(3s.) **v. 2025 (43)** : 1–11. ISSN-0037-8712 doi:10.5269/bspm.76187

Existence and multiplicity of solutions for the Kirchhoff BVPs via genus theory on the half-line

Amel Rahmani and Toufik Moussaoui *

ABSTRACT: The aim of this paper is to establish the existence and multiplicity of solutions for a fourth-order boundary value problem of Kirchhoff type posed on the half-line via Krasnoselskii's genus theory.

Key Words: Genus theory, variational methods, Kirchhoff equation, (PS) condition, fourth-order BVPs.

Contents

1	Introduction	1
2	Preliminaries	1
3	Main results and proofs	4
4	Example	10

1. Introduction

In this work, we are interested by the following problem:

$$\begin{cases}
M(\|u\|^{2})(u^{(4)}(x) - u''(x) + u(x)) = \lambda f(x, u(x)), & x \in [0, +\infty), \\
u(0) = u(+\infty) = 0, \\
u''(0) = u''(+\infty) = 0,
\end{cases}$$
(1.1)

where f be a continuous function, $\lambda > 0$ is a numerical parameter, and the norm of u will be known later. The problem (1) is a generalization of a model introduced by Kirchhoff [6].

2. Preliminaries

In this section, we will present some definitions and necessary results used in the next of this work. $L^2(0, +\infty)$ is defined by

$$L^2(0,+\infty) = \left\{ u : [0,+\infty) \to \mathbb{R} \text{ is measurable, } \int_0^{+\infty} |u(t)|^2 dt < +\infty \right\},$$

endowed with the norm

$$|u|_2 = \left(\int_0^{+\infty} |u(t)|^2 dt\right)^{\frac{1}{2}}.$$

Proposition 2.1 The space $(L^2([0,+\infty)),|.|_2)$ is separable, uniformly convex and reflexive; its conjugate space is L^2 .

For any $u \in L^2([0,+\infty))$ and $v \in L^2([0,+\infty))$, we have

$$\left| \int_0^{+\infty} uv \ dt \right| \le |u|_2 |v|_2.$$

^{*} Corresponding author. 2010 Mathematics Subject Classification: 35A15, 65L10, 35J35. Submitted March 19, 2025. Published September 01, 2025

The Sobolev space $X = H_0^2(0, +\infty)$ is defined by

$$H_0^2(0,+\infty) = \bigg\{ u \in L^2([0,+\infty)); \ u' \in L^2([0,+\infty)), \ u'' \in L^2([0,+\infty)), \ u(0) = 0, \ u'(0) = 0 \bigg\},$$

endowed with the natural norm

$$||u|| = \left(\int_0^{+\infty} u''^2(x) \ dx + \int_0^{+\infty} u'^2(x) \ dx + \int_0^{+\infty} u^2(x) \ dx\right)^{\frac{1}{2}}.$$

Note that if $u \in H_0^2(0, +\infty)$, then $u(+\infty) = 0$, $u'(+\infty) = 0$, (see [1]). Let $r : [0, +\infty) \longrightarrow (0, +\infty)$ be a continuously differentiable and bounded function with $\max(|r|_{L^2}, |r'|_{L^2}) < +\infty$.

We also consider the following space

$$C_{l,r}[0,+\infty) = \left\{ u \in C([0,+\infty),\mathbb{R}) : \lim_{x \to +\infty} r(x)u(x) \text{ exists} \right\}$$

endowed with the norm

$$||u||_{\infty,r} = \sup_{x \in [0,+\infty)} r(x)u(x).$$

In the first stage of this section, we present some notions on the Krasnoselskii's genus theory (see [7], [3], [5], [4]) that we use in the proof of our main result. Let Y be a real Banach space, set

$$\Sigma = \{E \subset Y \setminus \{0\} : E \text{ is compact and } E = -E\}.$$

Definition 2.1 Let $E \in \Sigma$ and $Y = \mathbb{R}$.

The genus $\gamma(E)$ of E is defined by

$$\gamma(E) = \min \left\{ k \geqslant 1; \text{ there exists an odd continuous mapping } \phi : E \to \mathbb{R}^k \setminus \{0\} \right\}, \tag{2.1}$$

If the mapping ϕ does not exist for any k > 0, we set $\gamma(E) = \infty$.

Note also that if E is a subset, which consists of finitely many pairs of points, then $\gamma(E) = 1$.

Moreover, from the Definition 2.1, $\gamma(\emptyset) = 0$. A typical example of a set of genus k is a set, which is homeomorphic to a (k-1) dimensional sphere S^{k-1} via an odd map.

Now, the following Kranoselskii's genus results are necessary throughout the present paper.

