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On Cangul Stress Energy of Graphs

P. Somashekar, Howida Adel AlFran, P. Siva Kota Reddy∗, M. Kirankumar and M. Pavithra

abstract: In this article, we introduce the Cangul stress matrix CSM(G) for a connected graph G, which
is associated with the Cangul stress index. We investigate the properties of this matrix, establish bounds
on its eigenvalues, and define the Cangul stress energy ECSM (G) as the sum of the absolute values of the
eigenvalues. Furthermore, we examine its potential relevance in chemistry by comparing ECSM (G) with the
π-electron energy of benzene derivatives.
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1. Introduction

In this article, we will be focusing on finite, unweighted, simple, and undirected graphs. LetG = (V,E)
denote a graph. The degree of a vertex v in G is denoted by d(v). The distance between two vertices u
and v in G, denoted d(u, v), is the number of edges in the shortest path (or geodesic) connecting them. A
geodesic path P is said to pass through a vertex v if v is an internal vertex of P , meaning v lies on P but
is not an endpoint of P . For standard terminology and notion in graph theory, we follow the text-book
of Harary [8].

Gutman [6] defined the energy of a graph G as the sum of the absolute values of its eigenvalues, denoted
by E(G). Eigenvalues are crucial in understanding graphs because they relate closely to almost every
major graph invariant and extreme property. Consequently, graph energy, a specific type of matrix norm,
has attracted attention from both pure and applied mathematicians. Spectral graph theory focuses on
matrices associated with graphs, including their eigenvalues and energies, and is vital for analyzing graph
matrices through matrix theory and linear algebra. Graph energy provides valuable insights into various
structural and dynamic properties of graphs. It is a measure that captures the collective influence of
a graph’s eigenvalues, linking to diverse applications from chemical graph theory to network analysis.
Different graph energies associated with topological indices have been introduced and extensively studied
in the literature, highlighting their significance in understanding complex systems. There are several
matrices that can be associated with a graph, and their spectrums offer some useful insights about the
graph (See for example [1,3,5,7,9-12,16,18-21,29,33]).

In 1953, Alfonso Shimbel [30] introduced the notion of vertex stress for graphs as a centrality measure.
Stress of a vertex v in a graph G is the number of shortest paths (geodesics) passing through v. This
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concept has many applications including the study of biological and social networks. A number of
authors have defined and examined numerous stress-related concepts in graphs and topological indices
(See [2,14,15,17,22-28,31,32]). A graph G is k-stress regular [4] if str(v) = k for all v ∈ V (G). The
stress-sum index SS(G) [23] of a graph G(V,E) is defined by

SS(G) =
∑

uv∈E(G)

[str(u) + str(v)] .

The second stress index S2(G) [24] of a graph G(V,E) is defined by

S2(G) =
∑

uv∈E(G)

str(u)str(v).

The Cangul stress index CS(G) [31] of a graph G is defined as

CS(G) =
∑

uv∈E(G)

[str(u) + str(v)] str(u)str(v).

By the motivation of Cangul stress index, in this paper, we present the Cangul stress matrix for a graph
G and define the Cangul stress energy ECSM (G) based on its eigenvalues. This novel approach broadens
the concept of graph energy by integrating stress-related measures, providing a new perspective on graph
invariants. We establish bounds for ECSM (G) in relation to other graph invariants and investigate the
relationship between the Cangul stress energy of benzenoid hydrocarbons and their corresponding π-
electron energy. This study aims to enhance our understanding of graph energy and its implications for
molecular and structural analysis.

2. Cangul Stress Matrix and Energy

The Cangul stress matrix of a graph G with V (G) = {v1, v2, · · · , vn} is defined as CSM(G) = (xij),
where

xij =

{
[str (vi) + str (vj)]str (vi) str (vj) , if vivj ∈ E(G);

0, otherwise .

The Cangul stress polynomial of a graph G is defined as

PCSM (G) = |λI − CSM(G)|,

where I is an n× n unit matrix.

All roots of the equation PCSM (G) = 0 are real since the matrix CSM(G) is both real and symmetric.
Consequently, these roots can be arranged in descending order as cs1 ≥ cs2 ≥ · · · ≥ csn , where cs1 denotes
the largest eigenvalue and csn represents the smallest eigenvalue.

