(3s.) **v. 2025 (43)** : 1–14. ISSN-0037-8712 doi:10.5269/bspm.76186

Existence and uniqueness of a solutions of nonlinear degenerated equations with measure data

E. Rami*, A. Barbara and E. Azroul

ABSTRACT: This paper is devoted to the study of the following of nonlinear degenerate equations of the type

$$(P) \quad \left\{ \begin{array}{rcl} Au & = \mu & \text{in} & \Omega \\ u & = 0 & \text{on} & \partial \Omega, \end{array} \right.$$

where A is a Leray Lions operator acted from weighted Sobolev space $W_0^{1,p}(\Omega,\omega)$ into its dual $W^{-1,p'}(\Omega,\omega^*)$, and μ is a Radon measure does not charge the sets of null (p,ω) -capacity. We prove a decomposition theorem for measure does not charge the sets of null (p,ω) -capacity. We apply this result to prove existence and uniqueness of an entropy solution of problem (P).

Key Words: Weighted Sobolev spaces, radon measure, entropy solution, (p, ω) -capacity.

Contents

1 Introduction. 1
2 Preliminaries 2
3 Assumptions on the data and definition of an entropy solution 3
4 Measures and (p,ω) -variational capacity. 3
5 Existence of an entropy solution. 6
6 Uniqueness of an entropy solution. 11

1. Introduction.

Let Ω be a bounded open set of \mathbb{R}^N , p be a real number $1 and <math>w = \{w_i(x) : 0 \le i \le N\}$ be a vector of weight functions (i.e., every component $w_i(x)$ is a measurable function strictly positive almost everywhere in Ω), satisfying some integrability conditions (see Section 2). Let Au = -div(a(x, u, Du)) be a Leray-Lions operator defined from the weighted Sobolev space $W_0^{1,p}(\Omega,\omega)$ into its dual $W^{-1,p'}(\Omega,\omega^*)$. Let μ be a Radon measure does not charge the sets of null (p,ω) -capacity.

In this paper we investigate the problem of existence and uniqueness of an entropy solutions for a class of nonlinear degenerate elliptic equations of the type

$$\begin{cases}
-div(a(x, u, Du)) &= \mu & \text{in } \Omega \\
u &= 0 & \text{on } \partial\Omega.
\end{cases}$$
(1.1)

Existence of solutions for (1.1) if A is a linear elliptic operator and μ is a Radon measure on Ω , have been obtained, using duality techniques, by G. Stampacchia in [6], the solutions verify a stronger formulation which ensures the uniqueness but be applied only to a linear problem. In the case of a datum μ in $L^1(\Omega)$, the first results were given by H. Brezis and W. Strauss [8], where more general equations (with maximal monotone graphs) were studied in [7]. In the case where μ is Radon measure and a is a monotone operator, a strict monotone, a p quasi monotone or a derived from a potential, the existence results proved by E. Rami, A. Barbara and E. Aroul see [4] and [5] where $\nu = f - div F$.

^{*} Corresponding author. 2020 Mathematics Subject Classification: Primary 47A15; Secondary 46A32, 47D20. Submitted March 19, 2025. Published September 01, 2025

In the case where μ is Radon measure and A is a monotone operator, existence results of (1.1), were proved by L. Boccardo and T.Gallouët [10,11] (see also [1] for $\mu \in L^1(\Omega)$), but the formulation does not ensure the uniqueness. To overcome this difficulty we use in this paper the framework of entropy solutions developed by Bénilan and al. [13] for the study of nonlinear elliptic problems with L^1 data.

For the measures not charging sets of null capacity was first observed by L. Boccardo and al. [12], the authors prove the existence and uniqueness of an entropy solutions for non degenerate problem Au = -div(a(x, Du)), and where the capacity defined from the Sobolev space $W_0^{1,p}(\Omega)$ (here $\omega = 1$).

Our main goal here is to prove the result of existence and uniqueness of an entropy solution for problem (1.1), where the operator -div(a(x,u,Du)) is defined on the weighted Sobolev spaces $W_0^{1,p}(\Omega,\omega)$ and where μ is a Radon measure does not charge the sets of null (p,ω) -capacity.

The plan of the paper is as follows. In Section 2 we give some preliminaries of weighted Sobolev spaces. In Section 3 we make precise all the assumptions on a, w and μ . In section 4 we give some technical results of measures and (p, w)-variational capacity. In Section 5 we give the definition of an entropy solution of (1.1) and we establish the existence of such a solution (Theorem 5.1). Section 6 is devoted to prove the uniqueness of an entropy solution (Theorem 6.1).

2. Preliminaries

Throughout the paper, we assume that the following assumptions hold true: Ω is a bounded open subset on \mathbb{R}^N , $N \geq 1$. Let us suppose that $1 is a real number, and <math>\omega(x) = \{\omega_i(x)\}_{\{0 \leq i \leq N\}}$ is a vector of weight function. Further we suppose that every component $\omega_i(x)$ is a measurable function which is strictly positive, and satisfies

$$\omega_i \in L^1_{loc}(\Omega) \text{ and } \omega_i^{-\frac{1}{p-1}} \in L^1_{loc}(\Omega).$$
 (2.1)

We define the weighted Lebesgue space $L^p(\Omega, \omega_0)$ with weight ω_0 , as the space of all real-valued measurable functions u for which

$$||u||_{p,\omega_0} = \left(\int_{\Omega} |u(x)|^p \omega_0(x) \, dx\right)^{\frac{1}{p}} < +\infty$$
 (2.2)

In order to define weighted Sobolev space of $W^{1,p}(\Omega,\omega)$, as the space of all real-valued functions $u \in L^p(\Omega,\omega_0)$ such that the derivaties in the sense of distributions satisfy $\frac{\partial u}{\partial x_i} \in L^p(\Omega,\omega_i)$ for all $i=1,\cdots,N$. This set of functions forms a Banach space under the norm

$$||u||_{1,p,\omega} = \left(\int_{\Omega} |u(x)|^p \omega_0(x) \, dx + \sum_{i=1}^N \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^p \omega_i(x) \, dx \right)^{\frac{1}{p}} \tag{2.3}$$

To deal with the Dirichlet problem, we use the space $X=W_0^{1,p}(\Omega,\omega)$ defined as the closure of $C_0^\infty(\Omega)$ with respect to the norm $\|.\|_{1,p,\omega}$. Note that, $C_0^\infty(\Omega)$ is dense in $W_0^{1,p}(\Omega,\omega)$ and $(W_0^{1,p}(\Omega,\omega),\|.\|_{1,p,\omega})$ is a reflexive Banach space. Note that the expression

$$||u||_X = \left(\sum_{i=1}^N \int_{\Omega} \left| \frac{\partial u}{\partial x_i} \right|^p \omega_i(x) \, dx \right)^{\frac{1}{p}} \tag{2.4}$$

is a norm defined on X and is equivalent to the norm (2.3). Moreover $(X, \|.\|_X)$ is a reflexive Banach space, and there exist a weight function σ on Ω and a parameter $1 < q < \infty$, with $\sigma^{1-q'} \in L^1_{loc}(\Omega)$ such that the Hardy inequality

$$\left(\int_{\Omega} |u|^q \sigma(x) \, dx\right)^{\frac{1}{q}} \le C\left(\sum_{i=1}^N \int_{\Omega} \left|\frac{\partial u}{\partial x_i}\right|^p \omega_i(x) \, dx\right)^{\frac{1}{p}} \tag{2.5}$$

holds for every $u \in X$ with a constant C > 0 independent of u. Moreover, the imbedding $X \hookrightarrow \hookrightarrow L^q(\Omega, \sigma)$ is compact.