Theorem 2.1 (see [5]) Let $Y = \mathbb{R}^N$ and $\partial\Omega$ be the boundary of an open, symmetric and bounded subset $\Omega \subset \mathbb{R}^N$ with $0 \in \Omega$. Then $\gamma(\partial\Omega) = N$.

Corollary 2.1 The genus of the unit sphere S^{N-1} of the space \mathbb{R}^{N-1} is $\gamma(S^{N-1}) = N$.

Remark 2.1 If Y is a separable infinite dimensional space with unit sphere S, then $\gamma(S) = \infty$.

Proposition 2.2 (See [5]) Let $A, B \in \Sigma$. Then, if there exists an odd map $f \in C(A, B)$, then $\gamma(A) \leq \gamma(B)$. Consequently, if there exists an odd homeomorphism $f : A \to B$, then $\gamma(A) = \gamma(B)$.

Definition 2.2 The functional I satisfies the Palais-Smale condition (PS) if for every sequence $(u_n) \subset Y$ such that

$$|I(u_n)| \leq C$$
 and $I'(u_n) \to 0$ as $n \to \infty$,

then there is a subsequence of (u_n) which converges in the sense of the norm of Y.

The following result obtained by Clark in ([4]) is the main idea, which we use in the proof of Theorem 3.1.

Theorem 2.2 . Let $I \in C^1(E, \mathbb{R})$ be a functional satisfying the Palais-Smale condition. Also suppose that:

- I is bounded from below and even.
- There is a compact set $K \in \Sigma$ such that $\gamma(K) = k$ and $\sup_{x \in K} I(x) < I(0)$.

Then I possesses at least k pairs of distinct critical points and their corresponding critical values are less than I(0).

Corollary 2.2 ([2]) The embedding $H_0^2(0,+\infty) \hookrightarrow C_{l,r}[0,+\infty)$ is continuous and compact.

Proposition 2.3 Let Λ be the function defined on the Banach space X by $\Lambda(u) = ||u||^2$ and

$$\langle \Lambda'(u), v \rangle = 2(u, v) = 2\left(\int_0^{+\infty} u''v'' + \int_0^{+\infty} u'v' + \int_0^{+\infty} uv\right).$$

Then we have:

- 1. The functional Λ is convex.
- 2. The mapping $\Lambda': X \longrightarrow X'$ is strictly monotone and bounded.
- 3. Λ' is of (S^+) type, namely if $u_n \rightharpoonup u$ and $\overline{\lim_{n \to +\infty}} \langle \Lambda'(u_n), u_n u \rangle \leqslant 0$, then $u_n \to u$.
- 4. Λ' is homeomorphism.

Proof:

1. The functional Λ is convex.

Let $u, v \in X$, and $t \in [0, 1]$

$$\begin{split} \Lambda \left(tu + (1-t)v \right) &= \|tu + (1-t)v\|^2 \\ &\leqslant \|tu\|^2 + \|(1-t)v\|^2 \\ &\leqslant t^2 \|u\|^2 + (1-t)^2 \|v\|^2 \\ &\leqslant t \|u\|^2 + (1-t) \|v\|^2 \\ &\leqslant t \Lambda(u) + (1-t) \Lambda(v), \end{split}$$

it follows that Λ is convex.

2. The mapping $\Lambda': X \longrightarrow X'$ is strictly monotone and bounded.

 Λ' is Frechet derivative of Λ , it follows that Λ' is continuous and bounded.

For all $u, v \in X$ such that $u \neq v$

$$\langle \Lambda'(u) - \Lambda'(v), u - v \rangle$$
 = $2(u, u - v) - 2(v, u - v)$
 = $2(u - v, u - v)$
 = $2||u - v||^2 > 0$,

which mean that Λ' is strictly monotone.

3. Λ' is of (S^+) type.

Let (u_n) be a sequence of X, such that $u_n \to u$ in X and $\overline{\lim_{n \to +\infty}} \langle \Lambda'(u_n), u_n - u \rangle \leqslant 0$, it suffices to show that $|(u_n, u_n - u)| \to 0$ as $n \to +\infty$ (since $u \in X'$ and $u_n - u \to 0$, then $|(u, u_n - u)| \to 0$, on the other hand, we have: $0 \leqslant ||u_n - u|| \leqslant |(u_n, u_n - u)| + |(u, u_n - u)|$. So, $u_n \to u$ in X). In view of monotonicity of Λ' , we have $\langle \Lambda'(u_n) - \Lambda'(u), u_n - u \rangle \geqslant 0$, since $u_n \to u$ in X, it follows $\overline{\lim_{n \to +\infty}} \langle \Lambda'(u_n) - \Lambda'(u), u_n - u \rangle \to 0$ as $n \to +\infty$, so $u_n \to u$ in X.