The Cangul stress energy ECSM (G) of a graph G is defined by

ECSM (G) =

n∑
i=1

|csi | .

3. Preliminary Results

In this section, we will document the necessary results to support our main findings in section 4.

Theorem 3.1 Let ci and di, for 1 ≤ i ≤ n, be non-negative real numbers. Then

n∑
i=1

c2i

n∑
i=1

d2i ≤ 1

4

(√
M1M2

m1m2
+

√
m1m2

M1M2

)2( n∑
i=1

cidi

)2

,

where M1 = max
1≤i≤n

{ci} ;M2 = max
1≤i≤n

{di} ;m1 = min
1≤i≤n

{ci} and m2 = min
1≤i≤n

{di}.
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Theorem 3.2 Let ci and di, for 1 ≤ i ≤ n be positive real numbers. Then

n∑
i=1

c2i

n∑
i=1

d2i −

(
n∑

i=1

cidi

)2

≤ n2

4
(M1M2 −m1m2)

2
,

where M1 = max
1≤i≤n

{ci} ;M2 = max
1≤i≤n

{di} ;m1 = min
1≤i≤n

{ci} and m2 = min
1≤i≤n

{di}.

Theorem 3.3 (BPR Inequality) Let ci and di, for1 ≤ i ≤ n be non-negative real numbers. Then∣∣∣∣∣n
n∑

i=1

cidi −
n∑

i=1

ci

n∑
i=1

di

∣∣∣∣∣ ≤ α(n)(A− a)(B − b),

where a, b, A and B are real constants, that for each i, 1 ≤ i ≤ n, a ≤ ci ≤ A and b ≤ di ≤ B. Further,
α(n) = n

⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
.

Theorem 3.4 (Diaz–Metcalf Inequality) If ci and di, 1 ≤ i ≤ n, are nonnegative real numbers. Then

n∑
i=1

d2i + rR

n∑
i=1

c2i ≤ (r +R)

(
n∑

i=1

cidi

)
,

where r and R are real constants, so that for each i, 1 ≤ i ≤ n, holds rci ≤ di ≤ Rci.

Theorem 3.5 (The Cauchy-Schwarz inequality) If c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) are real
n-vectors, then (

n∑
i=1

cidi

)2

≤

(
n∑

i=1

c2i

)(
n∑

i=1

d2i

)
.

4. Bounds for the Cangul Stress Eigenvalues and Energy

Lemma 4.1 Let cs1 ≥ cs2 ≥ . . . ≥ csn be the eigenvalues of the Cangul stress matrix CSM(G). Then

[(i)]

1.

n∑
i=1

csi = 0

2.

n∑
i=1

c2si = 2
∑

1≤i<j≤n

[(str (vi) + str (vj))(str (vi) str (vj))]
2 = 2C,

where C =
∑

1≤i<j≤n

[(str (vi) + str (vj))(str (vi) str (vj))]
2.

Proof: i) The first equality is a direct consequence of CSM(G)ii = 0 for all 1, 2, . . . , n.
ii) We have

n∑
i=1

c2si = trace[CSM(G)]2

=

n∑
i=1

n∑
j=1

[(str (vi) + str (vj))(str (vi) str (vj))]
2

= 2
∑

1≤i<j≤n

[(str (vi) + str (vj))(str (vi) str (vj))]
2

= 2C.
2
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Lemma 4.2 If a, b, c and d are real numbers, then the determinant of the form∣∣∣∣(λ+ a) In×n − aJn×n −cJn×m

−dJm×n (λ+ b) Im×m − bJm×m

∣∣∣∣
= (λ+ a)

n−1
(λ+ b)

m−1
[(λ− (n− 1) a) (λ− (m− 1) b)−mncd].

Theorem 4.1 If Km,n is a complete bipartite graph, then the characteristic polynomial is given by

PCSM (Km,n) = λm+n−2
[
λ2 − mn

8

(
n2m(n− 1)2(m− 1) + nm2(n− 1)(m− 1)2

)]
.