We recall that the dual of the weighted Sobolev spaces $W_0^{1,p}(\Omega,\omega)$ is equivalent to $W^{-1,p'}(\Omega,\omega^*)$, where $\omega^* = \left\{\omega_i^* = \omega_i^{1-p'} \; ; \; i=1\cdots,N\right\}$ and $p' = \frac{p}{p-1}$ is the conjugate of p. For more details we refer the reader to [15] (see also [16]).

3. Assumptions on the data and definition of an entropy solution

Throughout the paper, we assume that the following assumptions hold true: Ω is a bounded open set on \mathbb{R}^N , $N \ge 1$. Let $1 , and let <math>\omega(x) = \{\omega_i(x)\}_{\{0 \le i \le N\}}$ is a vector of weight function.

Let now $-div(a(x,u,\nabla u))$ be a Leray-Lions operator defined on $W_0^{1,p}(\Omega,\omega)$ into $W^{-1,p'}(\Omega,\omega^*)$ and where $a:\Omega\times I\!\!R\times I\!\!R^N\to I\!\!R^N$ is a Carathéodory function, such that for $i=1,\cdots,N$

$$|a_i(x,s,\xi)| \le \beta \omega_i^{1/p}(x) \Big(L(x) + \sigma^{1/p'} |s|^{q/p'} + \sum_{j=1}^N \omega_j^{1/p'}(x) |\xi_j|^{p-1} \Big), \tag{3.1}$$

for a.e. $x \in \Omega$, all $(s, \xi) \in \mathbb{R} \times \mathbb{R}^N$, some function $L \in L^{p'}(\Omega)$ and $\beta > 0$.

$$\left(a(x,s,\xi) - a(x,s,\eta)\right)(\xi - \eta) > 0 \quad \text{for all } (\xi,\eta) \in \mathbb{R}^N \times \mathbb{R}^N \text{ with } \xi \neq \eta, \tag{3.2}$$

$$a(x, s, \xi).\xi \ge \alpha \sum_{i=1}^{N} w_i |\xi_i|^p, \tag{3.3}$$

where α is a strictly positive constant.

Remark 3.1 Under assumptions (3.1)-(3.3), A is monotone and coercive differential operator in the space $W_0^{1,p}(\Omega,\omega)$ into its dual $W^{-1,p'}(\Omega,\omega^*)$, hence A is surjective.

4. Measures and (p, ω) -variational capacity.

In this section we will give some results concerning the measures and (p, ω) -capacity. Let K be a compact subset of Ω . The (p, ω) -capacity of K is defined as

$$cap_{p,\omega}\left(K,\Omega\right) = \inf\left\{\int_{\Omega} \sum_{i=1}^{N} \left| \frac{\partial u}{\partial x_i} \right|^p \omega_i(x) \, dx, \ u \in C_0^{\infty}(\Omega), \ u \ge \chi_K \right\}.$$

where χ_K is the characteristic function of K.

The (p,ω) -capacity of any open subset U of Ω , is then defined by:

$$cap_{p,\omega}(U,\Omega) = sup\{cap_{p,\omega}(K,\Omega), K compact \subseteq U\}.$$

and the (p,ω) -capacity of any Borelian set $B\subset\Omega$ by:

$$cap_{p,\omega}\Big(B,\Omega\Big)=inf\Big\{cap_{p,\omega}\Big(U,\Omega\Big),\ U\ open\supseteq B\Big\}.$$

Denote by $M_b(\Omega)$ the space of signed measures on Ω and:

$$\mathcal{M}_b^{p,\omega}(\Omega) = \Big\{ \mu \in M_b(\Omega) : \ \mu(E) = 0 \ \forall \ E \subset \Omega \ \text{ such that } \ cap_{p,\omega}\Big(E,\Omega\Big) = 0 \Big\}.$$

Proposition 4.1 Let $\mu \in \mathcal{M}_h^{p,\omega}(\Omega)$, then there exists $\gamma \in W^{-1,p'}(\Omega,\omega^*)$ and $h \in L^1(\Omega,d\gamma)$ such that

$$\mu = h\gamma$$

Proof. Let $u \in W_0^{1,p}(\Omega,\omega)$, and let \widetilde{u} be a measurable representation $cap_{p,\omega}$ -quasi-continuous of u. Let $F:W_0^{1,p}(\Omega,\omega) \to [0,+\infty], u \to F(u) = \int_{\Omega} \widetilde{u}^+ d\mu$. Remark that F is convex and lower semicontinuous in $W_0^{1,p}(\Omega,\omega)$. Indeed: let $u_n \to u$ in $W_0^{1,p}(\Omega,\omega)$ therefore $u_n \to u$ a.e. in Ω , and hence $\widetilde{u_n}^+ \to \widetilde{u}^+$ a.e. in Ω . Then by Fatou's lemma, we get:

$$F(u) = \int_{\Omega} \widetilde{u}^{+} d\mu = \int_{\Omega} \liminf_{n} \widetilde{u_{n}}^{+} d\mu \leq \liminf_{n} \int_{\Omega} \widetilde{u_{n}}^{+} d\mu \leq \liminf_{n} F(u_{n}).$$

According to the separability of $W^{-1,p'}(\Omega,\omega^*)$, there exist $\lambda_n \in W^{-1,p'}(\Omega,\omega)$ and $a_n \in \mathbb{R}$ such that: $F(u) = \sup_n \Big(\langle \lambda_n, u \rangle + a_n \Big)$, we have: $tF(u) = F(tu) \geq t \langle \lambda_n, u \rangle + a_n$, $\forall t > 0$, $\forall n$, dividing by t and letting t tend to infinity we get $F(u) \geq \langle \lambda_n, u \rangle$, for all $u \in W_0^{1,p}(\Omega,\omega)$. Since $F(0) = \sup_n a_n = 0$ then $a_n \leq 0$ and we have $F(u) \geq \sup_n \Big(\langle \lambda_n, u \rangle \Big) \geq \sup_n \Big(\langle \lambda_n, u \rangle + a_n \Big) = F(u)$, we conclude that $F(u) = \sup_n \Big(\langle \lambda_n, u \rangle \Big)$. Let $\varphi \in C_c^{\infty}(\Omega)$, we have $\langle \lambda_n, \varphi \rangle \leq \int_{\Omega} \varphi^+ d\mu \leq \|\mu\|_{M_b(\Omega)} \|\varphi\|_{L^{\infty}(\Omega)}$, and

$$\langle \lambda_n, -\varphi \rangle \leq \int_{\Omega} (-\varphi)^+ d\mu = -\int_{\Omega} (\varphi)^+ d\mu \leq \int_{\Omega} (\varphi)^+ d\mu \leq \|\mu\|_{M_b(\Omega)} \|\varphi\|_{L^{\infty}(\Omega)},$$

which implies $-\|\mu\|_{M_b(\Omega)}\|\varphi\|_{L^\infty(\Omega)} \le \langle \lambda_n, \varphi \rangle$. Hence $|\langle \lambda_n, \varphi \rangle| \le \|\mu\|_{M_b(\Omega)}\|\varphi\|_{L^\infty(\Omega)}$, then $\lambda_n \in W^{-1,p'}(\Omega, \omega^*) \cap M_b(\Omega)$.

