their spectrums offer some useful insights about the
graph (See for example [1,3,5,7,9-12,16,18-21,29,33]).

In 1953, Alfonso Shimbel [30] introduced the notion of vertex stress for graphs as a centrality measure.
Stress of a vertex v in a graph G is the number of shortest paths (geodesics) passing through v. This
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concept has many applications including the study of biological and social networks. A number of
authors have defined and examined numerous stress-related concepts in graphs and topological indices
(See [2,14,15,17,22-28,31,32]). A graph G is k-stress regular [4] if str(v) = k for all v € V(G). The
stress-sum index SS(G) [23] of a graph G(V, E) is defined by

SS(G)= > [str(u)+ str(v)].
weE(G)
The second stress index S2(G) [24] of a graph G(V, E) is defined by
S2(G) = Z str(u)str(v).
w€eE(G)
The Cangul stress index C'S(G) [31] of a graph G is defined as
CS(G) = Z [str(u) + str(v)] str(u)str(v).
weE(G)

By the motivation of Cangul stress index, in this paper, we present the Cangul stress matrix for a graph
G and define the Cangul stress energy Fcgsa (G) based on its eigenvalues. This novel approach broadens
the concept of graph energy by integrating stress-related measures, providing a new perspective on graph
invariants. We establish bounds for Ecgp(G) in relation to other graph invariants and investigate the
relationship between the Cangul stress energy of benzenoid hydrocarbons and their corresponding -
electron energy. This study aims to enhance our understanding of graph energy and its implications for
molecular and structural analysis.

2. Cangul Stress Matrix and Energy
The Cangul stress matrix of a graph G with V(G) = {v1,vs, -+ ,v,} is defined as CSM(G) = (z4;),

where

_ [str(vi) + st (vg)]str (vi) str(vy), i vy € BE(G);
Tig = 0, otherwise .

The Cangul stress polynomial of a graph G is defined as
Posy(G) = |M— CSM(G)],

where I is an n X n unit matrix.

All roots of the equation Pogpr(G) = 0 are real since the matrix CSM(G) is both real and symmetric.
Consequently, these roots can be arranged in descending order as ¢s, > ¢g, > - -+ > cs, , Where ¢,, denotes
the largest eigenvalue and cg,, represents the smallest eigenvalue.

The Cangul stress energy Ecsn (G) of a graph G is defined by

Ecsmu(G) = Z les, |-
=1

3. Preliminary Results
In this section, we will document the necessary results to support our main findings in section 4.

Theorem 3.1 Let ¢; and d;, for 1 < i <mn, be non-negative real numbers. Then

St (Vi i) (5e)

where My = max {ci}; My = Jmax, {d;};m1 = in, {¢i;} and my = 1I§nz'1£n {d;}.
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Theorem 3.2 Let ¢; and d;, for 1 <1i < n be positive real numbers. Then

Theorem 3.3 (BPR Inequality) Let ¢; and d;, forl < i < n be non-negative real numbers. Then

n n n
n E Cidi — E C; E dz
i=1 i=1 =1

where a,b, A and B are real constants, that for each i,1 < i <n,a <c¢; < A and b < d; < B. Further,

a(n) =n (3] (1- 1 3]).

< a(n)(A—a)(B-b),

Theorem 3.4 (Diaz—Metcalf Inequality) If ¢; and d;,1 < i < n, are nonnegative real numbers. Then

St soy it < o) (e
=1
where r and R are real constcmts, so that for each 1,1 <i<mn, holds rc; < d; < Rc;.

Theorem 3.5 (The Cauchy-Schwarz inequality) If ¢ = (¢1,¢2,...,¢,) and d = (d1,ds, ..., d,) are real

n-vectors, then
n 2 n n
() =(54) (3%,
i=1 i=1 i=1

4. Bounds for the Cangul Stress Eigenvalues and Energy

Lemma 4.1 Let ¢, > 5, > ... > c5, be the eigenvalues of the Cangul stress matrix CSM(G). Then

[()]
1. icsi =0
i=1

n

2.y e =2 Z [(str (v;) + str (v;))(str (v;) str (v;))]? = 2C,

where C = Z [(str (vi) + str (v;))(str (v;) str (v))].