Proof: In a complete bipartite graph Km,n, the vertex set V (Km,n) can be partitioned into two disjoint
sets A = {u1, u2, ..., um} and B = {v1, v2, ..., vn}. The stress of any vertex v in Km,n is given by

str(v) =

{
n(n−1)

2 if v ∈ A
m(m−1)

2 if v ∈ B

Hence,
CSM (Km,n)= 0m

[
n(n−1)

2 + m(m−1)
2

] (
(n(n−1))

2
m(m−1)

2

)
Jm×n[

n(n−1)
2 + m(m−1)

2

] (
(n(n−1))

2
m(m−1)

2

)
Jn×m 0n

 .

PCSM (Km,n) = |λI − CSM(Km,n)| .

Thus we have,
PCSM (Km,n) =

∣∣∣∣∣∣ λIm −
[
n(n−1)

2 + m(m−1)
2

] (
(n(n−1))

2
m(m−1)

2

)
Jm×n

−
[
n(n−1)

2 + m(m−1)
2

] (
(n(n−1))

2
m(m−1)

2

)
Jn×m λIn

∣∣∣∣∣∣ ,
where Ir is the identity matrix of order r × r, 0m is the zero matrix of order m × m, and Jm×n is the
m× n matrix with all entries equal to 1.

Thus, by applying Lemma 4.2, we obtain the desired result.
2

Theorem 4.2 The characteristic polynomial of fan graph Fn on 2n + 1 vertices and star graph Sn on
n+ 1 vertices are λ2n+1 and λn+1 respectively.

Proof: In Fn graph, the stress of central vertex is 2n (n− 1) and remaining 2n vertices have stress 0.
Therefore CSM (Fn) = [0](2n+1)×(2n+1) .

The characteristic polynomial of the above matrix is given by λ2n+1.

In Sn graph, the stress of common vertex is n(n−1)
2 and remaining n vertices have stress 0. There-

fore CSM (Sn) = [0](n+1)×(n+1). The characteristic polynomial of the above matrix is given by λn+1.
2

Theorem 4.3 Let G be any graph with n-vertices. Then

cs1 ≤
√

(2C)(n− 1)

n
.
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Proof:
Setting ci = 1, di = csi , for i = 2, 3, . . . , n in Theorem 3.5, we have(

n∑
i=2

csi

)2

≤ (n− 1)

n∑
i=2

c2si . (4.1)

From Lemma 4.1, we find that

n∑
i=2

csi = −cs1 and

n∑
i=2

c2si = −c2s1 + 2C.

Employing the above in (4.1), we obtain

(−cs1)
2 ≤ (n− 1)

(
2C− c2s1

)
cs1 ≤

√
(2C)(n− 1)

n
.

2

Theorem 4.4 Let G be any graph with n-vertices. Then

ECSM (G) ≤
√
(2C)n.

Proof: Choosing ci = 1, di = |csi |, for i = 2, 3, . . . , n in Theorem 3.5, we get(
n∑

i=1

|csi |

)2

≤ n

n∑
i=1

c2si

=⇒ (ECSM (G))
2 ≤ n(2C)

=⇒ ECSM (G) ≤
√
n(2C).

2

Theorem 4.5 If G is a graph with n vertices and ECSM (G) be the cangul stress energy of G, then

√
2C ≤ ECSM (G).

Proof: By the definition of ECSM (G), we have

[ECSM (G)]
2
=

(
n∑

i=1

|csi |

)2

≥
n∑

i=1

|csi |
2
= 2C.

=⇒
√
2C ≤ ECSM (G). 2

Theorem 4.6 Let G be any graph with n-vertices and Φ be the absolute value of the determinant of the
cangul stress matrix CSM(G). Then√

(2C) + n(n− 1)Φ2/n ≤ ECSM (G).

Proof: By the definition of cangul stress energy, we find that

(ECSM (G))
2
=

(
n∑

i=1

|csi |

)2

=

n∑
i=1

|sλi
|2 + 2

∑
i<j

|csi ||csj |

= (2C) +
∑
i ̸=j

|csi ||csj |.
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Since for non-negative numbers, the Arithmetic mean is greater than Geometric mean, we have

1

n(n− 1)

∑
i ̸=j

|csi ||csj | ≥

∏
i ̸=j

|csi ||csj |

 1
n(n−1)

=

(
n∏

i=1

|csi |
2(n−1)

) 1
n(n−1)

=

n∏
i=1

|csi |
2/n

= Φ2/n.