Since $F(-\varphi) = 0$, $\forall \varphi \in C_c^{\infty}(\Omega)$, $\varphi \geq 0$, then $0 \leq \langle \lambda_n, \varphi \rangle = \int_{\Omega} \varphi d\lambda_n$. Hence $\|\lambda_n\|_{M_b(\Omega)} \leq \|\mu\|_{\mathcal{M}_b(\Omega)}$. Let $\gamma = \sum_{n=1}^{\infty} \frac{\lambda_n}{2^n \left(\|\lambda_n\|_{W^{-1,p'}} + 1\right)}$, we have γ is absolutely converge in $W^{-1,p'}(\Omega,\omega^*)$. For all $\varphi \in C_c^{\infty}(\Omega)$,

we have

$$\begin{aligned} |\langle \gamma, \varphi \rangle| &= \bigg| \sum_{n=1}^{\infty} \frac{\langle \lambda_n, \varphi \rangle}{2^n \bigg(\|\lambda_n\|_{W^{-1,p'}} + 1 \bigg)} \bigg| \leq \sum_{n=1}^{\infty} \bigg(\|\lambda_n\|_{\mathcal{M}_b(\Omega)} \|\varphi\|_{L^{\infty}(\Omega)} \bigg) / 2^n \\ &\leq \bigg(\sum_{n=1}^{\infty} \frac{1}{2^n} \bigg) \|\mu\|_{\mathcal{M}_b(\Omega)} \|\varphi\|_{L^{\infty}(\Omega)} \\ &\leq \|\mu\|_{\mathcal{M}_b(\Omega)} \|\varphi\|_{L^{\infty}(\Omega)}. \end{aligned}$$

This shows that $\gamma \in W^{-1,p'}(\Omega,\omega^*)$. Let A be a Borel set in Ω , such that $\gamma(A)=0$, we have

$$\sum_{n=1}^{\infty} \frac{\lambda_n(A)}{2^n \left(\|\lambda_n\|_{W^{-1,p'}} + 1 \right)} = 0$$

and we deduce that $\lambda_n(A)=0$ for all $n\geq 1$, from which $\lambda_n\ll \gamma$. Using the theorem of Radon-Nikodym, then there exists $f_n\in L^1(\Omega,d\gamma)$ such that, for all $A\subset \Omega$, we have $\lambda_n(A)=\int_A f_n d\gamma$, therefore $\lambda_n=f_n\gamma$. Let $\varphi\in C_c^\infty(\Omega)$ and $\varphi\geq 0$, we have, for any Borel B and for all n, $F(\varphi)=\int_\Omega \varphi d\mu\geq \sup_n\int_\Omega \varphi d\lambda_n=\sup_n\int_\Omega \varphi f_n d\gamma$, then $f_n\gamma\leq \mu$ and $\int_B f_n d\gamma\leq \mu(B)$. Therefore $\int_B \sup\Big(f_1,f_2,...,f_k\Big)d\gamma\leq \mu(B)$, for all $k\geq 1$. For $k\to\infty$, we obtain, by theorem monotone convergence, $\int_B f d\gamma\leq \mu(B)$, $\forall B\subset \Omega$, where $f=\sup_n f_n$. Remark that $\int_\Omega \varphi d\mu=\sup_n \int_\Omega \varphi f_n d\gamma\leq \int_\Omega \varphi f d\gamma\leq \int_\Omega \varphi d\mu, \forall \varphi\in C_c^\infty(\Omega)$, hence $\mu=f\gamma$, and since $\mu(\Omega)<\infty$, then $f\in L^1(\Omega,d\gamma)$.

Theorem 4.1 Let $1 and <math>\mu \in \mathcal{M}_b(\Omega)$, then

$$\mu \in \mathcal{M}_b^{p,\omega}(\Omega) \Longleftrightarrow \mu \in L^1(\Omega) + W^{-1,p'}(\Omega,\omega^*).$$

Proof. Let $\mu \in L^1(\Omega) + W^{-1,p'}(\Omega,\omega^*)$, there exists $g \in L^1(\Omega)$ and $(g_\beta)_\beta \in \prod_{|\beta| \le 1} L^{p'}(\Omega,\omega_\beta^*)$ such that

$$\mu = g + \sum_{|\beta| \le 1} D^{\beta} g_{\beta} = g + \sum_{i=1}^{N} \frac{\partial g_i}{\partial x_i}.$$
 (4.1)

For any Borel set $B \subset \Omega$ such that $cap_{p,\omega}(B,\Omega) = 0$, we prove that $\mu(B) = 0$. Indeed, for all $\epsilon > 0$, there exists $u_{\epsilon} \in C_0^{\infty}(\Omega)$: $u_{\epsilon} = 1$ in B, $u_{\epsilon} \geq 0$ and $\|u_{\epsilon}\|_{W_0^{1,p}(\Omega,\omega)} < \epsilon$. Let $(g_n)_n$ sequence of $L^{\infty}(\Omega)$, such that $g_n \to g$ in $L^1(\Omega)$. We set

$$\mu_n = g_n + \sum_{i=1}^{N} \frac{\partial g_i}{\partial x_i}.$$

We have $g_n \to g$ in $L^1(\Omega)$, then $\mu_n \to \mu$ in $M_b(\Omega)$. We have

$$\mu_n(B) = \int_B d\mu_n = \int_B (g_n + \sum_{i=1}^N \frac{\partial g_i}{\partial x_i}) dx = \int_B g_n u_{\epsilon} dx + \int_B \sum_{i=1}^N \frac{\partial g_i}{\partial x_i} u_{\epsilon} dx = \int_B g_n u_{\epsilon} dx - \int_B \sum_{i=1}^N g_i \frac{\partial u_{\epsilon}}{\partial x_i} dx.$$

Hence

$$\begin{split} |\mu_n(B)| & \leq \int_B |g_n| u_\epsilon dx + \int_B \sum_{i=1}^N |g_i| \frac{\partial u_\epsilon}{\partial x_i} |dx. \\ & \leq \int_B |g_n| u_\epsilon dx + \int_B \sum_{i=1}^N |g_i| \omega_i^{\frac{-1}{p}} |\frac{\partial u_\epsilon}{\partial x_i} |\omega_i^{\frac{1}{p}} dx \\ & \leq \int_B |g_n| u_\epsilon dx + \left(\int_B \sum_{i=1}^N |g_i|^{p'} \omega_i^*\right)^{\frac{1}{p'}} \left(\int_B \sum_{i=1}^N |\frac{\partial u_\epsilon}{\partial x_i}|^p \omega_i dx\right)^{\frac{1}{p}} \\ & \leq \int_B |g_n| \sigma^{\frac{-1}{q}} u_\epsilon \sigma^{\frac{1}{q}} dx + \left(\int_\Omega \sum_{i=1}^N |g_i|^{p'} \omega_i^*\right)^{\frac{1}{p'}} \left(\int_\Omega \sum_{i=1}^N |\frac{\partial u_\epsilon}{\partial x_i}|^p \omega_i dx\right)^{\frac{1}{p}} \\ & \leq \left(\int_B |g_n|^{q'} \sigma^{\frac{-q'}{q}} dx\right)^{\frac{1}{q'}} \left(\int_B u_\epsilon^q \sigma dx\right)^{\frac{1}{q}} + \left(\int_\Omega \sum_{i=1}^N |g_i|^{p'} \omega_i^*\right)^{\frac{1}{p'}} \left(\int_\Omega \sum_{i=1}^N |\frac{\partial u_\epsilon}{\partial x_i}|^p \omega_i dx\right)^{\frac{1}{p}} \\ & \leq \left(C(\int_B |g_n|^{q'} \sigma^{\frac{-q'}{q}} dx\right)^{\frac{1}{q'}} + \left(\int_\Omega \sum_{i=1}^N |g_i|^{p'} \omega_i^*\right)^{\frac{1}{p'}} \right) \left(\int_\Omega \sum_{i=1}^N |\frac{\partial u_\epsilon}{\partial x_i}|^p \omega_i dx\right)^{\frac{1}{p}} \\ & \leq C_1 \epsilon. \end{split}$$

Passing to limit as ϵ tends to zero, we conclude that $\mu_n(B) = 0$, and $\mu(B) = 0$.