Proof: i) The first equality is a direct consequence of CSM(G);; =0 for all 1,2,... n.
ii) We have

n

Z 2. = trace[CSM(G))?

Z [(str (v;) + str (v)))(str (v;) str (v;))]

=2 > [(str(vi) + str (v;))(str (v;) str (v;))]?
1<i<j<n

= 2C.

M:
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Lemma 4.2 If a,b,c and d are real numbers, then the determinant of the form
()\+a) Inxn *at]nxn *CJnXm,

= A +a)" T A+ (A= (n—=1)a) (A — (m —1)b) — mned).
Theorem 4.1 If K, ,, is a complete bipartite graph, then the characteristic polynomial is given by

Pesn(Kpp) = AN"72 [V - % (n2m(n — 1)2(m — 1) + nm2(n — 1)(m — 1)2)} .

Proof: In a complete bipartite graph K, ,, the vertex set V (K,, ) can be partitioned into two disjoint
sets A = {uy,usg, ..., U} and B = {v1,va, ..., v, }. The stress of any vertex v in K,, ,, is given by

n(n—1) .
str(v) = { 2 ifved

mm=) ifveB

Hence,
CSM (K, n)=

n(n—1) m(m—1) (n(n—1)) m(m—1)
O [ 2 =+ 2 :| ( P) 2 ) Imxn

n(n271) 4 m(n;m} ((n(n;n) m(rgfl)) Jm 0,

PCSJ\/I(Km,n) = |/\I - CSM(Km,n)| .

Thus we have,
PCSM(Km,n) -

n(n—1 m(m—1 n(n—1)) m(m—1
N [t 4 o] (et menn) g

(n=1) . m(m=1) | ((n(n=1)) m(m=1) ’
nn2 + l?”;, :|(nn2 l?”;, )Jnxm /\In

where I, is the identity matrix of order r x r, 0,, is the zero matrix of order m x m, and J,,xn is the
m X n matrix with all entries equal to 1.

Thus, by applying Lemma 4.2, we obtain the desired result.
O

Theorem 4.2 The characteristic polynomial of fan graph F, on 2n + 1 vertices and star graph S, on
n + 1 vertices are \2" 1 and A"t respectively.

Proof: In F, graph, the stress of central vertex is 2n (n — 1) and remaining 2n vertices have stress 0.

Therefore CSM (F,,) = [0](2n+1)><(2n+1) :

The characteristic polynomial of the above matrix is given by A2"+1.

. —1 o« . .
In S,, graph, the stress of common vertex is % and remaining n vertices have stress 0. There-

fore CSM (Sn) = [0](;,41)x (nt1)- The characteristic polynomial of the above matrix is given by AL
O

Theorem 4.3 Let G be any graph with n-vertices. Then

2O)(n—1).

n

Csy <
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Proof:
Setting ¢; = 1,d; = c¢s,, for i =2,3,...,n in Theorem 3.5, we have
n 2 n
<chi> <(n-1)) e, (4.1)
i=2 i=2

From Lemma 4.1, we find that

n n
E cs; = —Cs, and g 2 =—ci +2C.
i=2 i=2

Employing the above in (4.1), we obtain

(7681)2 < (n - 1) (2(: - Cgl)

0)(n—1) 0

Cs; < .