4. Λ' is homeomorphism.

Note that the strict monotonicity of Λ' implies its injectivity. Moreover Λ' is a coercive operator. Indeed, let $u \in X$ and since X is a Hilbert space, we have:

$$\langle \Lambda'(u), u \rangle = 2(u, u) = 2||u||^2.$$

Consequently, thanks to Minty-Browder theorem ([8]), the operator Λ' is surjective and admits an inverse mapping. It suffices then to prove the continuity of $(\Lambda')^{-1}$. Let (x_n^*) be a sequence of X' such that $x_n^* \to x^*$ in X' as $n \to +\infty$, let $u_n, u \in X$ such that:

$$(\Lambda')^{-1}(x_n^*) = u_n \text{ and } (\Lambda')^{-1}(x^*) = u.$$

By coercivity of Λ' , one deduce that the sequence (u_n) is bounded in the reflexive space X. For a subsequence, we have $u_n \rightharpoonup \widehat{u}$ in X, which implies that

$$\lim_{n \to +\infty} \langle \Lambda'(u_n) - \Lambda'(u), u_n - \widehat{u} \rangle = \lim_{n \to +\infty} \langle x_n^* - x^*, u_n - \widehat{u} \rangle = 0.$$

It follows from the fact that Λ' is of (S_+) type and the continuity of Λ' that $\Lambda'(u_n) \to \Lambda'(\widehat{u}) = \Lambda'(u)$ in X'. Moreover, since Λ' is an injection, we conclude that $u = \widehat{u}$.

Proposition 2.4 A function $u \in X = H_0^2(0, +\infty)$ is said to be a weak solution of the problem (1.1) if

$$M\left(\left\|u\right\|^{2}\right)\left(\int_{0}^{+\infty}\left(u''(x)\varphi''(x)\right)dx+\int_{0}^{+\infty}u'(x)\varphi'(x)\right)dx+\int_{0}^{+\infty}u(x)\varphi(x)\right)dx\right)=$$

$$\lambda\int_{0}^{+\infty}f(x,u(x))\varphi(x)\,dx,\ \forall\varphi\in X.$$

This relation is called the weak variational formulation equivalent to the problem (1.1).

We associate to the problem (1.1) the energy functional defined by $I: X \longrightarrow \mathbb{R}$,

$$I(u) = \frac{1}{2}\widehat{M}\left(\|u\|^2\right) - \lambda \int_0^{+\infty} F(x, u) \ dx,$$

where $\widehat{M}(t) = \int_0^t M(s) ds$ and $F(x, u) = \int_0^u f(x, t) dt$.

3. Main results and proofs

Theorem 3.1 We assume that M(t) and f(x,t) satisfy the following assumptions:

 (M_1) $M: \mathbb{R}^+ \longrightarrow \mathbb{R}^+$ is a continuous function and satisfies the following condition:

$$a_0 + a_1 t^{\alpha} \leqslant M(t) \leqslant b_0 + b_1 t^{\alpha}$$

for all t > 0, where a_0, a_1, b_0, b_1 and α are positive constants.

 (f_1) $f:[0,+\infty)\times\mathbb{R}\longrightarrow\mathbb{R}$ is a continuous function such that:

$$|f(x,t)| \le d_1(x) + d_2(x)|t|^{q-1},$$

for all $(x,t) \in]0,+\infty) \times \mathbb{R}$, where d_1,d_2 are positive functions such that $\frac{d_1}{r},\frac{d_2}{r^q} \in L^1(0,+\infty)$ and $1 < q < 2\alpha + 2$.

 (f_2) f is an odd function with respect to the variable t,

$$f(x,t) = -f(x,-t), \quad \forall (t,x) \in \mathbb{R} \times [0,+\infty),$$

and
$$F(x, u) = \int_0^u f(x, t) dt > 0$$
 for every $(x, u) \in [0, +\infty) \times \mathbb{R} - \{0\}.$

Then for any $k \in \mathbb{N}$, there exists λ_k such that when $\lambda > \lambda_k$, Problem (1.1) has at least k distinct pairs of nontrivial solutions.

Proof:

Claim 1 : $I \in C^1(X, \mathbb{R})$.

Step 1: I is well defined.