Conversely, let $\mu \in \mathcal{M}_b^p(\Omega, \omega)$, we can always assume that $\mu \geq 0$, and by Proposition 4.1, we deduce that $\mu = h\gamma$ where $h \in L^1(\Omega, d\gamma)$, $\gamma \in W^{-1,p'}(\Omega, \omega^*)$, $\gamma \geq 0$ and $h \geq 0$.

Let $(K_n)_n$ be an increasing sequence compact of Ω such that $\bigcup_{n=1}^{\infty} K_n = \Omega$ and let $\mu_n^{(1)} = T_n(h\chi_{K_n})\gamma \in W^{-1,p'}(\Omega,\omega)$, $(\mu_n^{(1)})_n$ be an increasing positive sequence in $W^{-1,p'}(\Omega,\omega^*)$, with compact supports in Ω . Let

$$\begin{cases} \mu_0 = \mu_0^{(1)}, \\ \mu_n = \mu_n^{(1)} - \mu_{n-1}^{(1)}. \end{cases}$$

Let $\rho \in \mathcal{C}_0^{\infty}(\mathbb{R}^N)$, $\rho(x) \geq 0$ a.e. and $\int_{\mathbb{R}^N} \rho(x) dx = 1$. Let $\rho_n(x) = n^N \rho(nx)$. We have $\mu_n * \rho_m \longrightarrow \mu_n$ in $W^{-1,p'}(\Omega,\omega^*)$ as $m \to \infty$ and $\mu_n * \rho_m \in \mathcal{C}_0^{\infty}(\mathbb{R}^N)$, for m large enough. Choose $m = m_n$ such that $\|\mu_n * \rho_{m_n} - \mu_n\|_{W^{-1,p'}(\Omega,\omega^*)} \leq 2^{-n}$. Then $\mu_n = f_n + g_n$, where

$$\begin{cases} f_n = \mu_n * \rho_{m_n}, \\ g_n = \mu_n - \mu_n * \rho_{m_n}. \end{cases}$$

We have $\sum g_n$ converges in $W^{-1,p'}(\Omega,\omega^*)$ then $g=\sum_{n=1}^{\infty}g_n\in W^{-1,p'}(\Omega,\omega)$. Moreover $\|f_n\|_{L^1(\Omega)}=\|\mu_n*\rho_{m_n}\|_{L^1(\Omega)}\leq \|\mu_n\|_{\mathcal{M}_b(\Omega)}$ then $\sum f_n$ is absolutely convergent in $L^1(\Omega)$. Let

 $f = \sum f_n \in L^1(\Omega), \text{ we conclude that } \mu = \sum_{n=1}^{\infty} \mu_n = \sum_{n=1}^{\infty} f_n + \sum_{n=1}^{\infty} g_n = f + g.$

Definition 4.1 Let μ be a Radon measure and E is a Borel set of Ω . The restriction of μ to E is the measure $\lambda = \mu_{|E}$ defined by: $\lambda(B) = \mu_{|E}(B) = \mu(E \cap B)$ for any Borel set B of Ω . The measure λ is concentrated on E if $\lambda = \lambda_{|E}$.

Proposition 4.2 Let $\mu \in \mathcal{M}_b(\Omega)$ and $1 . Then <math>\mu$ uniquely decomposes as $\mu = \mu_0 + \lambda$, where:

$$\begin{cases} \mu_0 & \in \mathcal{M}_b^{p,\omega}(\Omega) \\ \lambda = \mu_{|_E} & and \ cap_{p,\omega}(E,\Omega) = 0. \end{cases}$$

Proof. We assume that μ is positive (if not, consider μ^+ and μ^-). We first show the uniqueness. Assume that $\mu = \mu_0 + \lambda = \mu_0' + \lambda'$, where $(\mu_0, \mu_0') \in (\mathcal{M}_b^{p,\omega}(\Omega))^2$ and $\lambda = \mu_{|_E}$ with $cap_{p,\omega}(E, \Omega) = 0$ and $\lambda' = \mu_{|_{E'}}$ with $cap_{p,\omega}(E', \Omega) = 0$. We have $\mu_0 - \mu_0' = \lambda' - \lambda$.

Let B be a Borel subset of Ω , if $cap_{p,\omega}\Big(B,\Omega\Big)=0$, then $(\mu_0-\mu_0^{'})(B)=0$, therefore $\mu_0=\mu_0^{'}$ and $\lambda=\lambda^{'}$, if we consider $cap_{p,\omega}\Big(B,\Omega\Big)\neq 0$ and since $\lambda^{'}-\lambda$ is focused on $E\cap E'$ such that $cap_{p,\omega}\Big(E\cap E',\Omega\Big)=0$, then we have

$$(\lambda - \lambda^{'})(B) = (\lambda - \lambda^{'})(B \cap E \cap E^{'}) = (\mu_{0}^{'} - \mu_{0})(B \cap E \cap E^{'}) \le (\mu_{0}^{'} - \mu_{0})(E \cap E^{'}) = 0.$$

Therefore $\mu_0 = \mu'_0$, which proves the uniqueness. Now we show the existence of μ . Let

$$\alpha = \sup \{ \mu(A) : A \text{ is a Borel subset of } \Omega \text{ and } cap_{p,\omega}(A,\Omega) = 0 \} < \infty,$$

there exists a sequence $(A_n)_n$ such that A_n is a Borel subset of Ω , $\lim_{n\to\infty} \mu(A_n) = \alpha$ and $cap_{p,\omega}(A_n,\Omega) = 0$. Let $E = \bigcup_n A_n$ is a Borel subset of Ω , we have $\mu(E) = \alpha$ and $cap_{p,\omega}(E,\Omega) = 0$.

For $\lambda = \mu_{|_E}$ and $\mu_0 = \mu - \lambda$, there exists $E \in B(\Omega)$: $cap_{p,\omega}\Big(E,\Omega\Big) = 0$ and $\lambda = \mu_{|_E}$. It remains to show that $\mu_0 \in M_b^{p,\omega}(\Omega)$. By contradiction, assume that A is a Borel subset of Ω such that $cap_{p,\omega}\Big(E,\Omega\Big) = 0$ and $0 < \mu_0(A) = \mu(A) - \lambda(A) = \mu(A) - \mu(A \cap E) = \mu(A \setminus E)$. We have $cap_{p,\omega}\Big(A \cup E,\Omega\Big) = 0$ and $\mu(A \cup E) = \mu(E) + \mu(A \setminus E) = \alpha + \mu(A \setminus E) > \alpha$, which contradicts the definition of M.

Remark 4.1 Let μ be a Radon measure, we can write $\mu = \mu_0 + \mu_1 + \mu_2$, such that $\mu_0 \in W^{-1,p'}(\Omega, \omega^*)$, $\mu_1 \in L^1(\Omega)$ and $\mu_2(E) = \mu(E \cap N)$ with $cap_{p,\omega}(N,\Omega) = 0$.

5. Existence of an entropy solution.

In this section, we study the existence of an entropy solution of problem (1.1). Throughout the paper, T_k denotes the truncation function at height $k \ge 0$: $T_k(r) = \min(k, \max(r, -k))$, and we define

$$\mathbf{T}_0^{p,\omega}(\Omega) = \bigg\{ u: \Omega \longrightarrow \mathbb{R} \text{ measurable}: T_k(u) \in W_0^{1,p}(\Omega,\omega), \ \forall k > 0 \bigg\}.$$

We now give the definition of an entropy solution

Definition 5.1 Let μ be a signed measure in $\mathcal{M}_b^{p,\omega}(\Omega)$. A measurable function $u \in T_0^{p,\omega}(\Omega)$ is an entropy solution to problem (1.1) if

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u - \varphi) dx \le \int_{\Omega} T_k(u - \varphi) d\mu \qquad \forall \ \varphi \in \mathcal{D}(\Omega).$$
 (5.1)

Remark 5.1 For $p < 2 - \frac{1}{N}$ and $u \in T_0^{p,\omega}(\Omega)$, we will define the gradient of u as the function v such that $\nabla T_k(u) = v\chi_{\{|u| < k\}}$ almost everywhere in Ω , for every k > 0.