Theorem 4.4 Let G be any graph with n-vertices. Then

ECSM(G) S \/ (2@)71

Proof: Choosing ¢; = 1,d; = |cs,|, for i = 2,3,...,n in Theorem 3.5, we get

n 2 n
(2 |cs,.,|> <n) ¢
=1

=1

- (ECSM(G))2 < n(2C)

O
— ECSM(G) < n(Q(C)
Theorem 4.5 If G is a graph with n vertices and Ecsa(G) be the cangul stress energy of G, then
Proof: By the definition of Ecgn(G), we have
n 2 n
[Eosm(G))” = (Z ICsi> > les,|* =2C.
i=1 i=1
- VQ(CSECSM(G). -

Theorem 4.6 Let G be any graph with n-vertices and ® be the absolute value of the determinant of the
cangul stress matrix CSM(G). Then

V(20) + n(n — )82/ < Ecsa ().
Proof: By the definition of cangul stress energy, we find that
n 2 n
(Besm(G))* = <Z [ ) =D s P42 e,
i=1 i=1

i<y
=(20)+)_les,

i#]

Cs, |

Cs; -
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Since for non-negative numbers, the Arithmetic mean is greater than Geometric mean, we have

V

. oD
s el 2 (ch& ool

I
< N
Il 3
a E
R
N
~
3
|
=
v
3
3
I

Therefore,

Z cs, csj| >n(n— 1)<I>%

oy
= [Bcsm(G))? > 2C +n(n — 1)/

= Ecsm(G) > \/ZC +n(n —1)®2/n,

Equality in AM-GM inequality is attained if and only if all ¢g,;4 =1,2,...,n are equal.
Lemma 4.3 Let c1,co,...,c, be non-negative numbers. Then

1/n

n iZci—<Hci> SnZCi—<Z\/a> <n(n-1) iZci—<Hci>
i=1 i=1 i=1 i=1 i=1 i=1

Theorem 4.7 Let G be a connected graph with n vertices. Then

V(20) 4 n(n — 1)@2/n <

ECSI\/I(G) < \/(2@)(% — 1) + nd2/n,

1/n
2)

Proof: Let ¢; = |eg,|?,i=1,2,...,n and

n

V=n %Z|csi

i=1

- <ﬁ |Csi
L i=1
_(Q(C) n 2/n
S|l

_ .29 q)z/n]

(2C) — n®?/™,

By Lemma 4.3, we obtain

n n 2
V§n203i|2_<zcsi> S(n_l)v
i=1 i=1
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Upon simplification of the above equation, we find that

\/(20) + n(n — )@2/n <

Theorem 4.8 Let G be a graph of order n. Then

2
Eosu(G) > \/ (2C)n — ”Z (Csy — Comin)’s

s

where Cs; = Csmax = lrg%xn {les, |} and ¢smin = lrgniign {les,

Proof: Suppose cs,,Cs,, .. ., Cs, are the eigenvalues of CSM(G). We choose ¢; = 1 and d; = |cs, |, which
by Theorem 3.2 implies

n 2 9
Z 12 Z ‘CSL (Z cSi|> S % (Csl — Cs min)2

i=1 =1

n2

i.e., (2C)Tl — (ECSM(G))2 < Z (Csl — Cg min)2

n2
- ECS’]V[(G) 2 \/(2C)n - Z (Csl — Cs min)2~
Theorem 4.9 Suppose zero is not an eigenvalue of CSM(G), then
2,/Cs; Csminy/ (2C)n
Csy + Cs min

} and comin = mini<;<n {|cs,

Ecsm(G) >

)

1.

where Cs; = Csmax = MaXi<i<n {|Cs;

Proof: Suppose cq,,Cs,, - .., Cs, are the eigenvalues of CSM(G).
Setting ¢; = |cs,| and d; = 1 in Theorem 3.1, we have
D les

= i (o) (Zm,

ie., (2C)n i ((%ﬁ-cémm)> (Bcsm(G))?

Cs; Cs min

n

)

2,/Cs; Csminy/ (2C)n 0
Csq + Cs min

Theorem 4.10 Let G be a graph of order n and cs, > csy, > ... > cs, be the non zero eigenvalues of

CSM(G). Then

= FEcsu(G) >

(2((:) + ncsl Cs min

Csq + Cs min

Ecsm(G)