Therefore, ∑
i̸=j

|csi |
∣∣csj ∣∣ ≥ n(n− 1)Φ

2
n

=⇒ [ECSM (G)]
2 ≥ 2C+ n(n− 1)Φ2/n

=⇒ ECSM (G) ≥
√

2C+ n(n− 1)Φ2/n.

Equality in AM-GM inequality is attained if and only if all csi ; i = 1, 2, . . . , n are equal. 2

Lemma 4.3 Let c1, c2, . . . , cn be non-negative numbers. Then

n

 1

n

n∑
i=1

ci −

(
n∏

i=1

ci

)1/n
 ≤ n

n∑
i=1

ci −

(
n∑

i=1

√
ci

)2

≤ n(n− 1)

 1

n

n∑
i=1

ci −

(
n∏

i=1

ci

)1/n
 .

Theorem 4.7 Let G be a connected graph with n vertices. Then√
(2C) + n(n− 1)Φ2/n ≤

ECSM (G) ≤
√
(2C)(n− 1) + nΦ2/n.

Proof: Let ci = |csi |
2
, i = 1, 2, . . . , n and

V = n

 1

n

n∑
i=1

|csi |
2 −

(
n∏

i=1

|csi |
2

)1/n


= n

 (2C)
n

−

(
n∏

i=1

|csi |

)2/n


= n

[
(2C)
n

− Φ2/n

]
= (2C)− nΦ2/n.

By Lemma 4.3, we obtain

V ≤ n

n∑
i=1

|csi |
2 −

(
n∑

i=1

|csi |

)2

≤ (n− 1)V.
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Upon simplification of the above equation, we find that√
(2C) + n(n− 1)Φ2/n ≤

ECSM (G) ≤
√
(2C)(n− 1) + nΦ2/n.

2

Theorem 4.8 Let G be a graph of order n. Then

ECSM (G) ≥
√
(2C)n− n2

4
(cs1 − csmin)

2
,

where cs1 = csmax = max
1≤i≤n

{|csi |} and csmin = min
1≤i≤n

{|csi |}.

Proof: Suppose cs1 , cs2 , . . . , csn are the eigenvalues of CSM(G). We choose ci = 1 and di = |csi |, which
by Theorem 3.2 implies

n∑
i=1

12
n∑

i=1

|csi |
2 −

(
n∑

i=1

|csi |

)2

≤ n2

4
(cs1 − csmin)

2

i.e., (2C)n− (ECSM (G))
2 ≤ n2

4
(cs1 − csmin)

2

=⇒ ECSM (G) ≥
√
(2C)n− n2

4
(cs1 − csmin)

2
.

2

Theorem 4.9 Suppose zero is not an eigenvalue of CSM(G), then

ECSM (G) ≥
2
√
cs1csmin

√
(2C)n

cs1 + csmin
,

where cs1 = csmax = max1≤i≤n {|csi |} and csmin = min1≤i≤n {|csi |}.

Proof: Suppose cs1 , cs2 , . . . , csn are the eigenvalues of CSM(G).
Setting ci = |csi | and di = 1 in Theorem 3.1, we have

n∑
i=1

|csi |
2

n∑
i=1

12 ≤ 1

4

(√
cs1

csmin
+

√
csmin

cs1

)2
(

n∑
i=1

|csi |

)2

i.e., (2C)n ≤ 1

4

(
(cs1 + csmin)

2

cs1csmin

)
(ECSM (G))

2

=⇒ ECSM (G) ≥
2
√
cs1csmin

√
(2C)n

cs1 + csmin
. 2

Theorem 4.10 Let G be a graph of order n and cs1 ≥ cs2 ≥ . . . ≥ csn be the non zero eigenvalues of
CSM(G). Then

ECSM (G) ≥ (2C) + ncs1csmin

cs1 + csmin
,

where cs1 = csmax = max
1≤i≤n

{|csi |} and csmin = min
1≤i≤n

{|csi |}.