Note that, each term in (5.1) is well defined thanks to the fact that $T_k(u-\varphi) \in W_0^{1,p}(\Omega,\omega) \cap L^{\infty}(\Omega)$ (see [13]).

Our main result is

Theorem 5.1 Under assumption (H_1) and we assume that μ is a signed measure in $\mathcal{M}_b(\Omega)$. Then, there exists at least an entropy solution of problem (1.1) if and only if $\mu \in \mathcal{M}_b^{p,\omega}(\Omega)$.

Proof. Let μ be an entropy solution of problem (1.1). In view of (3.1) we have $a \in \prod_{i=1}^{N} L^{p'}(\Omega, \omega_i^{\star})$, hence $-\operatorname{div}(a(x, u, \nabla u)) \in W^{-1,p'}(\Omega, \omega^{\star})$ and $W^{-1,p'}(\Omega, \omega^{\star}) \subset L^1(\Omega) + W^{-1,p'}(\Omega, \omega^{\star})$. Then $\mu \in L^1(\Omega) + W^{-1,p'}(\Omega, \omega^{\star})$ and by Theorem 4.1 we have $\mu \in \mathcal{M}_b^{p,\omega}(\Omega)$.

Conversely, let $\mu \in \mathcal{M}_b^{p,\omega}(\Omega)$, we have $\mu \in L^1(\Omega) + W^{-1,p'}(\Omega,\omega^*)$, we can write $\mu = f - \operatorname{div} F$, where $f \in L^1(\Omega)$ and $F \in \prod_{i=1}^N L^{p'}(\Omega,\omega_i^*)$. For prove that there exists at least an entropy solution of problem (1.1), we need five steps.

Step 1: The approximate problem.

In this step, we introduce a family of approximate problems and prove the existence of solutions to such problems.

Lemma 5.1 Let $\mu = f - div(F)$ with $f \in L^1(\Omega)$ and $F \in \prod_{i=1}^N L^{p'}(\Omega, \omega_i^*)$. Let $(f_n)_n$ be a sequence in $L^{\infty}(\Omega)$ such that f_n converges to f strongly in $L^1(\Omega)$ and $||f_n||_{L^1(\Omega)} \leq ||f||_{L^1(\Omega)}$, we consider the approximate problem:

$$(\mathcal{P}_n) \quad \left\{ \begin{array}{c} Au_n = f_n - div(F) & in \ \Omega, \\ u_n \in W_0^{1,p}(\Omega, \omega), \end{array} \right.$$

where $Au = div(a(x, u, \nabla u))$. Assume that (H_1) holds true, there exists one weak solution u_n for the approximate problem (\mathcal{P}_n) .

Proof. We first show that $\lim_{\|v\|_{W_0^{1,p}(\Omega,\omega)}\to\infty} \frac{\langle Av,v\rangle}{\|v\|_{W_0^{1,p}(\Omega,\omega)}} = +\infty$. Indeed, we have

$$\frac{\langle Av, v \rangle}{\|v\|_{W_0^{1,p}(\Omega,\omega)}} \geq \frac{\alpha \sum_{i=1}^N \int_{\Omega} \left| \frac{\partial v}{\partial x_i} \right|^p \omega_i(x) \, dx}{\left(\sum_{i=1}^N \int_{\Omega} \left| \frac{\partial v}{\partial x_i} \right|^p \omega_i(x) \, dx \right)^{\frac{1}{p}}}$$
$$\geq \alpha \|v\|_{W_0^{1,p}(\Omega,\omega)}^{p-\frac{1}{p}}$$
$$\geq \alpha \|v\|_{W_0^{1,p}(\Omega,\omega)}^{p-1} \longrightarrow +\infty, \text{ since } p > 1.$$

Now we show that A is pseudo-monotone. Let $(u_k)_k$ be a sequence in $W_0^{1,p}(\Omega,\omega)$ such that:

$$\begin{cases} u_k \rightharpoonup u \text{ weakly in } W_0^{1,p}(\Omega,\omega) \\ Au_k \rightharpoonup \chi \text{ weakly in } W^{-1,p'}(\Omega,\omega^*) \\ \limsup_k \langle Au_k, u_k \rangle \leq \langle \chi, u \rangle. \end{cases}$$

We prove that $\chi = Au$ and $\langle Au_k, u_k \rangle$ converges to $\langle \chi, u \rangle$ as k goes to $+\infty$. Indeed, the sequence $(u_k)_k$ is bounded in $W_0^{1,p}(\Omega,\omega)$, hence, in view of (3.1), we deduce that $(a(x,u_k,\nabla u_k))_k$ is bounded in $\prod_{i=1}^N L^{p'}(\Omega,\omega_i^*)$, and there exists $\varphi \in \prod_{i=1}^N L^{p'}(\Omega,\omega_i^*)$, such that

$$a(x, u_k, \nabla u_k) \rightharpoonup \varphi$$
 weakly in $\prod_{i=1}^N L^{p'}(\Omega, \omega_i^*)$. (5.2)

Let $v \in W_0^{1,p}(\Omega,\omega)$, we can write

$$\langle \chi, v \rangle = \lim_{k \to \infty} \langle Au_k, u_k \rangle = \lim_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla v dx = \int_{\Omega} \varphi \nabla v dx.$$
 (5.3)

On the other hand, we have

$$\limsup_{k \to \infty} \langle Au_k, u_k \rangle = \limsup_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx \le \langle \chi, u \rangle \le \int_{\Omega} \varphi \nabla u dx. \tag{5.4}$$

Since
$$\int_{\Omega} \left(a(x, u_k, \nabla u_k) - a(x, u_k, \nabla u) \right) \nabla (u_k - u) \, dx \ge 0$$
, then

$$\int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx \ge -\int_{\Omega} a(x, u_k, \nabla u) \nabla u dx + \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u dx + \int_{\Omega} a(x, u_k, \nabla u) \nabla u_k dx.$$

In view of (5.2), we can deduce that

$$\liminf_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx \ge \int_{\Omega} \varphi \nabla u dx,$$

By (5.3) and (5.4), we have

$$\lim_{k \to \infty} \int_{\Omega} a(x, u_k, \nabla u_k) \nabla u_k dx = \int_{\Omega} \varphi \nabla u dx \quad \text{and} \quad \lim_{k \to \infty} \langle A u_k, u_k \rangle = \langle \chi, u \rangle.$$
 (5.5)

By (5.5), we can deduce that $\lim_{k\to\infty}\int_{\Omega}\Big(a(x,u_k,\nabla u_k)-a(x,u_k,\nabla u)\Big)\nabla(u_k-u)dx=0$, in view of [17], we conclude that ∇u_k converges to ∇u a.e. in Ω , in view of (3.1), we have $a(x,u_k,\nabla u_k)$ converges to $a(x,u,\nabla u)$ weakly in $\prod_{i=1}^N L^{p'}(\Omega,\omega_i^*)$. Hence $\chi=Au$, and in view of [9], we conclude that there exists $u_n\in W_0^{1,p}(\Omega,\omega)$ solution of (\mathcal{P}_n) .

Step 2: A priori estimate.