Indeed, let $u \in X$, it follows from (f_1) , (M_1) and the fact that X embed continuously in $C_{l,r}$ that

$$\begin{split} |I(u)| &= \left|\frac{1}{2}\widehat{M}(\|u\|^2) - \lambda \int_0^{+\infty} F(x,u) \, dx \right| \\ &\leqslant \frac{1}{2}\widehat{M}(\|u\|^2) + \lambda \int_0^{+\infty} |F(x,u)| \, dx \\ &\leqslant \frac{1}{2} \int_0^{\|u\|^2} M(t) \, dt + \lambda \int_0^{+\infty} \int_0^u |f(x,t)| \, dt \, dx \\ &\leqslant \frac{1}{2} \int_0^{\|u\|^2} \left(b_0 + b_1 t^{\alpha}\right) \, dt + \lambda \int_0^{+\infty} \int_0^u d_1(x) + d_2(x) |t|^{q-1} \, dt \, dx \\ &\leqslant \frac{1}{2} \left[b_0 \|u\|^2 + \frac{b_1}{\alpha + 1} \|u\|^{2\alpha + 2}\right] + \lambda \int_0^{+\infty} \left(d_1(x) u(x) + \frac{d_2(x)}{q} |u|^q\right) \, dx \\ &\leqslant \frac{1}{2} \left[b_0 \|u\|^2 + b_1 \|u\|^{2\alpha + 2}\right] + \lambda \int_0^{+\infty} \frac{d_1(x)}{r(x)} r(x) |u(x)| \, dx + \lambda \int_0^{+\infty} \frac{d_2(x)}{r^q} |u|^q r^q \, dx \\ &\leqslant \frac{1}{2} \left[b_0 \|u\|^2 + b_1 \|u\|^{2\alpha + 2}\right] + \lambda \|u\|_{\infty, r} \int_0^{+\infty} \frac{d_1(x)}{r(x)} \, dx + \lambda \|u\|_{\infty, r}^q \int_0^{+\infty} \frac{d_2(x)}{r^q} \, dx \\ &\leqslant \frac{1}{2} \left[b_0 \|u\|^2 + b_1 \|u\|^{2\alpha + 2}\right] + \lambda c \|u\| \left|\frac{d_1}{r}\right|_{L^1} + \lambda c^q \|u\|^q \left|\frac{d_2}{r^q}\right|_{L^1} < \infty. \end{split}$$

Step 2 : I is Gâteaux-differentiable.

Indeed, for all $v \in X$, for any small s > 0, we have:

$$\begin{split} I(u+sv) - I(u) &= \frac{1}{2} \widehat{M}(\|u+sv\|^2) - \lambda \int_0^{+\infty} F(x,u+sv) \ dx - \frac{1}{2} \widehat{M}(\|u\|^2) + \lambda \int_0^{+\infty} F(x,u) \ dx \\ &= \frac{1}{2} \left[\widehat{M}(\|u+sv\|^2) - \widehat{M}(\|u\|^2) \right] - \lambda \int_0^{+\infty} \left(F(x,u+sv) - F(x,u) \right) dx. \end{split}$$

From the mean value theorem, we obtain

$$F(x, u(x) + sv(x)) - F(x, u(x)) = sv(x)f(x, u(x) + s\theta v(x)), \quad \theta \in (0, 1),$$

$$\widehat{M}(\|u+sv\|^2) - \widehat{M}(\|u\|^2) = \left(\|u+sv\|^2 - \|u\|^2\right) M(\|u+s\theta v\|^2)$$

$$= \left(2s(u,v) + s^2 \|v\|^2\right) M(\|u+s\theta v\|^2),$$

then,

$$I(u + sv) - I(u) = \frac{1}{2} \left(2s(u, v) + s^2 ||v||^2 \right) M(||u + s\theta v||^2) - \lambda \int_0^{+\infty} sv f(x, u + s\theta v) dx.$$

So,

$$\frac{I(u+sv) - I(u)}{s} = \left((u,v) + \frac{1}{2} s \|v\|^2 \right) M(\|u+s\theta v\|^2) - \lambda \int_0^{+\infty} v f(x,u+s\theta v) \ dx.$$

For all $u, v \in X$, and for all small s, and $\theta \in (0, 1)$:

$$|u(x) + s\theta v(x)|r(x) \leqslant |u(x)|r(x) + s\theta|v(x)|r(x)$$

$$\leqslant ||u||_{\infty,r} + ||v||_{\infty,r}$$

$$\leqslant c||u|| + c||v||$$

$$\leqslant c\Big(||u|| + ||v||\Big) = R_{u,v}.$$

Moreover, from (f_1) and $X \hookrightarrow C_{l,r}$ we have:

$$\begin{split} |f(x,u+s\theta v)v(x)| &\leqslant d_1(x)|v(x)| + d_2(x)|u+s\theta v|^{q-1}|v(x)| \\ &\leqslant \frac{d_1(x)}{r(x)}r(x)|v(x)| + \frac{d_2(x)}{(r(x))^q}|u+s\theta v|^{q-1}(r(x))^{q-1}|v(x)|r(x) \\ &\leqslant \frac{d_1(x)}{r(x)}\|v\|_{\infty,r} + \frac{d_2(x)}{(r(x))^q}R_{u,v}^{q-1}\|v\|_{\infty,r} \\ &\leqslant c\left(\frac{d_1(x)}{r(x)} + R_{u,v}^{q-1}\frac{d_2(x)}{(r(x))^q}\right)\|v\| \in L^1(0,+\infty). \end{split}$$