Proof: Assigning di = |csi | , ci = 1, R = |cs1 | and r = |csmin| in Theorem 3.4, we get

n∑
i=1

|csi |
2
+ cs1csmin

n∑
i=1

12 ≤ (cs1 + csmin)

n∑
i=1

|csi |

(2C) + ncs1csmin ≤ (cs1 + csmin)ECSM (G).

After simplifying and using the definition of ECSM (G), we obtain

ECSM (G) ≥ (2C) + ncs1csmin

cs1 + csmin
. 2
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Theorem 4.11 Let G be a graph of order n and cs1 ≥ cs2 ≥ . . . ≥ csn be the eigenvalues of CSM(G).
Then

ECSM (G) ≥
√
(2C)n− α(n) (cs1 − csmin)

2
,

where cs1 = csmax = max
1≤i≤n

{|csi |} and csmin = min
1≤i≤n

{|csi |} and α(n) = n
⌈
n
2

⌉ (
1− 1

n

⌈
n
2

⌉)
.

Proof: Setting ci = |csi | = di, A ≤ |csi | ≤ B and a ≤ |csn | ≤ b in Theorem 3.3, we get∣∣∣∣∣∣n
n∑

i=1

|csi |
2 −

(
n∑

i=1

|csi |

)2
∣∣∣∣∣∣ ≤ α(n) (cs1 − csmin)

2

∣∣∣(2C)n− (ECSM (G))
2
∣∣∣ ≤ α(n) (cs1 − csmin)

2

ECSM (G) ≥
√
(2C)n− α(n) (cs1 − csmin)

2
. 2

5. Chemical Applicability of ECSM (G)

In this section, we conduct a computational analysis of the cangul stress energy ECSM (G) and the
π-electron energy of benzene derivatives. We investigate both power and logarithmic regression models
to accommodate the nonlinear trends often present in real-world data. These adaptable methods allow
researchers to identify the optimal fit for their specific datasets. Additionally, this section emphasizes the
significance of Cangul stress energy in the formulation of power and logarithmic regression models aimed
at assessing properties such as π-electron energy.

The regression models tested are as follows:
Power equation:

Y = AXB

Logarithmic equation:

Y = A+B log(X)

Here, Y is the dependent variable, A is the regression constant, and B is the regression coefficient for the
independent variable X.
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Table 1: Cangul Stress Energy and π-Electron Energy of Derivatives of Benzene

Derivatives of benzene ECSM (G) π-electron energy
Benzene 432 8
Naphthalene 62305.07 13.683
Phenanthrene 1163588.90 19.448
Anthracene 1166559.36 19.314
Chrysene 12586044.99 25.192
Benzo[a]anthracene 11161172.27 25.10
Triphenylene 7000231.56 25.275
Tetracene 10687271.67 25.188
Benzo[a]pyrene 22238320.76 28.222
Benzo[e]pyrene 14395343.35 28.336
Perylene 14449828.65 28.245
Anthanthrene 40433942.11 31.253
Benzo[ghi]perylene 29168140.40 31.425
Dibenz[a,c]anthracene 42361213.334 30.492
Dibenz[a,h]anthracene 95641465.76 30.881
Dibenz[a,j]anthracene 50735054.62 30.88
Picene 111629104.23 30.943
Coronene 57042939.35 34.572
Dibenzo[a,h]pyrene 141956248.66 33.928
Dibenzo[a,i]pyrene 158846656.55 33.954
Dibenzo[a,l]pyrene 66257730.30 34.031
Pyrene 2683098.75 22.506

Table 2: The correlation coefficient r from power and logarithmic regression models between Cangul
stress energy and π electron energy

Model Correlation Coefficient r
Power 0.975

logarithmic 0.958
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6. Conclusion

This study presents Cangul stress energy as a promising predictor of π-electron energy in chemical
compounds. Understanding π-electron energy is essential for explaining the stability and reactivity of
benzene derivatives. By employing regression models, we assess the predictive relationship between
Cangul stress energy and π-electron energy.
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