Choose $T_k(u_n)$ as test function in (P_n) , we have

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n) dx = \int_{\Omega} f_n T_k(u_n) dx + \int_{\Omega} F \nabla T_k(u_n) dx,$$

we can write

$$\alpha \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \le k \|f\|_{L^1(\Omega)} + \sum_{i=1}^{N} \int_{\Omega} |F_i| \left| \frac{\partial T_k(u_n)}{\partial x_i} \right| dx.$$

Hence

$$\alpha \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \le k \|f\|_{L^1(\Omega)} + \sum_{i=1}^{N} \int_{\Omega} |F_i| \omega_i^{\frac{-1}{p}} \left(\frac{\alpha}{2}\right)^{\frac{-1}{p}} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right| \omega_i^{\frac{1}{p}} \left(\frac{\alpha}{2}\right)^{\frac{1}{p}} dx,$$

then

$$\alpha \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \leq k \|f\|_{L^1(\Omega)} + \frac{c(\alpha)}{p'} \|F\|_{\prod_{i=1}^{N} L^{p'}(\Omega, \omega_i^{\star})} + \frac{\alpha/2}{p} \sum_{i=1}^{N} \int_{\Omega} \omega_i \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p dx,$$

since p > 1, we deduce

$$\alpha \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \le k \|f\|_{L^1(\Omega)} + \frac{c(\alpha)}{p'} \|F\|_{L^1(\Omega)} + \frac{c(\alpha)}{p'} \|F\|_{L^{p'}(\Omega,\omega_i^{\star})} + \frac{\alpha}{2} \sum_{i=1}^{N} \int_{\Omega} \omega_i \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p dx,$$

and

$$\frac{\alpha}{2} \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \le k \|f\|_{L^1(\Omega)} + \frac{c(\alpha)}{p'} \|F\| \prod_{i=1}^{N} L^{p'}(\Omega, \omega_i^{\star}).$$

By consequent

$$\frac{\alpha}{2} \sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \le k \left(\|f\|_{L^1(\Omega)} + \frac{c(\alpha)}{p'k} \|F\|_{N} \prod_{i=1}^{N} L^{p'}(\Omega, \omega_i) \right),$$

therefore

$$\left(\sum_{i=1}^{N} \int_{\Omega} \left| \frac{\partial T_k(u_n)}{\partial x_i} \right|^p \omega_i(x) dx \right)^{\frac{1}{p}} \le ck^{\frac{1}{p}}, \quad \forall k > 1.$$
 (5.6)

Step 3: Local convergence in measure.

We will show that $(u_n)_n$ is a Cauchy sequence in measure. Let B_R be a ball, and let k > 0 be large enough. By virtue of Hölder's inequality and Poincaré's inequality, one has

$$\begin{aligned} k \ meas \bigg((|u_n| > k) \cap B_R \bigg) &= \int_{((|u_n| > k) \cap B_R)} |T_k(u_n)| dx \le \int_{B_R} |T_k(u_n)| \sigma^{\frac{1}{q}} \sigma^{\frac{-1}{q}} dx \\ &\le \bigg(\int_{B_R} |T_k(u_n)|^q \sigma dx \bigg)^{\frac{1}{q}} \bigg(\int_{B_R} \sigma^{\frac{-q'}{q}} dx \bigg)^{\frac{1}{q'}} \le C_R \bigg(\int_{\Omega} |T_k(u_n)|^p \sigma dx \bigg)^{\frac{1}{p}} \\ &\le C_R' \bigg(\int_{\Omega} \sum_{i=1}^N |\frac{\partial T_k(u_n)}{\partial x_i}|^p \omega_i dx \bigg)^{\frac{1}{p}} \le C_R'' k^{\frac{1}{p}}, \end{aligned}$$

Then

$$meas\bigg((|u_n|>k)\cap B_R\bigg)\leq \frac{C}{k^{1-\frac{1}{p}}} \qquad \forall k>1.$$

Let $\delta > 0$, we have

$$meas\Big((|u_n - u_m| > \delta) \cap B_R\Big) \le meas\Big((|u_n| > k) \cap B_R\Big) + meas\Big((|u_m| > k) \cap B_R\Big) + meas\Big(|T_k(u_n) - T_k(u_m)| > \delta\Big).$$

Since $(T_k(u_n))_n$ is bounded in $W_0^{1,p}(\Omega,\omega)$, then there exists $v_k \in W_0^{1,p}(\Omega,\omega)$ such that $T_k(u_n)$ converges to v_k weakly in $W_0^{1,p}(\Omega,\omega)$, we use $W_0^{1,p}(\Omega,\omega) \hookrightarrow L^q(\Omega,\sigma)$, and we obtain $T_k(u_n)$ converges to v_k strongly in $L^q(\Omega,\sigma)$ and a.e. in Ω , hence $(T_k(u_n))_n$ is a Cauchy sequence in measure in Ω .

Let $\epsilon > 0$, there exists $k(\epsilon) > 0$, such that $meas\Big((|u_n - u_m| > \delta) \cap B_R\Big) < \epsilon$, for $m, n > n_0(k(\epsilon), \delta, R)$, then $(u_n)_n$ is a Cauchy sequence in measure in B_R . Therefore, we conclude that $(u_n)_n$ converges to a measurable u a.e. in Ω . Hence, $T_k(u_n)$ converges to $T_k(u)$ weakly in $W_0^{1,p}(\Omega,\omega)$, strongly in $L^q(\Omega,\sigma)$ and a.e. in Ω .

Step 4: Intermediate inequalities.

We prove that for all φ in $W_0^{1,p}(\Omega,\omega) \cap L^{\infty}(\Omega)$, we have

$$\int_{\Omega} a(x, u_n, \nabla \varphi) \nabla T_k(u_n - \varphi) dx \le \int_{\Omega} f_n T_k(u_n - \varphi) dx + \int_{\Omega} F \nabla T_k(u_n - \varphi) dx. \tag{5.7}$$

For all $\varphi \in W_0^{1,p}(\Omega,\omega) \cap L^{\infty}(\Omega)$, we choose $T_k(u_n - \varphi)$ as test function in (P_n) , we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n - \varphi) dx = \int_{\Omega} f_n T_k(u_n - \varphi) dx + \int_{\Omega} F \nabla T_k(u_n - \varphi) dx.$$
 (5.8)

We can write

$$\int_{\Omega} a(x, u_n, \nabla \varphi) \nabla T_k(u_n - \varphi) dx = \int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n - \varphi) dx
- \int_{\Omega} \Big(a(x, u_n, \nabla u_n) - a(x, u_n, \nabla \varphi) \Big) (\nabla u_n - \nabla \varphi) T'_k(u_n - \varphi) dx$$
(5.9)

In view of (3.2), (5.8) and (5.9), we obtain (5.7).

Step 5: Passing to the limit.