From the Lebesgue dominated convergence theorem, we have

$$\lim_{n \to +\infty} \int_0^{+\infty} f(x, u + s\theta v) v \ dx = \int_0^{+\infty} f(x, u) v(x) \ dx.$$

Since M is a continuous function, then

$$\lim_{n \to +\infty} \frac{I(u+sv) - I(u)}{s} = (u,v)M(\|u\|^2) - \lambda \int_0^{+\infty} f(x,u)v(x) \ dx,$$

then.

$$I'(u).v = M(\|u\|^2) \left(\int_0^{+\infty} u''(x)v''(x) \ dx + \int_0^{+\infty} u'(x)v'(x) \ dx + \int_0^{+\infty} u(x)v(x) \ dx \right) - \lambda \int_0^{+\infty} f(x,u)v(x) \ dx.$$

Step 3: I' is continuous.

Indeed, let $(u_n) \subset X$ such that $u_n \to u$ as $n \to +\infty$ in X; since $X \hookrightarrow C_{l,r}$ then $u_n \to u$ as $n \to +\infty$ in $C_{l,r}$, so (u_n) is bounded in $C_{l,r}$, then there exists L > 0 such that $||u_n||_{\infty,r} \leqslant L$, $\forall n$. We have then

$$\left| \frac{f(x, u_n)}{r(x)} \right| \leq \frac{d_1(x)}{r(x)} + \frac{d_2(x)}{(r(x))^q} |u_n(x)|^{q-1} (r(x))^{q-1}$$

$$\leq \frac{d_1(x)}{r(x)} + \frac{d_2(x)}{(r(x))^q} \left(r(x) |u_n(x)| \right)^{q-1}$$

$$\leq \frac{d_1(x)}{r(x)} + \frac{d_2(x)}{(r(x))^q} ||u_n||_{\infty, r}^{q-1}$$

$$\leq \frac{d_1(x)}{r(x)} + L^{q-1} \frac{d_2(x)}{(r(x))^q} \in L^1(0, +\infty).$$

From the Lebesgue dominated convergence theorem, we obtain

$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{f(x, u_n(x))}{r(x)} dx = \int_0^{+\infty} \frac{f(x, u(x))}{r(x)} dx.$$
 (3.1)

For all $v \in X$, we have

$$(I'(u_n) - I'(u), v) = M(\|u_n\|^2)(u_n, v) - \lambda \int_0^{+\infty} f(x, u_n)v(x) \, dx - M(\|u\|^2)(u, v) + \lambda \int_0^{+\infty} f(x, u)v(x) \, dx$$

$$= M(\|u_n\|^2) \left(\int_0^{+\infty} u''_n(x)v''(x) \, dx + \int_0^{+\infty} u'_n(x)v'(x) \, dx + \int_0^{+\infty} u_n(x)v(x) \, dx \right)$$

$$-M(\|u\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$-\lambda \int_0^{+\infty} f(x, u_n)v(x) \, dx + \lambda \int_0^{+\infty} f(x, u)v(x) \, dx$$

$$= M(\|u_n\|^2) \left[\int_0^{+\infty} u''_n(x)v''(x) \, dx + \int_0^{+\infty} u'_n(x)v'(x) \, dx + \int_0^{+\infty} u_n(x)v(x) \, dx \right]$$

$$-M(\|u_n\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$+M(\|u_n\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$-M(\|u\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$-M(\|u\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$-M(\|u\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$-M(\|u\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

$$-M(\|u\|^2) \left[\int_0^{+\infty} u''(x)v''(x) \, dx + \int_0^{+\infty} u'(x)v'(x) \, dx + \int_0^{+\infty} u(x)v(x) \, dx \right]$$

Then

$$(I'(u_n) - I'(u), v) = M(\|u_n\|^2) \left[\int_0^{+\infty} (u_n'' - u'')v'' \, dx + \int_0^{+\infty} (u_n' - u')v' \, dx + \int_0^{+\infty} (u_n - u)v \, dx \right]$$

$$+ \left[M(\|u_n\|^2) - M(\|u\|^2) \right] \left[\int_0^{+\infty} u''v'' \, dx + \int_0^{+\infty} u'v' \, dx + \int_0^{+\infty} uv \, dx \right]$$

$$-\lambda \int_0^{+\infty} \frac{\left(f(x, u_n(x) - f(x, u(x)) \right)}{r(x)} r(x)v(x) \, dx.$$