%

)

where cs; = Csmax = 1Igza<x {les; |} and csmin = 1IS1111'1 {les; |}

,¢i =1, R =|cs,| and 7 = |¢s min| in Theorem 3.4, we get

2
E |cs, +Cslcsmmg 1% < (¢s; + Csmin) E |cs,

(2((:) + NCg, Cs min < (Csl + Cs min) EC’S]M(G)-

Proof: Assigning d; = |cs,

After simplifying and using the definition of Ecgas(G), we obtain

(Q(C) + NCsy Cs min O

E G) >
CSM( ) o Csq + Cs min
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Theorem 4.11 Let G be a graph of order n and cs, > cs, > ... > ¢s, be the eigenvalues of CSM(G).
Then

Eosu(G) > /(2C)n — a(n) (co, — comin)®s

where cs;, = Csmax = Jnax. {les; |} and csmin = 11511%1” {lcs,|} and a(n) =n 2] (1 -

[51)-

S|

Proof: Setting ¢; = |cs,

=d;, A <|es,| < Band a <|cs,| <bin Theorem 3.3, we get

2
n n
WS el - (z o ) < o) e, — comn?
=1 =1

|20 — (Bosu(G))?] < aln) (es, = comin)®

Eosu(G) > 1/ (2C)n — a(n) (co, — comin)™- :

5. Chemical Applicability of Fcsy (G)

In this section, we conduct a computational analysis of the cangul stress energy Ecsy (G) and the
m-electron energy of benzene derivatives. We investigate both power and logarithmic regression models
to accommodate the nonlinear trends often present in real-world data. These adaptable methods allow
researchers to identify the optimal fit for their specific datasets. Additionally, this section emphasizes the
significance of Cangul stress energy in the formulation of power and logarithmic regression models aimed
at assessing properties such as m-electron energy.

The regression models tested are as follows:
Power equation:

Y = AXE

Logarithmic equation:
Y = A+ Blog(X)

Here, Y is the dependent variable, A is the regression constant, and B is the regression coefficient for the
independent variable X.

Pi-Electron Energy = 3.8928(CSM(G)°-117
r’=0.9512

Pi-Electron Energy

0 50000000 100000000 150000000 200000000

CSM(G)
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Table 1: Cangul Stress Energy and m-Electron Energy of Derivatives of Benzene

Derivatives of benzene Ecsm(G) m-electron energy
Benzene 432 8
Naphthalene 62305.07 13.683
Phenanthrene 1163588.90 19.448
Anthracene 1166559.36 19.314
Chrysene 12586044.99 25.192
Benzo[a]anthracene 11161172.27 25.10
Triphenylene 7000231.56 25.275
Tetracene 10687271.67 25.188
Benzo[a]pyrene 22238320.76 28.222
Benzole|pyrene 14395343.35 28.336
Perylene 14449828.65 28.245
Anthanthrene 40433942.11 31.253
Benzolghi]perylene 29168140.40 31.425
Dibenz[a,clanthracene  42361213.334 30.492
Dibenz[a,h]anthracene ~ 95641465.76 30.881
Dibenz[a,jJanthracene  50735054.62 30.88
Picene 111629104.23 30.943
Coronene 57042939.35 34.572
Dibenzola,h]pyrene 141956248.66 33.928
Dibenzola,i]pyrene 158846656.55 33.954
Dibenzola,l]pyrene 66257730.30 34.031
Pyrene 2683098.75 22.506

Table 2: The correlation coefficient r from power and logarithmic regression models between Cangul
stress energy and 7 electron energy

Model Correlation Coefficient r
Power 0.975
logarithmic 0.958

Pi-Electron Energy = 2.2588 In(CSM(G)) - 9.5389

r?=0.918
40
. oo °..9°
@ @ @..oeeereeeenemmt T
30 | e 9.0 B
LR

&
o 25 ..0.
< s
w
£ b
£
(8]
2
w 15
= @

10

®
5
0
0 50000000 100000000 150000000 200000000

CSM(G)
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6. Conclusion

This study presents Cangul stress energy as a promising predictor of m-electron energy in chemical

compounds. Understanding m-electron energy is essential for explaining the stability and reactivity of
benzene derivatives. By employing regression models, we assess the predictive relationship between
Cangul stress energy and m-electron energy.
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