For all $\varphi \in W_0^{1,p}(\Omega,\omega) \cap L^{\infty}(\Omega)$, we choose $T_k(u_n - \varphi)$ as test function in (P_n) , we obtain

$$\int_{\Omega} a(x, u_n, \nabla u_n) \nabla T_k(u_n - \varphi) dx = \int_{\Omega} f_n T_k(u_n - \varphi) dx + \int_{\Omega} F \nabla T_k(u_n - \varphi) dx. \tag{5.10}$$

Let $M = k + \|\varphi\|_{\infty}$, since $T_M(u_n)$ converges to $T_M(u)$ weakly in $W_0^{1,p}(\Omega,\omega)$ and a.e. in Ω , then $T_k(u_n - \varphi)$ converges to $T_k(u - \varphi)$ weakly in $W_0^{1,p}(\Omega,\omega)$, a.e. in Ω , and by Lebesgue's theorem, we deduce that

$$\lim_{n \to +\infty} \int_{\Omega} f_n T_k(u_n - \varphi) dx = \int_{\Omega} f T_k(u - \varphi) dx, \tag{5.11}$$

and

$$\lim_{n \to +\infty} \int_{\Omega} F \nabla T_k(u_n - \varphi) dx = \int_{\Omega} F \nabla T_k(u - \varphi) dx.$$
 (5.12)

We use (3.1), we deduce

$$\left| a_i(x, T_M(u_n), \nabla \varphi) \right|^{p'} \omega_i^* \le \gamma \left(k(x)^{p'} + |T_M(u_n)|^q \sigma + \sum_{i=1}^N \left| \frac{\partial \varphi}{\partial x_i} \right|^p \omega_i \right),$$

and since $T_M(u_n)$ converges to $T_M(u)$ strongly in $L^q(\Omega, \sigma)$ and a.e. in Ω , then de obtain

$$\gamma \left(k(x)^{p'} + |T_{M}(u_{n})|^{q} \sigma + \sum_{i=1}^{N} \left| \frac{\partial \varphi}{\partial x_{i}} \right|^{p} \omega_{i} \right) \longrightarrow \gamma \left(k(x)^{p'} + |T_{M}(u)|^{q} \sigma + \sum_{i=1}^{N} \left| \frac{\partial \varphi}{\partial x_{i}} \right|^{p} \omega_{i} \right), \quad \text{a.e. in } \Omega.$$

In view of Vitali theorem, we deduce that $a_i(x, T_M(u_n), \nabla \varphi)$ converges strongly to $a_i(x, T_M(u), \nabla \varphi)$ in $\prod_{i=1}^N L^{p'}(\Omega, \omega_i^*)$ for all i = 1, ..., N. Hence

$$\lim_{n \to \infty} \int_{\Omega} a(x, u_n, \nabla \varphi) \nabla T_k(u_n - \varphi) dx = \int_{\Omega} a(x, u, \nabla \varphi) \nabla T_k(u - \varphi) dx.$$
 (5.13)

In view of (5.11), (5.12), (5.13) and passing to the limit in (5.7), we obtain

$$\int_{\Omega} a(x, u, \nabla \varphi) \nabla T_k(u - \varphi) dx \le \int_{\Omega} f T_k(u - \varphi) dx + \int_{\Omega} F \nabla T_k(u - \varphi) dx. \tag{5.14}$$

Now, we can write

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u - \varphi) dx = \int_{\Omega} a(x, u, \nabla \varphi) \nabla T_k(u - \varphi) dx
+ \int_{\Omega} \Big(a(x, u, \nabla u) - a(x, u, \nabla \varphi) \Big) (\nabla u - \nabla \varphi) T'_k(u - \varphi) dx$$
(5.15)

In view of (3.2), (5.14) and (5.15), we obtain (5.1).

6. Uniqueness of an entropy solution.

In this section, we prove the following uniqueness theorem

Theorem 6.1 Let μ be a signed measure in $L^1(\Omega) + W^{-1,p'}(\Omega,\omega^*)$. Then problem (1.1) has a unique an entropy solution.

We prove the following lemma that will be a key point in the prove the uniqueness result

Lemma 6.1 For any fixed k > 0:

$$\lim_{h \to \infty} \int_{\{h \le |u| \le h + k\}} \sum_{i=1}^{N} \left| \frac{\partial u}{\partial x_i} \right|^p \omega_i dx = 0.$$
 (6.1)

Proof. Using $\varphi = T_h(u)$ as a test function in (1.1) leads to

$$\int_{\Omega} a(x, u, \nabla u) \nabla T_k(u - T_h(u)) dx \le \int_{\Omega} f T_k(u - T_h(u)) dx + \int_{\Omega} F \nabla T_k(u - T_h(u)) dx.$$

The definition of T_k permit to obtain that for any h > 0 and any k > 0

$$\int_{\{h \le |u| \le h+k\}} a(x, u, \nabla u) \nabla u \, dx \le k \int_{\{|u| \ge h\}} |f| \, dx + \int_{\{h \le |u| \le h+k\}\}} F \nabla u \, dx.$$

The coercive character of a and the use of Young's inequality then make it possible to obtain

$$\frac{\alpha}{2} \int_{\{h \le |u| \le h + k\}} \sum_{i=1}^{N} |\frac{\partial u}{\partial x_i}|^p \omega_i dx \le k \int_{\{|u| \ge h\}} |f| dx + C \int_{\{h \le |u| \le h + k\}} \sum_{i=1}^{N} |F_i|^{p'} \omega_i^* dx, \ \forall h, k > 0.$$

Now since $f \in L^1(\Omega)$ and $F \in \prod_{i=1}^N L^{p'}(\Omega, \omega_i^*)$, it possible to conclude that

$$\lim_{h\to\infty}\int_{\{h\leq |u|\leq h+k\}}\sum_{i=1}^N |\frac{\partial u}{\partial x_i}|^p\omega_i dx=0.$$

Proof of Theorem 6.1. Let $\mu = f - \text{div } F$ with $f \in L^1(\Omega)$ and $F \in \prod_{i=1}^N L^{p'}(\Omega, \omega_i^*)$. We consider two entropy solutions u and v of (1.1) for the same that f and F. We plug the test function $T_k(u - T_h(v))$

in equations (1.1)(problem of u) and the test function $T_k(v - T_h(u))$ in equations (1.1) (problem of v), then, the sums of the two equations, lead to

$$\int_{\Omega} [a(x, u, \nabla u) - F] \nabla T_k(u - T_h(v)) dx + \int_{\Omega} [a(x, v, \nabla v) - F] \nabla T_k(v - T_h(u)) dx$$

$$\leq \int_{\Omega} f[T_k(u - T_h(v)) + T_k(v - T_h(u))] dx.$$
(6.2)

It is easy to see that, if h tends to 0, we have $\int_{\Omega} f[T_k(u - T_h(v)) + T_k(v - T_h(u))] dx \to 0$. Let $C_0 = \left\{ |u - v| \le k, |u| \le h, |v| \le h \right\}$, $C_1 = \left\{ |u - T_h(v)| \le k, |v| > h \right\}$, $C_1' = \left\{ |v - T_h(u)| \le k, |u| > h \right\}$, $C_2 = \left\{ |u - T_h(v)| \le k, |v| \le h, |u| > h \right\}$ and $C_2' = \left\{ |v - T_h(u)| \le k, |u| \le h, |v| > h \right\}$, we have $\Omega = C_0 \cup C_1 \cup C_2 = C_0 \cup C_1' \cup C_2'$. For C_0 , we have

$$\int_{C_0} [a(x, u, \nabla u) - F] \nabla T_k(u - T_h(v)) dx + \int_{C_0} [a(x, v, \nabla v) - F] \nabla T_k(v - T_h(u)) dx \qquad (6.3)$$

$$= \int_{C_0} [a(x, u, \nabla u) - F] \nabla (u - v) dx + \int_{C_0} [a(x, v, \nabla v) - F] \nabla (v - u) dx$$

$$= \int_{C_0} [a(x, u, \nabla u) - a(x, v, \nabla v)] \nabla (u - v) dx.$$

For C_1 and C_1' we have

$$\int_{C_1} [a(x, u, \nabla u) - F] \nabla T_k(u - T_h(v)) dx + \int_{C_1'} [a(x, v, \nabla v) - F] \nabla T_k(v - T_h(u)) dx \qquad (6.4)$$

$$\geq -\int_{C_1} F \nabla u dx - \int_{C_1'} F \nabla v dx.$$

In view of the Hölder inequality, we obtain

$$\left| \int_{C_1} F \nabla u dx \right| = \left| \int_{\Omega} \sum_{i=1}^N F_i \omega_i^{\frac{-1}{p}} \frac{\partial u}{\partial x_i} \omega_i^{\frac{-1}{p}} dx \right| \le \left(\int_{C_1} \sum_{i=1}^N |F_i|^p \omega_i^* dx \right)^{\frac{1}{p'}} \left(\int_{C_1} \sum_{i=1}^N \left| \frac{\partial u}{\partial x_i} \right|^p \omega_i dx \right)^{\frac{1}{p}}. \tag{6.5}$$