By using the Cauchy-Schwarz inequality, we have

$$\begin{split} \left| (I'(u_n) - I'(u), v) \right| & \leqslant M(\|u_n\|^2) \left[\int_0^{+\infty} \left((u_n'' - u'')^2 \right)^{\frac{1}{2}} \left(\int_0^{+\infty} v''^2 \right)^{\frac{1}{2}} \right. \\ & + \int_0^{+\infty} \left((u_n' - u')^2 \right)^{\frac{1}{2}} \left(\int_0^{+\infty} v'^2 \right)^{\frac{1}{2}} + \int_0^{+\infty} \left((u_n - u)^2 \right)^{\frac{1}{2}} \left(\int_0^{+\infty} v^2 \right)^{\frac{1}{2}} \right] \\ & + \left[M(\|u_n\|^2) - M(\|u\|^2) \right] (u, v) + \lambda \int_0^{+\infty} \frac{|f(x, u_n(x) - f(x, u(x))|}{r(x)} r(x) |v(x)| \, dx \\ & \leqslant M(\|u_n\|^2) \left[\int_0^{+\infty} \left((u_n'' - u'')^2 \right)^{\frac{1}{2}} \|v\|_{X'} + \int_0^{+\infty} \left((u_n' - u')^2 \right)^{\frac{1}{2}} \|v\|_{X'} \\ & + \int_0^{+\infty} \left((u_n - u)^2 \right)^{\frac{1}{2}} \|v\|_{X'} \right] + \left[M(\|u_n\|^2) - M(\|u\|^2) \right] \|u\|_X \|v\|_{X'} \\ & + \lambda \int_0^{+\infty} \frac{|f(x, u_n(x) - f(x, u(x))|}{r(x)} \|v\|_{\infty, r} \, dx \\ & \leqslant M(\|u_n\|^2) \|u_n - u\| \|v\|_{X'} + \left[M(\|u_n\|^2) - M(\|u\|^2) \right] \|u\|_X \|v\|_{X'} \\ & + \lambda c \|v\| \int_0^{+\infty} \frac{|f(x, u_n(x) - f(x, u(x))|}{r(x)} \, dx. \end{split}$$

On the other side

$$||I'(u_n) - I'(u)||_{X'} = \sup_{\|v\| \le 1} |(I'(u_n) - I'(u), v)|$$

$$\le \sup_{\|v\| \le 1} M(\|u_n\|^2) \|u_n - u\| \|v\|_{X'} + \sup_{\|v\| \le 1} \left(M(\|u_n\|^2) - M(\|u\|^2) \right) \|u\|_X \|v\|_{X'}$$

$$+ \sup_{\|v\| \le 1} \lambda c \|v\| \int_0^{+\infty} \frac{|f(x, u_n(x) - f(x, u(x))|}{r(x)} dx$$

$$\le M(\|u_n\|^2) \|u_n - u\| + \left(M(\|u_n\|^2) - M(\|u\|^2) \right) \|u\|$$

$$+ \lambda c \int_0^{+\infty} \frac{|f(x, u_n(x) - f(x, u(x))|}{r(x)} dx.$$

Passing to the limit when $n \to +\infty$, and from (3.1), we obtain that $I''(u_n) \to I''(u)$ as $n \to +\infty$, hence I' is continuous.

Claim 2: I is bounded from below. Indeed, from (M_1) and (f_1) , we have:

$$I(u) = \frac{1}{2}\widehat{M}(\|u\|^{2}) - \int_{0}^{+\infty} F(x, u(x)) dx$$

$$\geqslant \frac{1}{2} \int_{0}^{\|u\|^{2}} (a_{0} + a_{1}t^{\alpha}) dt - \lambda \int_{0}^{+\infty} \left(d_{1}(x)|u(x)| + d_{2}(x) \frac{|u(x)|^{q}}{q} dx \right)$$

$$\geqslant \frac{1}{2} \left[a_{0}\|u\|^{2} + \frac{a_{1}}{\alpha + 1}\|u\|^{2\alpha + 2} \right] - \lambda \int_{0}^{+\infty} \frac{d_{1}(x)}{r(x)} r(x)|u(x)| - \frac{\lambda}{q} \int_{0}^{+\infty} \frac{d_{2}(x)}{r^{q}(x)} |r(x)u(x)|^{q} dx$$

$$\geqslant \frac{1}{2} \left[a_{0}\|u\|^{2} + \frac{a_{1}}{\alpha + 1}\|u\|^{2\alpha + 2} \right] - \lambda \|u\|_{\infty, r} \int_{0}^{+\infty} \frac{d_{1}(x)}{r(x)} dx - \lambda \frac{\|u\|_{\infty, r}^{q}}{q} \int_{0}^{+\infty} \frac{d_{2}(x)}{r^{q}(x)} dx$$

(3.2)

 $\geqslant \frac{1}{2} \left[a_0 \|u\|^2 + \frac{a_1}{\alpha + 1} \|u\|^{2\alpha + 2} \right] - \lambda c \left| \frac{d_1}{r} \right|_{II} \|u\| - \lambda \frac{c^q}{q} \left| \frac{d_2}{r^q} \right|_{II} \|u\|^q.$

As $2\alpha + 2 > q$, I is bounded from below.

Claim 3: I satisfies the (PS) condition.

Indeed, assume that $(u_n) \subset X$ is a sequence such that

$$I(u_n) \to c \quad and \quad I'(u_n) \to 0 \quad as \quad n \to +\infty.$$
 (3.3)

From (3.3), we have $|I(u_n)| \leq d_3$. This fact, combined with (3.2), imply that

$$d_3 \geqslant I(u_n) \geqslant \frac{1}{2} \left[a_0 \|u\|^2 + \frac{a_1}{\alpha + 1} \|u\|^{2\alpha + 2} \right] - \lambda c \left| \frac{d_1}{r} \right|_{L^1} \|u\| - \lambda \frac{c^q}{q} \left| \frac{d_2}{r^q} \right|_{L^1} \|u\|^q.$$

Since $2\alpha + 2 > q$ and I is coercive, then (u_n) is bounded in X. Hence, there exists a subsequence of (u_n) still denoted by (u_n) such that (u_n) converges weakly to some u in X. Since $X \hookrightarrow \subset C_{l,r}$, then (u_n) converges to u in $C_{l,r}[0,+\infty)$ i.e. $u_n \to u$ in $C_{l,r}[0,+\infty)$. Then by (3.3), we have $\langle I'(u_n), u_n - u \rangle \to 0$ as $n \to +\infty$. Thus,

$$\langle I'(u_n), u_n - u \rangle = M(\|u_n\|^2) \left(\int_0^{+\infty} u_n''(u_n'' - u'') + \int_0^{+\infty} u_n'(u_n' - u') + \int_0^{+\infty} u_n(u_n - u) \right) -\lambda \int_0^{+\infty} f(x, u_n)(u_n - u) \, dx \to 0.$$

By (f_1) , we get

$$\left| \int_{0}^{+\infty} f(x, u_{n})(u_{n} - u) dx \right| \leq \int_{0}^{+\infty} \left(d_{1}(x)|u_{n} - u| + d_{2}(x)|u_{n}|^{q-1}|u_{n} - u| \right) dx$$

$$\leq \int_{0}^{+\infty} \left(\frac{d_{1}(x)}{r(x)} r(x)|u_{n} - u| + \frac{d_{2}(x)}{(r(x))^{q}} |r(x)u_{n}(x)|^{q-1} |r(x)(u_{n} - u)| \right) dx$$

$$\leq \left(\left| \frac{d_{1}}{r} \right|_{L^{1}} + \|u_{n}\|_{\infty, r}^{q-1} \left| \frac{d_{2}}{r^{q}} \right|_{L^{1}} \right) \|u_{n} - u\|_{\infty, r}$$

$$\leq \left(\left| \frac{d_{1}}{r} \right|_{L^{1}} + c^{q-1} \|u_{n}\|^{q-1} \left| \frac{d_{2}}{r^{q}} \right|_{L^{1}} \right) \|u_{n} - u\|_{\infty, r}.$$

Since (u_n) is bounded in X and (u_n) converges strongly to u in $C_{l,r}[0,+\infty)$, we obtain

$$\int_0^{+\infty} f(x, u_n)(u_n - u) \, dx \to 0 \quad as \quad n \to +\infty.$$

Hence

$$M(\|u_n\|^2) \left(\int_0^{+\infty} u_n''(u_n'' - u'') + \int_0^{+\infty} u_n'(u_n' - u') + \int_0^{+\infty} u_n(u_n - u) \right) \to 0,$$

as $n \longrightarrow +\infty$. From (M_1) , it follows

$$\int_0^{+\infty} u_n''(u_n'' - u'') + \int_0^{+\infty} u_n'(u_n' - u') + \int_0^{+\infty} u_n(u_n - u) \longrightarrow 0.$$

By Proposition (2.3), we get that $u_n \to u$ in X.

Claim 4: Consider $\{e_1, e_2, ...\}$, a Schauder basis of the space $H_0^2(0, +\infty)$ (see [1]), and for each $k \in \mathbb{N}$, consider X_k , the subset of $H_0^2(0, +\infty)$ generated by the k vectors $\{e_1, e_2, ..., e_k\}$. Clearly X_k is a subspace of $H_0^2(0, +\infty)$.