Due to the definition of T_k , and for any $0 \le k \le h$, we have $C_1 \subset \{h - k \le |u| \le h + k\}$. Since $F \in \prod_{i=1}^N L^{p'}(\Omega, \omega_i^*)$ and in view (6.1), we can deduce that $\lim_{h \to \infty} \int_{C_1} F \nabla u dx = 0$, the same, we have $\lim_{h \to \infty} \int_{C_1'} F \nabla v dx = 0$. In view of (6.4), we conclude that

$$\lim_{h \to \infty} \sup \left\{ \int_{C_1} [a(x, u, \nabla u) - F] \nabla u dx + \int_{C_1'} [a(x, v, \nabla v) - F] \nabla v dx \right\} \ge 0.$$
 (6.6)

For C_2 and C'_2 , we have

$$\int_{C_2} [a(x, u, \nabla u) - F] \nabla T_k(u - T_h(v)) dx + \int_{C_2'} [a(x, v, \nabla v) - F] \nabla T_k(v - T_h(u)) dx$$

$$= \int_{C_2} [a(x, u, \nabla u) - F] \nabla (u - v) dx + \int_{C_2'} [a(x, v, \nabla v) - F] \nabla (v - u) dx.$$
(6.7)

In view of the coercive character, we obtain

$$\int_{C_2} [a(x, u, \nabla u) - F] \nabla (u - v) dx \ge - \int_{C_2} [a(x, u, \nabla u) - F] \nabla v dx - \int_{C_2} F \nabla u dx. \tag{6.8}$$

Due to the definition of T_k , we have $C_2 \subset \{h \leq |u| \leq h + k\} \cap \{h - k \leq |v| \leq h\}$ for any $0 \leq k \leq h$, in view of Hardy inequality and (3.1). It easy to see that

$$\begin{split} \int_{C_2} [a(x,u,\nabla u) - F] \nabla (u-v) dx \\ \geq - \bigg(\int_{\{h \leq |u| \leq h+k\}} (\sum_{i=1}^N |\frac{\partial u}{\partial x_i}|^p \omega_i dx + |L|^{p'} + |F|^{p'}) dx \bigg)^{\frac{1}{p'}} \bigg(\int_{\{h-k \leq |v| \leq h\}} \sum_{i=1}^N |\frac{\partial v}{\partial x_i}|^p \omega_i dx \bigg)^{\frac{1}{p}} \\ - \int_{C_2} F \nabla v dx. \end{split}$$

Since $F \in \prod_{i=1}^{N} L^{p'}(\Omega, \omega_i^*)$ and in view of (6.1), (6.5), we deduce that

$$\lim_{h \to +\infty} \int_{C_2} [a(x, u, \nabla u) - F] \nabla (u - v) dx \ge 0, \tag{6.9}$$

and the same, we obtain

$$\lim_{h \to +\infty} \int_{C_2'} [a(x, v, \nabla v) - F] \nabla (v - u) dx \ge 0.$$

$$(6.10)$$

In view of (6.2), (6.3), (6.6), (6.7), (6.9) and (6.10), we conclude that

$$\lim_{h \to \infty} \int_{C_0} \left(a(x, u, \nabla u) - a(x, v, \nabla v) \right) \nabla (u - v) dx = 0,$$

then

$$\int_{C_0} \left(a(x, u, \nabla u) - a(x, v, \nabla v) \right) \nabla (u - v) dx = 0, \quad \forall k > 0.$$

In view of (3.2), we obtain $\nabla u = \nabla v$, and then u = v a.e. in Ω .

References

- A. DALL'AGLIO, Approximated Solutions of Equations with L1 Data. Application to the H-convergence of quasilinear Parabolic Equations, Ann. Mat. Pura Appl., 170 (1996) 207-240.
- 2. A. KUFNER, Weighted Sobolev Spaces, John Wiley and Sons, (1985).
- 3. B. O. TURESSON, Nonlinear Potential, Theory and Weighted Sobolev Spaces, Lecture Note in Mathematics, N 1736. Springer, 2000.
- E. RAMI, A. BARBARA and E. AZROUL, Existence of solutions for some quasilinear elliptic system with weight and measure-valued right hand side, Afrika Matematika (2023) 34:74 https://doi.org/10.1007/s13370-023-01117-w.
- E. RAMI, A. BARBARA and E. AZROUL, Existence of T-p(x)-solution of a nonhomogeneous elliptic problem with right hand side measure, J. Appl. Mathe. Phys. 9, 2717–2732 (2021).
- G. STAMPACCHIA, Le Problème de Direchlet pour les Equations Elliptiques du Second Ordre à Coefficients Discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189-258.
- 7. H. BREZIS, Some variatinal problems of the Thomas-Fermi type, in variational inequalities and complementarity problems, Cottle, Gianessi, and Lions eds., Wiley, New York (1980), 53-73.
- H. BRESIZ and W. STRAUSS, Semi-linear Second-Order Elliptic Equations in L1 J.Math. Soc. Japan, 25 N.4 (1973),565-590
- J. L. LIONS, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthiers-Villars, Paris (1969).

- L. BOCCARDO and T. GALLOUËT, Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, 17, n.3,4 (1992), 641-655.
- L. BOCCARDO and T. GALLOUËT, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87(1989), 149-169.
- 12. L. BOCCARDO, T. GALLOUËT and L. ORSINA, Existence and uniqueness of entropy solutions for non linear elliptic equations with measure data, Ann. Inst. Henri Poincare Vol. 13,5 (1996), 539-551.
- 13. P. BÉNILIAN, L. BOCCARDO, T. GALLOUËT, R. GARIEPY, M. PIERRE, J.L. VAZQUEZ, An L¹ theory for existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22(1995), 240-273.
- 14. P. DRABEK, A. KUFNER and F. NICOLOSI, Non linear elliptic equations, singular and degenerated cases, University of West Bohemia, (1996).
- 15. P. DRÁBEK, A. Ksc ufner and F. NICOLOSI, Nonlinear elliptic equations, singular and degenerate cases, University of West Bohemia, (1996).
- 16. P. Drábek: Strongly nonlinear degenerated and singular elliptic problems, Nonlinear partial differential equations, Pitman Res. Notes Math. Longman, Harlow, **343**, (1996), pp. 112-146.
- 17. Y. AKDIM, E. AZROUL and A. BENKIRANE, Existence solutions for Quasilinear Degenerated Elliptic Equations, Electronic J. Diff. Equ., Vol. 2001, N 71, (2001) pp1-19.
- 18. Y. AKDIM, E. AZROUL and A. BENKIRANE, Existence Results for Quasilinear Degenerated Equations via Strong Convergence Truncations, Revista Matematica Complutence, Madrid, (2004), 17; N2, 359-379.

E. Rami (Corresponding author),

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz,

Laboratory L2MASI, Department of Mathematics,

B.P 1796 Atlas, Fez, Morocco.

 $E ext{-}mail\ address: }$ ramielhoucine@gmail.com

and

A. Barbara,

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz,

Laboratory L2MASI, Department of Mathematics,

B.P 1796 Atlas, Fez, Morocco.

 $E ext{-}mail\ address: abdelkrim.barbara@usmba.ac.ma$

and

E. Azroul,

Sidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar El Mahraz,

Laboratory L2MASI, Department of Mathematics,

B.P 1796 Atlas, Fez, Morocco.

E-mail address: elhoussine.azroul@usmba.ac.ma