Consider, for $\rho > 0$

$$K_k(\rho) = \left\{ u \in X_k : ||u||_X^2 = \sum_{i=1}^k \xi_i^2 = \rho^2 \right\}.$$

For any $\rho > 0$, we consider the odd homeomorphism $\chi : K_k(\rho) \to S^{k-1}$ defined by $\chi(u) = (\xi_1, \xi_2, ..., \xi_k)$, where S^{k-1} is the sphere in \mathbb{R}^k . From Theorem 2.1 and Proposition 2.2, we conclude that $\gamma(K_k(\rho)) = k$.

It follows from hypothesis
$$(f_1)$$
 that $\int_0^{+\infty} F(x, u(x)) dx > 0$ for any $u \in K_k(\rho)$. Then $\mu_k = \inf_{x \in K_k(\rho)} \int_0^{+\infty} F(x, u(x)) dx$ is strictly positive

$$\inf_{u \in K_k(\rho)} \int_0^{+\infty} F(x, u(x)) \ dx \ is \ strictly \ positive.$$

Let $\lambda_k = \frac{1}{2\mu_k} \left(b_0 \rho^2 + b_1 \rho^{2\alpha+2} \right)$, and note that $\lambda_k > 0$. When $\lambda > \lambda_k$ then for any $u \in K_k(\rho)$ we have

$$\begin{split} I(u) &= \frac{1}{2}\widehat{M}(\|u\|^2) - \lambda \int_0^{+\infty} F(x, u(x)) \, dx \\ &= \frac{1}{2} \int_0^{\|u\|^2} M(s) \, ds - \lambda \int_0^{+\infty} F(x, u(x)) \, dx \\ &\leqslant \frac{1}{2} \left[b_0 \|u\|^2 + b_1 \|u\|^{2\alpha + 2} \right] - \lambda \mu_k \\ &\leqslant \frac{1}{2} \left[b_0 \rho^2 + b_1 \rho^{2\alpha + 2} \right] - \lambda_k \mu_k = 0, \end{split}$$

which implies that

$$\sup_{K_k(\rho)} I(u) < 0 = I(0).$$

Thanks to Theorem 2.2, I has at least k distinct pairs of nontrivial solutions, then, Problem (1.1) has infinitely of nontrivial solutions.

4. Example

We consider the problem

 $\begin{cases} M\left(\left\|u\right\|^{2}\right)\left(u^{(4)}(x)-u''(x)+u(x)\right)=\frac{e^{-x}}{x^{2}+1}u|u|^{q-2}, & x\in[0,+\infty),\\ u(0)=u(+\infty)=0,\\ u''(0)=u''(+\infty)=0. \end{cases}$ (4.1)

where
$$M(t) = 1 + t^{\alpha}$$
, $\lambda = 1$, and $q < 2\alpha + 2$. We put $f(x,t) = \frac{e^{-x}}{x^2 + 1}t|t|^{q-2}$, $d_1(x) = \frac{1}{1 + x^4}$, $d_2(x) = e^{-x}$ and $r(x) = \frac{1}{1 + x}$.

It is easy to see that conditions $(f_1), (f_2)$ and (M_1) hold. So by Theorem 3.1, (4.1) has infinitely of nontrivial solutions.

References

- 1. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York, 2010.
- 2. M. Briki, T. Moussaoui, D. Oregan, Existence of solutions for a fourth-order boundary value problem on the half-line via critical point theory, Electronic Journal of Qualitative Theory of Differential Equations, 24(2016), 1-11.
- 3. K.C. Chang. Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, (1986).
- 4. D.C. Clarke, A variant of the Lusternik-Schnirelman theory, Indiana Univ. Math. J., (22)1972, 65-74.
- 5. O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, 1993.
- 6. G. Kirchhoff, Mechanik, Teubner, Leipzig., 1883.
- 7. M.A. Krasnoselskii, Methods in the Theory of Nonlinear Integral equations, MacMillan, New York, 1964.

8. E. Zeidler, Nonlinear Function Analysis and its Applications, vol. II/B: Nonlinear Monotone Operators, Springer, New York, 1990.

Amel Rahmani,
Laboratory of Fixed Point Theory and Applications,
Higher Normal School, Kouba, Algiers,
Algeria.
E-mail address: amel.rahmani@g.ens-kouba.dz

and

Toufik Moussaoui, Laboratory of Fixed Point Theory and Applications, Higher Normal School, Kouba, Algiers, Algeria.

 $E\text{-}mail\ address: \verb|toufik.moussaoui@g.ens-kouba.dz|$